

Domain Adaptation in SMT using Factored Translation Models

Jan Niehues and Alex Waibel

Institute for Anthropomatics – Prof. Waibel

www.kit.edu

Overview

- Motivation
- Related Work
- Factored Domain Model
 - Domain Factors Translation Model
 - Domain Factors Sequence Model
- Evaluation
 - News Task
 - Lecture Task

Conclusion

Motivation

- Large amounts of training data are needed for SMT systems
- Best to have data from similar topics and genre
 - Possible only for few scenarios
 - European Parliament
 - Not possible for many real-world scenarios
 - Example:
 - Lecture Translation
 - Even News for some languages
- Common technique:
 - Use all available data to build a baseline system
 - Adapt system using in-domain data

Motivation

- How to adapt the system?
- State-of-the-art SMT Systems:
 - Assumption: All training sentences are equally important
 - No longer holds if we have in-domain and out-of-domain data
 - Leads especially to many errors if in-domain data is small
- In-domain data should be more important
 - Introduce sentence weights into SMT model

Motivation

- Model domain of the training data explicitly
 - Integrate corpus identifier into the translation model
- Prefer phrase pairs learned from in-domain data
 - Weights can be tuned automatically
- Integration using Factored Translation Models (Koehn and Hoang (2007))
 - Easy to integrate into state-of-the-art SMT systems

Related Work

- Only monolingual in-domain data
 - Language Model Adaption
 - Inspired by work, that was done for ASR
 - Creating synthetic parallel text
 - Translate monolingual text using a baseline system
 - Use translated text as additional training data
 - Ueffing et al. 2007, Schwenk and Senellart 2009

Related Work

- Only Monolingual in-domain data
- Parallel in-domain data
 - Combine translation models using alternate decoding paths
 - (Koehn and Schroeder (2007))
 - Adapt translation models using mixture models
 - (Foster and Kuhn (2007))
 - Linear and log-linear combination
 - Different methods to set weights for domain
 - Discriminative weights for sentences of parallel corpus
 - (Matsoukas et at. 2009)

Related Work

- Only Monolingual in-domain data
- Parallel in-domain data
- Data selection
 - Select similar sentences using (cross-lingual) information retrieval techniques
 - Hildebrand et al. 2005
 - Snover et al. 2008

Factored Translation Model

- Framework to integrate corpus id
- Represent words by vector of factors instead of token
 - Integrate additional annotation into SMT

mainly used to incorporate additional linguistic knowledge

- Model Domain of data explicitly
 - Directly model influence of in-domain and out-of-domain data
 - Optimize weights on development data
- Representation of domain
 - Introduce corpus identifier for different training sources

Bogen # arc # NEWS

Bogen # sheet # EPPS Bogen # arc # EPPS

Assumption: Phrase pairs extracted from in-domain data are more important

- Integration into SMT system:
 - Use corpus id as an additional target factor

Translation differ by generated target words and domains of these words

- Domain representation during translation
 - Sequence of corpus ids
 - Example:

- Domain representation during translation
 - Sequence of corpus ids
 - Example:

Assumption: Prefer translation with more corpus ids from text similar to test domain

- Phrase pairs that occur in both corpus
 - Example:
 - Bogen # arc # IN
 - Bogen # arc # OUT
- Lead to different phrase pair
 - Existing phrase pair scores are the same
 - New model scores are different
- Select best one according to current weights

- Describe probability of the domain by two additional models
- Domain Factors Translation Model:
 - Probability of generating a sequence of corpus id tags given the sentence
 - Example:
 - im Osten # in Eastern Europe # IN -> quite low probability
 - im Osten # in Eastern Europe # OUT -> higher probability
- Domain Factors Sequence Model:
 - How probable is a sequence of corpus id tags
 - Example:
 - IN OUT IN IN IN IN IN IN IN IN -> high probability
 - IN OUT OUT IN IN OUT OUT OUT OUT -> lower probability

Domain Factors Translation Model

- Probability of generating a sequence of corpus id tags given the sentence
 - Similar to phrase translation model in state-of-the-art SMT approach
 - Modeled using 2 two scores

$$P(t \mid s) = \frac{cooc(s,t)}{cooc(s,*)}$$

$$P(s \mid t) = \frac{cooc(s,t)}{cooc(*,t)}$$

Estimated using cooccurence counts cooc(s,t)

Domain Factors Translation Model

Cooccurrence count depending on three parameters

- Use cooc(s,t,d) instead of cooc(s,t)
- Leads to 3 different probabilities
- Domain Frequency:
 - Probability of the domain tags given the phrase pair
 - Can be approximated by:

$$P(d \mid s, t) = \frac{cooc(s, t, d)}{cooc(s, t, *)}$$

Domain Factors Translation Model

- Target Frequency:
 - Probability of the target phrase given source and domain sequence

$$P(t \mid s, d) = \frac{cooc(s, t, d)}{cooc(s, *, d)}$$

- Equal to:
 - Target Translation Probability restricted to phrase pairs extracted only from the one domain
- Source Frequency:
 - Probability of the source phrase given target and domain sequence

$$P(s \mid t, d) = \frac{cooc(s, t, d)}{cooc(*, t, d)}$$

Domain Factors Sequence Model

- Describe probability of a sequence of corpus id tags
- Similar to language model
- Problem: cannot be trained on training data
 Training sentences are always from one domain
- Use discriminative uni-gram model

Domain Factors Sequence Model

- Word Count model
 - Number of target words translated by in-domain phrase pairs
- Phrase Count model
 - Number of phrase pairs extracted from the in-domain corpus
- Several different corpora:
 - One feature for every corpus id
 - Example:
 - ID1 ID2 ID1 ID3 ID1 ID3 -> (3 1 2)

Evaluation

- Two task for translating from German to English
 - Translation of News-commentary texts
 - Test set: News test set of WMT 2007
 - Out-of-domain Data: European Parliament (ca. 33 M Words)
 - In-domain Data: News commentary (ca. 1 M Words)
 - Translation of university Lectures
 - Test set: Different lectures
 - Data: European Parliament, BTEC and News Commentary
 - In-domain Data: Lecture 200K Words

Evaluation

- Preprocessing:
 - Normalization of different German writing systems
 - Compound Splitting
- Discriminative Word Alignment
- Phrase extraction according to moses scripts
 - Additional smoothing of relative frequencies
- POS-based reordering for short and long-range reorderings
 - Rules learned from word-aligned corpus
 - Different reorderings encoded in lattice

Domain Factors Sequence Models

- News translation task
- Domain Factors Translation Model:
 - Domain Relative Frequencies

	System	Dev	Test
1	Baseline	25.90	29.03
2	(1) + LM Adaptation	26.68	29.24
3	(2) + Domain Rel. Frequency	26.80	29.21
4	(3) + Word Count Model	27.03	29.63
5	(3) + Phrase Count Model	27.09	29.54

Domain Factors Translation Models

- News translation task
- Domain Factors Sequence Model:
 - Word Count Model

	System	Dev	Test
1	Baseline	25.90	29.03
2	(1) + LM Adaptation	26.68	29.24
3	(2) + Word Count Model	26.13	29.17
4	(3) + Domain Frequency	27.03	29.63
5	(3) + Target Frequency	27.00	29.51
6	(3) + Source Frequency	26.95	29.84
7	(3) + All	27.07	29.69

Karlsruhe Institute of Technology

Lecture Task

- Domain Factors Sequence Model:
 - Word Count Model

	System	Dev	Test
1	LM Adaptation	36.93	29.84
2	+ Source Frequency	37.90	31.12
3	+ Target Frequency	37.63	30.73
4	(1) + Domain Frequency	37.28	30.16
5	(1) + All	37.74	31.53
6	(2) + All Sep. corpus ids	38.01	31.51

Example Translations

Karlsruhe Institute of Technology

Input:

Ein blauer Bogen (demokratischer) Staaten im Osten, ...

Reference:

An arc of blue (Democratic) states in the East, ...

Baseline:

A blue sheet (democratic) countries in Eastern Europe, ...

Adapted:

A blue arc (democratic) states in the east, ...

Conclusion

- New approach to adapt phrase-based SMT systems using Factored Translation Models
 - Easy to integrate
- Model domain of training corpus explicitly
 - Introduce corpus id
 - Add two types of features to log-linear model
 - Weights can be optimized using MERT
- Translation performance could be improved by up to 1 BLEU point