
A Model implementation details and
hyperparameters.

We discuss the architectures and learning hyperpa-
rameters of our various models in the subsections
below.

A.1 Physical Dynamics Model

We implemented our dynamics model with three
Transformer layers for both the encoder and the
decoder, and a hidden dimension of 256 for objects
and actions. The resulting model has 17 million
parameters. We pretrained the model for 20 epochs
over 280k state transitions, with a batch size of
1024. We use an Adam optimizer (Kingma and Ba,
2014) with a learning rate of 1e�3.

A.2 Ordering attributes in decoding.

Recall that we use a left-to-right transformer to
decode into an attribute representation, predicting
attributes one-by-one from c1 to cn. Our model
is agnostic to the actual order, as no matter what
the order is, it still is modeling a decomposition
of the joint probability of generating that object.
However, we implemented this by using the name
as the first attribute c1 that is predicted, and ordered
the rest in a descending way by vocabulary size so
as to predict harder attributes first.

A.3 Optimization Hyperparameters chosen

We finetuned PIGLeT for both tasks with an Adam
optimizer (Kingma and Ba, 2014). We did a small
grid search for hyperparameter values, choosing
the best learning rate {2e�5, 1e�5, 1e�6

} by accu-
racy on the development set, and likewise the best
batch size 16 or 32. We considered freezing the
physical dynamics backbone as another hyperpa-
rameter. We found it slightly boosted performance
on PIGPeN-NLG when we froze the physical dy-
namics backbone, but not so for PIGPeN-NLU. We
trained our model for 80 epochs on paired data.

We trained the baseline models with the same
backbone in the same way, using similar hyperpa-
rameters. However, we found that after 80 epochs,
the baseline models without pretrained dynamics
failed to converge, so we finetuned them for 200
epochs total. For T5, we used similar identical hy-
perparameter ranges as the other models. However,
because T5 uses a different optimizer (AdaFac-
tor; Shazeer and Stern (2018)), which operates
on a slightly different scale, we used a different

set of learning rates. We chose the best one over
{1e�4, 2e�4, 4e�4

}.
Search. Both of our tasks involve left-to-right

decoding. We used argmax (greedy) search for
PIGPeN-NLU, finding that it worked well as a
‘closed-ended generation’ style task. On the other
hand, we used Nucleus Sampling for PIGPeN-
NLG as there are often several ways to communi-
cate a state transition; here we set p = 0.8.

A.4 Encoding the input for text-to-text
models

Text-to-text models, needless to say, can only han-
dle text. We encode the world states into a represen-
tation suitable for these models by formatting the
object states as a JSON-style dictionary of keys and
values. We had to make several modifications to the
encoding however from a default JSON, because
we handle a lot of attributes in this task, and JSON
has quote characters ‘’‘ that take up a lot of space in
a BPE encoding. We thus strip the quote characters
and lowercase everything (with this also helping
BPE-efficiency). We put parentheses around each
object and give names to all ‘binned’ attributes.

An example encoding might be:
Predict next object states: (objectname: bowl,

parentreceptacles: cabinet, containedobjects:

none, distance: 6 to 8 ft, mass: .5 to 1lb,

size: medium, temp: roomtemp, breakable: true,

cookable: false, dirtyable: true, broken: false,

cooked: false, dirty: false, filledwithliquid:

false, open: false, pickedup: false, sliced:

false, toggled: false, usedup: false, moveable:

false, openable: false, pickupable: true,

receptacle: true, sliceable: false, toggleable:

false, materials: glass) (objectname: egg,

parentreceptacles: none, containedobjects: none,

distance: 2 to 3ft, mass: .1 to .2lb, size: tiny,

temp: cold, breakable: true, cookable: true,

dirtyable: false, broken: false, cooked: false,

dirty: false, filledwithliquid: false, open:

false, pickedup: true, sliced: false, toggled:

false, usedup: false, moveable: false, openable:

false, pickupable: true, receptacle: false,

sliceable: true, toggleable: false, materials:

food) (action: throwobject10)

We have models decode directly into this kind
of format when predicting state changes. Though
the T5 models usually get the format right, we of-
ten have to sanitize the text in order for it to be a
valid object state in our framework. This is espe-



cially an issue with GPT3, since it is given limited
supervision (we squeeze 3 examples into the 2048-
BPE token context window) and often makes up
new names and attributes. Thus, for each word not
in an attribute’s vocabulary, we use a Levenstein
distance heuristic to match the an invalid choice
with its closest (valid) option. If the model fails
to generate anything for a certain attribute key –
for example if it does not include something like
openable somewhere, we copy the representation
of the input object for that attribute, thereby mak-
ing the default assumption that attributes do not
change.

B All THOR attributes

We list a table with all of the attributes we used for
this work in Table 4.

C Turk Annotation Details

We followed crowdsourcing best practices, such
as using a qualification exam, giving feedback to
workers, and paying workers well (above $15 per
hour). Each of our HITs required writing three sen-
tences, and we paid Mechanical Turk workers 57
cents per HIT. We used three workers per example,
allowing us to have multiple language references
for evaluation. A screenshot of our user interface
is shown in Figure 6.

D Our Pretrained Language Model

We use our own pretrained language model primar-
ily because it allows us to investigate the impact of
data on model performance. We trained a prefix-
masked language model (Dong et al., 2019) on
Wikipedia and Book data, mimicing the data used
by the original BERT paper (Devlin et al., 2019).
We trained the model for 60000 iterations, at a
batch size of 8192 sequences each of length 512.
This corresponds to 50 epochs over the dataset. We
masked inputs in the bidirectional prefix with Span-
BERT masking (Joshi et al., 2020). Since BERT-
style ‘masked’ out inputs are easier to predict than
tokens generated left-to-right, we reduced the loss
component of left-to-right generation by a factor
of 20; roughly balancing the two loss components.

Figure 6: Our user interface for Mechanical Turk anno-
tation.

Figure 7: Counts of zero-shot words that appear in
BERT’s training data (Wikipedia and Toronto Books).
For example, in the 4 billion words BERT is trained
on, it sees the word ‘Bed’ almost 500k times. This
might allow it to perform superficially well at answer-
ing questions about beds – while not necessarily pos-
sessing deep physical knowledge about them.



Attribute Name Vocab size Values

objectName 126 One per object type,
along with None

parentReceptacles 126 One per object type,
along with None

receptacleObjectIds 126 One per object type,
along with None

mass 8 8 bins
size 8 8 bins
distance 8 8 bins
ObjectTemperature 3 Hot , Cold , RoomTemp
breakable 2
canBeUsedUp 2
canFillWithLiquid 2
cookable 2
dirtyable 2
isBroken 2
isCooked 2
isDirty 2
isFilledWithLiquid 2
isOpen 2
isPickedUp 2
isSliced 2
isToggled 2
isUsedUp 2
moveable 2
openable 2
pickupable 2
receptacle 2
sliceable 1
toggleable 2
salientMaterials Ceramic 2
salientMaterials Fabric 2
salientMaterials Food 2
salientMaterials Glass 2
salientMaterials Leather 2
salientMaterials Metal 2
salientMaterials None 2
salientMaterials Organic 2
salientMaterials Paper 2
salientMaterials Plastic 2
salientMaterials Rubber 2
salientMaterials Soap 2
salientMaterials Sponge 2
salientMaterials Stone 2
salientMaterials Wax 2
salientMaterials Wood 2

Table 4: All attributes that we consider for this work in
THOR. We list the attribute’s name, the size of the at-
tribute vocabulary, and the range of values the attribute
can take on. For attributes like ‘mass’, ‘size’, and ‘dis-
tance’, we note that the underlying simulator stores
them as floats; we bin them to 8 values for this work.
All the values for attributes with a vocabulary size of 2
are boolean.

Generator Description

put_X_in_Y Samples an object X from the scene, and a
receptacle Y . Tries to put it in Y .

throw_X_at_Y Samples two objects X and Y from the
scene. Picks up X , moves to face Y , and
throws it forward with variable intensity.

toggle_X Samples an object X , and turns it on or off.
slice_X Samples an object X and a surface Y .

Picks up X , places it on Y , and cuts it.
dirty_X Samples an object X , and makes it dirty.
clean_X Samples a dirty object X . Finds a Sink

nearby a Faucet , and places X inside.
Turns on/off the Faucet , cleaning X .

toast_bread Finds some Bread , slicing it if necessary,
places it in a Toaster , then turns it on.

brew_coffee Picks up a Mug , places it under a
CoffeeMachine , and turns the machine on.

fry_X Picks up a food X , slices it if necessary,
and puts it in a Pot or Pan . Brings it to a
StoveBurner and turns the burner on.

microwave_X Picks up an object X and slices it if neces-
sary. Places it in a Microwave , closes it, and
then turns it on.

fill_X Picks up an object X places it under a
Faucet . Turns on/off the Faucet , then
pours out the liquid.

Table 5: Trajectory generation functions that we used to
sample ‘interesting’ physical interactions, such as the
effects that actions will have on objects, and which ac-
tions will succeed or not.


