
Word-level Language Identification in Bi-lingual Code-switched Texts

Abstract

Code-switching is the practice of moving back
and forth between two languages in spoken or
written form of communication. In this paper,
we address the problem of word-level language
identification of code-switched sentences. Here,
we primarily consider Hindi-English (Hinglish)
code-switching, which is a popular
phenomenon among urban Indian youth, though
the approach is generic enough to be extended
to other language pairs. Identifying word-level
languages in code-switched texts is associated
with two major challenges. Firstly, people often
use non-standard English transliterated forms of
Hindi words. Secondly, the transliterated Hindi
words are often confused with English words
having the same spelling. Most existing works
tackle the problem of language identification
using n-grams of characters. We propose some
techniques to learn sequence of character(s)
frequently substituted for character(s) in
standard transliterated forms. We illustrate the
superior performance of these techniques in
identifying Hindi words corresponding to the
given transliterated forms. We adopt a novel
experimental model which considers the
language and part-of-speech of adjoining words
for word-level language identification. Our test
results show that the proposed model
significantly increases the accuracy over
existing approaches. We achieved F1-score of
98.0% for recognizing Hindi words and 94.8%
for recognizing English words.

1 Introduction

Code-switching is a popular linguistic
phenomenon where the speaker alternates between
two or more languages even within the same
sentence. In countries like India, where there are

more than 20 widely used languages, code-
switching is an even more pronounced feature,
mostly among urban population (Thakur et al.,
2007). Hindi and English are two popular ones
among these languages, with millions of people
communicating through them in pure forms or
using a mixture of words from both the languages
(code-switched), popularly known as ‘Hinglish’.
 Many multi-national brands use Hinglish
taglines for promoting their products in India. For
example, “Khushiyon ki home delivery”1 is the tag
line for Domino’s Pizza TM India. Hinglish is also
used for casual communication among friends, for
example, “Main temple ke pass hoon” meaning “I
am near the temple”. There are plenty of research
works focusing on analyzing texts used in popular
forums, like online social groups, for applications
like opinion mining, sentiment analysis, etc.
However, machine analysis of Hinglish or any
other code-switched text poses the following
challenges.

• Inconsistent spelling usage: Despite the
availability of the standards for
transliteration (e.g., ITRANS 2) of
Devanagari script to Roman script (the
Hindi language is based on Devanagari
script while the English language is based
on Roman script), people tend to use many
inconsistent spellings for the same word.
For example, the most common English
transliteration for the Hindi word मैं is mai,
as observed from our data set. But people
often use mein or main as alternatives.

• Ambiguous word usage: The
transliterated word main, for the Hindi

1 http://www.dominos.co.in/blog/tag/khushiyon-ki-home-
delivery/
2 ITRANS: http://www.aczoom.com/itrans/

Harsh Jhamtani Suleep Kumar Bhogi Vaskar Raychoudhury
Adobe systems Samsung R&D institute Dept. of Comp. Sc. & Engg.

Bangalore, India Bangalore, India IIT Roorkee, India
harshjhamtani@gmail.com suleep.kumar@gmail.com vaskar@gmail.com

PACLIC 28

348

Copyright 2014 by Harsh Jhamtani, Suleep Kumar Bhogi, and Vaskar Raychoudhury
28th Pacific Asia Conference on Language, Information and Computation pages 348–357

word मैं could be misinterpreted by a
machine to be the English word.

In order to address the afore-mentioned
challenges and to enable automated analysis for
code-switched languages, we need to identify the
language of individual words. In case of
transliterated Hindi words, we also need to find the
authentic script. For example, in the sentence
‘Main temple ke pass hoon’ the word ‘main’ is a
non-standard transliterated form for the Hindi word
मैं and ‘pass’ refers to the Hindi word पास and not
the English word.

We propose some novel solutions to address
the problem of word-level language identification
in code-switched texts. Our major contributions
can be summarized as below.

• We build a model to tackle the inconsistent
spelling usage problem. The model learns
the most common deviations from a
standard transliteration scheme in English
transliteration of Hindi words by
identifying the erroneous character(s) that
are frequently used in place of correct
character(s) in standard transliterated
forms.

• In addition to n-grams of characters, we
use frequency of usage of a word in
English and in Hindi languages as features
for word-level language identification.

• We propose a technique using language
and part-of-speech of neighboring words
which, to the best of our knowledge, has
not been applied before to solve this
problem.

• We achieved F1-score of 98.0% for
recognizing Hindi words and 94.8% for
recognizing English words.

The rest of the paper is organized as follows.
Section 2 describes the related work. Section 3
describes the data sets used. Section 4 describes
the algorithms and features used. Section 5
describes the experiments conducted and their
results.

2 Related Work

The socio-linguistic and grammatical aspects of
code-switched texts have already been studied by
many researchers. Ritchie and Bhatia (1996) and
Kachru (1978) have discussed and examined
different types of constraints on code-switching.
Agnihotri (1998) discussed a number of examples
of Hindi-English code-switching which do not
comply with the constraints proposed in other
literature. However, many of the constraints
proposed for code switching, like the Free
Morpheme Constraint (Sankoff and Poplack, 1981)
and the Equivalence Constraint (Pfaff, 1979), are
still widely applicable.

Automatic language identification research has
focused on identifying both spoken languages as
well as written texts. Language identification of
speech has been studied by House and Neuburg
(1977), where the authors assumed that the
linguistic classes of a language are probabilistic
functions of a Markov chain. Language
identification of written texts has been studied at
document-level as well as at word-level
perspectives. Two major techniques adopted are n-
gram (Cavnar and Trenkle, 1994) and dictionary-
lookup (Řehůřek and Kolkus, 2009). Most of the
existing research works on document-level
language identification consider only mono-lingual
documents (Hughes et al., 2006).

Word-level language identification in code-
switched texts has received little attention so far.
King and Abney (2013) have used weakly
supervised methods based on n-grams of
characters. However, their training data is limited
to monolingual documents, which limits the
capability to capture some patterns in code-
switched texts. Nguyen and Dogruoz (2013)
experimented with linear-chain CRFs to tackle the
problem. But their contextual features are limited
to bigrams of words. Our approach is more general
in the sense we consider the language and POS
(Part-of-speech) of the neighbouring words. So our
approach will work for bigrams of words not
present in training data.

Automatically identifying linguistic code-
switching (LCS) points in code-switched texts
have been studied by Joshi (1982), and Solorio and
Liu (2008). Elfardy et al. (2013) tackled the
problem of identifying LCS points at the word
level in a given Arabic text. They used sound

PACLIC 28

349

change rules (SCR) that model possible
phonological variant of the word, along with 3-
gram model for dialect identification at word-level.

Aswani and Gaizauskas (2010) proposed a bi-
directional mapping from character(s) in the
Devanagari script to character(s) in the Roman
script for the purpose of transliteration. But they
have manually come up with a limited number of
mappings. Dasigi and Diab (2011) used string
based similarity metrics and contextual string
similarity to identify orthographic variants in
Dialectal Arabic.

3 Data Sets

In this section, we describe the datasets used for
our experimentation.

3.1 Data set 1: Hinglish sentences

We have a dataset of 500 Hinglish sentences
containing a total of 3,287 words (CNERG3). Each
word is labeled as Hindi (H) or English (E). Out of
these, 2420 are labeled as Hindi words while the
rest 867 are labeled as English words.
Corresponding to each Hindi word, the authentic
Devanagari script is also written. Some examples
from this dataset are given below.
 bangalore\E ke\H=के technical\E log\H=लोग

We have another data set of 1000 sentences of
social network chats. To avoid any bias, the data
set was tagged manually by three people not
associated with this work. The mean Cohen’s
kappa coefficient of inter-annotator agreement
between the sets of annotations was 0.852. There
were few disagreements on the language of some
named entities. An example from this dataset is
given below.

Main\H=मैं main\E temple\E ke\H=के
pass\H=पास hoon\H=ह�.ँ

 Above two data sets were clubbed to form the
Data set 1.

3.2 Data set 2: Transliteration Pairs
The data set comprises of commonly used multiple
transliterated forms of Hindi words. It contains
30,823 Hindi words (Roman script) followed by
the corresponding word in Devanagari script
(Gupta et al., 2012). Some examples from this
dataset are given below.

3 http://cse.iitkgp.ac.in/resgrp/cnerg/

tera तेरा

thera तेरा
 teraa तेरा

teraaa तेरा
 3.3 Data set 3: Hindi word-frequency list

It is a Hindi word frequency list which has 117,789
Hindi words (in Devanagari script) along with their
frequency computed from a large corpus
(Quasthoff et al., 2006). Some examples of this
dataset are as below:
 लेने 2226 के 2143862
 Also we generated a list standard transliteration
forms of all these words using ITRANS rules. This
list will be referred to as Translated Hindi
Dictionary.

3.4 Data set 4: English word-frequency list

It is a standard dictionary of 207,824 English
words along with their frequencies computed from
a large news corpus.

4 Word-level Language Identification

Our model contains two classifiers. The Classifier
1 works by combining four independent features as
shown in the functional diagram Fig. 1. These
features do not take into account the context of the
word.

Classifier 1 Classifier 2

English
Score

Modified
Edit

Distance

Hindi
Score N-gramsFeatures

HINGLISH
Sentences P(E,w)

POS Tagger
(English)

POS Tagger
(Hindi)

POS-tagged
HINGLISH Sentences

Identified Language
of Words

Fig 1. Functional Diagram of our Approach

 The Classifier 2 operates on the output of
Classifier 1 and the POS tagged Hinglish
sentences. This classifier considers some
contextual features which take into account the
language and POS of neighboring words.

4.1 Using Word-level features : Classifier 1
Here, we describe the features used for Classifier
1. The classifier outputs the probability P with

PACLIC 28

350

which w is an English word, for each word w in a
Hinglish sentence. If we call this probability P(E,
w), then P(H, w) = 1- P(E, w), where P(H, w) is
the probability with which w is a Hindi word.

4.1.1 Common Spelling Substitutions and
String Similarity (Modified Edit Distance)

This feature is used to address the inconsistent
spelling usage problem discussed in the
Introduction section. To solve this problem, for
every word we try to find the most similar word in
our Transliterated Hindi Dictionary using string
similarity algorithms, like ‘Edit Distance’ (Wagner
and Fischer, 1974).

However, we observed cases in code-switching
texts where this algorithm does not produce the
intended outcome. For example, for the Hindi
word खशुब,ू the possible transliterated forms are
khushboo and khushbu with the former being the
standard one. With the Edit Distance algorithm
applied over the two forms, we shall get a
dissimilarity value of 2. The same algorithm
applied over the strings khushbu and khushi (ख़शुी),
which refer to different Hindi words, also gives the
same dissimilarity value. However, for all practical
purposes, khushbu is much closer to khushboo than
it is to khushi. It is an observed fact that people
often tend to substitute, ‘u’ in place of ‘oo’ while
writing transliterated forms. But the Edit Distance
algorithm does not capture this fact. We call this
type of substitutions as common spelling
substitutions.
 To overcome this problem, we have developed a
‘Modified Edit Distance’ (MED) algorithm (Fig.
2) which considers the common spelling
substitutions. The idea is similar to Weighted Edit
Distance (Kurtz, 1996), but in case of MED we
automate the process of deciding the corresponding
weights. We have experimented with four different
methods to learn common spelling substitutions
using the Transliteration Pairs data set. Here we
present the working of the four methods.

Method 1

In this method, given the standard transliterated
form w1of a word and a non-standard form w2 of
the same word, we try to generate substitution
pairs by first aligning the consonants. We add ‘;’ at
start and end of each word to act as delimiters. ‘;’

is also to be considered as a consonant for the
following procedure.
 Consider a variable i varying from 1 to length of
w1. For a consonant c at position i of w1, we try to
align it with a consonant at the smallest position j
of w2 such that:

• jth character of w2 is same as c.
• No character of w2, at a position greater

than or equal to j, has already been
aligned.

• |j-i|<=3
 If it is not possible to align a consonant, then it
is not aligned. We define a segment to be a
sequence of characters delimited by two aligned
consonants (delimiting consonants inclusive). The
two words will contain same number of segments.
We consider two corresponding segments as
substitution pairs if they do not have identical
sequence of letters.
e.g. w1=;tera; , w2=;teraa;

S1 = {;t, ter, ra;}
S2 = {;t, ter, raa;}

This generates a substitution pair (ra;, raa;).
Some substitution pairs generated by this method
are given in Table 1.

Substitution Pair Frequency
ra; r; 1055
na; n; 775

Table 1. Substitution pairs generated by Method 1

Method 2

For this method, the only difference with
method 1 is in the way the segments are defined.
We define a segment to be a sequence of
characters delimited by two aligned consonants
(delimiting consonants exclusive). We consider
two corresponding segments as substitution pairs if
they do not have identical sequence of letters.
e.g. w1=;tera; , w2=;teraa;

S1 = {e, a}, S2 = {e, aa}

This generates a substitution pair (a, aa). Some
substitution pairs generated by this method are
given in Table 2.

PACLIC 28

351

Substitution Pair Frequency
a aa 7764
a ha 872

Table 2. Substitution pairs generated by Method 2

Method 3
 In this method, we do not include any delimiter
at the beginning and end of the words. Rest of the
working is same as in method 2.

Some substitution pairs generated by this

method are given in Table 3.

Substitution Pair Frequency
a aa 8674

om on 1243

Table 3. Substitution pairs generated by Method 3

Method 4

In this method, we align the vowels also. Rest of
the working is same as in Method 3.

For example, consider main (w1) and mein (w2)
as two spelling variants of transliterated form of
the Hindi word मैं. We first align ‘m’ of w1 with
‘m’ of w2, ‘i’ of w1 with ‘i’ of w2, and ‘n’ of w1
with ‘n’ of w2.

 This generates the substitution pair (‘a’, ‘e’),
i.e., ‘e’ has been used in place of ‘a’
interchangeably by the user. Some substitution
pairs generated by this method are given in Table
4.

Substitution Pair Frequency
i ee 1742
f ph 1444

Table 4. Substitution pairs generated by Method 4

In all methods we keep some threshold thresh
for the frequency of substitution pairs. Substitution
pairs occurring less than thresh are not further
considered. The comparison of performance of
MED based on these four methods will be
discussed in the section 5.7.
 Let subsList be the list of substitution pairs.
Each entry s in subsList has attributes sx, sy, and sf,

where (sx, sy) is the substitution pair and sf is the
corresponding frequency of occurrence.
 Consider a substitution pair s which occurs with
frequency sf in the training data. Then the cost of
using the substitution is g(sf), i.e., a function of
frequency sf. Here, g(f) = k / (log10(f)), where, k is
a constant.

modifiedEditDistance (transliteration w1,
transliteration w2, list of substitutions subsList)

NÅ length of w1
MÅ length of w2
initialize all elements of matrix dp[N][M] with 0
for i Å1 to N:
 for j Å1 to M:
 if w1[i] == w2[j]:
 v1Ådp[i-1][j-1]
 else:
 v1Å dp[i-1][j-1] + 1// substitution of a character
 v2Å 1 + dp[i-1][j] // deletion of a character
 v3Å 1 + dp[i][j-1] // insertion of a character
 v4Å infinity
 for s in subsList:
 pÅ length of sx
 qÅ length of sy
 if w1 [i-p+1 : i] = sx and w2[j-q+1 : j] =sy :
 v4Å min(v4 , g(sf) + dp[i-p][j-q])
 dp[i][j] Å min(v1, v2, v3, v4)

output: MED(w1,w2) = dp[N][M]

Fig 2. Pseudo code for Modified Edit Distance
Algorithm

 We have used logarithmic scaling as the
frequencies of occurrences of the substitution pairs
are very much skewed towards larger values. For
every other insertion, deletion and substitution of a
character, cost is 1 as is commonly used for Edit
Distance. For each word w in test data, we try to
match it against words in our Transliterated Hindi
Dictionary. The word corresponding to the
minimum cost and the minimum cost itself
computed by the above algorithm are stored. The
minimum cost so obtained for each word is
dissimilarityScore for that word. The algorithm for
MED is shown in Fig.2.

4.1.2 Frequency of Occurrence in English and
Hindi

Here we address the ambiguous word usage
problem discussed in the Introduction section.
Consider that the test data contains the word

PACLIC 28

352

‘main’, which can correspond to the Hindi word मैं
or the English word. If we decide its language
randomly, then the expected accuracy of
identifying the correct language is 50%. If we
know that main in English language is having
higher usage frequency than the word मैं in Hindi
language, then the probability of the test data word
‘main’ being an English word increases.
 Using formula (1), we compute the value
corresponding to this feature and we call it English
score (eng_score). First, we use logarithmic
scaling on frequencies of occurrences of English
words to do away with its skewness towards large
values. Then, we normalize the word frequency
values with respect to the largest frequency
observed.

 M=max (log(freq(q)))
 ∀ word q ∈ Hindi Dictionary
For a given word w in the test data,
 score(w) = log(freq(w))/M
 eng_score(w) = 0, if w not in English Dictionary
 = score(w), otherwise …(1)

Fig 3. Density distribution plot for (a) English Score
feature (b) Hindi Score feature

 Similarly, we calculate the Hindi score
(hin_score) using formula (2). However, first the
MED algorithm is used to identify the closest
matching Hindi word hw for a given word in the
test data.

 M=max (log(freq(q)))
 ∀ word q ∈ Hindi Dictionary
For a given word w in the test data,
 score(w) = log(freq(hw))/M
 hin_score(hw) = score(w) …(2)

Thus, we get English score and Hindi score for
each word in the Dataset 1. The density

distributions of eng_score and hin_score are
shown in Fig. 3(a) and Fig. 3(b) respectively.

4.1.3 Character N-grams
This follows the idea that, in Hinglish sentences
some contiguous sequences of letters occur more
frequently in words of one language as compared
to the words of the other language. For example,
bigram ‘es’ frequently occurs at the end of English
words (like, roses, fries), often denoting plural
morphological forms. We considered bigrams and
trigrams of characters for the task of word-level
language identification. We used the technique of
Delta TF-IDF, which has been shown to be more
effective in binary classification of class
imbalanced data using unigrams, bigrams, and
trigrams (Martineau et al., 2009)
 For any term t (n-gram of characters) in word w,
the Delta TF-IDF score V is computed using
formula (3).

V(t,w) = n(t,w) * log2(Ht / Et) ----(3)
 Where n (t, w) is the frequency count of term t
in word w. Ht and Et are the number of occurrences
of term t in the English and Hindi dictionaries.
Thus for every word w, we generate a set of feature
values, with each n-gram t contributing one value.

4.2 Using Context Level Features: Classifier 2

All the previous features we have discussed focus
on individual words of a code-switched sentence
on a stand-alone basis, i.e., independent of the
surrounding words or context. However, language
usage of words in code-switched sentences may
follow certain patterns, like words of a language
are often surrounded by words of the same
language (King and Abney, 2013). We tried to
capture this context-dependence by considering the
language and the POS of the surrounding words.
For example, words on the two sides of
conjunctions ‘and’, ‘aur (और)’, etc. are usually of
same language as the conjunction.

Our Classifier 2 operates over POS-tagged
Hinglish sentences and the output from Classifier
1, i.e., P(E, w) (Refer to Fig.1.). The notations and
symbols are shown in table 5, and the
corresponding procedure is presented in Fig.4.
 We annotated POS of each word in the training
data set with POS taggers. For English, we used
Stanford NLP Maxent POS tagger (Toutanova et
al., 2003). In case, the word has more than one

PACLIC 28

353

possible POS usage, we consider the most frequent
POS usage. For Hindi words, we used POS tagger
by Reddy and Sharoff (2011). For each word w in
the training data, we assign an identifier (id) X_P
to it, where X can take values ‘E’ (for English) or
‘H’ (for Hindi), and P is the corresponding POS of
the word. For example, if ‘car’ is an English noun
(NN), then its id will be as E_NN.
 We then count the number of occurrences of
various bigrams of ids’ in the training data. We use
these counts to calculate the conditional probability
of an identifier to occur given the previous
identifier e.g. P(id2|id1) is the probability that
identifier id1 will be followed by identifier id2.
 For each word w, we have at most two possible
candidate interpretations - Hindi word wH with
POS as PwH, and English word wE with POS as
PwE. wH is found using MED algorithm and wE is
found using English Dictionary lookup. Now w
refers to wE with probability P(E,w), and refers to
wH with probability P(H, w) e.g. if w is ‘main’,
then wH is मैं and wE is the English word main.
Now the identifier corresponding to w1H will be
H_PRP as मैं is a Hindi personal pronoun.

 Symbol Meaning
Sentence S A Hinglish sentence which is a

sequence of words w1w2w3 … wN
Matrix
prob_pos[M][M]

Conditional probability of the
current word’s identifier (id) to be
i, given that the identifier (id) of
the previous word is j, as learnt
from the training data.

Array
eng_prob[N]

eng_prob[i] = P(E,wi)
= Probability of the ith word in
sentence to be English, as provided
by Classifier 1.

Array
hin_tag[N]

hin_tag[i] = PwiH = POS tag of
wiH

Array
eng_tag[N]

eng_tag[i] = PwiE = POS tag of
wiE

Integer M total number of identifiers possible

Table 5. Notations and Symbols for classifier 2

Consider a Hinglish sentence S = w1w2w3…wn.
A possible interpretation can be Sx = w1H w2H w3E
… wNH. Now S has an interpretation given by Sx
with probability P(S=Sx) given by:
P(S=Sx) = P(H,w1) * P(H,w2) * P(E,w3)..* P(H,wn)

 Now we define score (Sx) as follows:
score(Sx) = P(S=Sx) * P(id2|id1) * P(id3|id2)*... *
P(idN|idN-1)

 For a sentence S with N words, we can have a
maximum of 2N such possibilities. Now calculating
the maximum score over these possibilities has
optimal sub-structures, which lets us use dynamic
programming. Algorithm for Classifier 2 is
presented in Fig.4. We built a similar model using
trigrams of identifiers.

maxLikelihood (Sentence S, prob_pos[M][M],
hindi_tag[N], eng_tag[N], eng_prob[N]):
NÅ length of s
Initialize all elements of dp [N+1][2] with 0
dp [0][0] Å 0.5
dp [0][1] Å 0.5
for iÅ 1 to N:
/* dp [i][0] is the maximum score such that wi refers to
wiE when S[1,2,...i] have been considered */
/* dp [i][1] is the maximum score such that wi refers to
wiH when S[1,2,...i] have been considered */
prev_valÅ dp [i-1][0] // 0 => english
v1Åprev_val * eng_prob[i] * trans_prob[PwiE][Pwi-1E]
prev_valÅ dp[i-1][1] // 1 => hindi
v2Åprev_val *(1- eng_prob[i])*trans_prob[PwiE][Pwi-

1H]
 dp [i][0] Å max(v1,v2)
// Similar procedure to calculate dp [i][1]

Fig. 4. Algorithm for Classifier 2 (using identifier
bigram)

 Consider following cases for the first three
words of the sentence ‘Main main temple ke pass
hoon’:

Case 1: Main (H_PRP) main (E_JJ) temple
(E_NN)
Case 2: Main (E_JJ) main (E_JJ) temple (E_NN)
Case 3: Main (H_PRP) main (H_PRP) temple
(E_NN)
Case 4: Main (E_JJ) main (H_PRP) temple
(E_NN)
Case 1 is the correct case. The bigrams of

identifiers corresponding to the case 1 i.e. H_PRP-
E_JJ and E_JJ-E_NN occur much more frequently
in the training data as compared to bigrams of
other cases.

5 Experimentation and Results

In this section, we shall discuss the experiments we
carried out and the results obtained. We have used
10-fold cross validation technique. We
experimented with different classifiers like
Decision Tree, SVM and Random Forest, provided
by Scikit Learn (Pedregosa et al., 2011).

PACLIC 28

354

5.1 Experiment 1: Presence in English
Dictionary

In this experiment a word is classified as belonging
to English class if it is present in English
Dictionary otherwise the word is classified as
belonging to Hindi class.

For this experiment, we sorted the words of the
English Dictionary in decreasing order of the
frequency of occurrences of words. Then we
considered only the top K words for the
experiment. The results for different values of K
are shown in Table 6.

K HPR4 HRE HF1 EPR ERE EF1
100 0.74 0.98 0.84 0.31 0.02 0.04
500 0.76 0.96 0.85 0.59 0.15 0.24
1000 0.79 0.95 0.86 0.69 0.28 0.40
5000 0.85 0.93 0.89 0.75 0.55 0.64
10000 0.87 0.86 0.87 0.63 0.64 0.63
ALL 0.92 0.39 0.55 0.35 0.91 0.50

Table 6. Results of Experiment 1

We observed that with an increase in the number
of words in the English dictionary, more English
words will be correctly identified as ‘English’
words, resulting in increased recall values for the
‘English’ class (ERE). But at the same time more
Hindi words would be incorrectly marked as
English, resulting in decrease in HRE.

5.2 Experiment 2: King-Abney’s approach
In this experiment we run the King’s (2013) n-
grams and context level algorithms on our data set.
The results are shown in Table 7.

 HPR HRE HF1 EPR ERE EF1
Naïve
Bayes

0.66 0.83 0.74 0.39 0.20 0.27

HMM 0.75 0.91 0.83 0.59 0.29 0.39
CRF 0.76 0.96 0.85 0.76 0.28 0.41

Table 7. Results of Experiment 2

5.3 Experiment 3: Using Delta TF-IDF on n-
grams of characters (Our Approach)

In this experiment we used only one of our features
for classification. We have used Delta TF_IDF

4 HPR = Precision for Hindi class, HRE = Recall for the Hindi,
HF1 = f1 score for the Hindi class
EPR = Precision for English class, ERE = Recall for the
English class, EF1 = f1 score for the English class

scores of n-grams of characters as features in our
Classifier 1. The results of experiment 3 are
presented in Table 8. The best results are obtained
using Random Forest with number of trees equal to
10.

 HPR HRE HF1 EPR ERE EF1
Random
Forest

0.89 0.79 0.84 0.52 0.71 0.6

Table 8. Results of Experiment 3

5.4 Experiment 4: All word-level features
(Classifier 1)

In this experiment we show the results produced by
our Classifier 1 i.e., only using word-level features.
Results of this experiment are presented in Table 9.
We can see using other features, F1 scores have
significantly increased.

 HPR HRE HF1 EPR ERE EF1
Random
Forest

0.95 0.98 0.97 0.94 0.85 0.89

Table 9. Results of Experiment 4

Fig.5. ROC curve for Random Forest Classifier based

on all word-level features

Thus best results came corresponding to
Random Forest classifier, with number of trees =
10, and based on following word-level features:

• Delta TF-IDF on n-grams of characters
• eng_score
• hin_score
• dissimilarityScore

The corresponding ROC curve has been shown
in Fig 5. The AUC (Area Under the curve) is 0.98.

5.5 Experiment 6: Classifier 2
As input to Classifier 2, we used POS tagged
Hinglish sentences and the output of Classifier 1,

PACLIC 28

355

corresponding to the output from Experiment 4.
We performed two experiments with Classifier 2
using bi-grams and tri-grams of identifiers. The
results are shown in Table 10.

 HPR HRE HF1 EPR ERE EF1
Identifier
bi-grams 0.974 0.969 0.972 0.920 0.934 0.926

Identifier
tri-grams

0.983 0.977 0.980 0.941 0.955 0.948

Table 10. Results of Experiment 6

 The accuracy of Classifier 2 obtained on using
identifier tri-grams is more than the accuracy
obtained on using identifier bi-grams. This is
probably because usage of trigrams captures the
context more efficiently. Moreover the
improvement offered by Classifier 2 over
Classifier 1 is only little. This is mainly because of
the already high accuracy values of Classifier 1.

We found that the percentage of named entities
in the Dataset 1 is 8.59%. We observed that the
percentage of named entities in the wrongly
classified words is 23.2%.

5.6 Experiment 7: Comparing four methods
of creating substitution pairs

In this experiment we compare the results of
previously described four methods to create
substitution pairs. The results of this experiment is
shown in Fig. 6. The K value which was defined in
section 4.1.1 is varied to compare the results. It is
observed that Method 2 gives best results among
all methods discussed.

Fig 6. Graph showing comparison between four
methods of creating substitution pairs

5.7 Performance of MED
To test the performance of MED algorithm in
identifying correct Hindi words corresponding to

given transliterated forms, we compared it with the
some other well-known string matching
algorithms: Damerau-Levenshtein (49.38%),
Levenshtein (47.48%), Jaro-Winkler (50%),
Soundex (46.23%). The accuracy of MED is
54.1%.
 For each Hindi word w in the Hinglish data-set,
we try to match it against every word in our
Transliterated Hindi Dictionary. The word
corresponding to the minimum cost is stored and
later compared with the correct word. Fig.7 shows
the results with a Hindi dictionary of size 117,789.

Fig 7. Performance of MED vs. other Algorithms

6 Conclusion

In this paper, we addressed the problem of word-
level language identification in bilingual code-
switched texts. We proposed a novel idea of
utilizing the patterns in Hinglish sentences by
considering the language and the POS of
consecutive words. We proposed four different
techniques to identify common spelling
substitutions Our error analysis shows that a
significant fraction of the errors made by the
classifiers are actually named entities which are
names of people or places, and can be considered
either as Hindi or as English. In future, we would
like to explore the changes of code-switching
behavior from person to person. Also, we shall
focus on other pairs of languages, like English-
Bengali, English-Gujarati, etc. and also on word-
level identification in multilingual code switched
texts (i.e. having more than two languages).

7 References
Aravind K. Joshi. 1982. Processing of sentences with

intra-sentential code-switching. In Proceedings of the
9th conference on Computational linguistics.
Academia Praha, Volume 1: 145-150.

Arthur S. House, and Edward P. Neuburg. 1977.
Toward automatic identification of the language of

PACLIC 28

356

an utterance. I. Preliminary methodological
considerations. The Journal of the Acoustical Society
of America, 62: 708.

Baden Hughes, Timothu Baldwin, Steven Bird, Jeremy
Nicholson, Andrew Mackinlay. 2006. Reconsidering
language identification for written language
resources. In Proc. International Conference on
Language Resources and Evaluation: 485-488.

Ben King, and Steven P. Abney. 2013. Labeling the
Languages of Words in mixed-language documents
using weakly supervised methods. In Proceedings of
the 2013 NAACL-HLT.

Braj B Kachru. 1978. Toward structuring code from the
point of view of their usefulness in mixing: An
Indian perspective. International Journal of the
Sociology of Language, 16:28-46.

Carol W. Pfaff. 1979. Constraints on language mixing:
intra-sentential code-switching and borrowing in
Spanish/English, Language: 291-318.

David Sankoff, and Shana Poplack. 1981. A formal
grammar for code ‐ switching 1. Research on
Language & Social Interaction, 14(1): 3-45.

Dong Nguyen, and A. Seza Dogruoz. 2013. Word level
language identification in online multilingual
communication. ACL 2013.

Fabian Pedregosa, Gael Varoquaux Alexandre
Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas,
Alexandre Passos, David Cournapeau, Matthieu
Brucher, Matthieu Perrot, Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. The
Journal of Machine Learning Research, 12: 2825-
2830.

Heba Elfardy, Mohamed Al-Badrashiny, and Mona
Diab. 2013. Code Switch point detection in Arabic
Natural Language Processing and Information
Systems. Springer: 412-416.

Justin Martineau, Tim Finin, Anupam Joshi, and Shamit
Patel. 2009. Improving binary classification on text
problems using differential word features. In
Proceedings of the 18th ACM CIKM.

Kanika Gupta, Monojit Choudhury, and Kalika Bali.
2012. Mining Hindi-English Transliteration Pairs
from Online Hindi Lyrics, In Language Resources
and Evaluation Conference: 2459-2465.

Kristina Toutanova, Dan Klein, Christopher D.
Manning, and Yoram Singer. 2003. Feature-rich part-
of-speech tagging with a cyclic dependency network.

In Proceedings of the NAACL-HLT, Volume 1: 173-
180.

Niraj Aswani, and Robert J. Gaizauskas. 2010. English-
Hindi Transliteration using Multiple Similarity
Metrics. In Language Resources and Evaluation
Conference.

Pradeep Dasigi, and Mona Diab. 2011. CODACT:
Towards Identifying Orthographic Variants in
Dialectal Arabic. In Proceedings of the 5th
International Joint Conference on Natural Language
Processing.

Radim Řehůřek, and Milan Kolkus. 2009. Language
identification on the web: Extending the dictionary
method. In Computational Linguistics and Intelligent
Text Processing.

Rama Kant Agnihotri. 1998. Mixed codes and their
acceptability. Social psychological perspectives on
second language learning: 191-215.

Robert A. Wagner, and Michael J. Fischer. 1974. The
string-to-string correction problem. Journal of the
Association for Computing Machinery (JACM),
21(1): 168-173.

Saroj Thakur, Kamlesh Dutta, and Aushima Thakur.
2007. Hinglish: Code switching, code mixing and
indigenization in multilingual environment. Lingua
Et Linguistica, 1.2 (2007): 109.

Siva Reddy, and Serge Sharoff. 2011. Cross language
POS taggers (and other tools) for Indian languages:
An experiment with Kannada using Telugu
resources. Cross Lingual Information Access.

Stefan Kurtz. 1996. Approximate string searching under
weighted edit distance. Proceedings of the 3rd South
American Workshop on String Processing (WSP’96),

Thamar Solorio, and Yang Liu. 2008. Learning to
predict code-switching points. In Proceedings of
EMNLP, 973-981.

Uwe Quasthoff, Matthias Richter, and Chris Biemann.
2006. Corpus portal for search in monolingual
corpora. In Proceedings of the fifth international
conference on language resources and evaluation:
1799-1802.

William B. Cavnar, and John M. Trenkle. 1994. N-
gram-based text categorization. Ann Arbor M,
48113(2): 161-175.

William C. Ritchie, and Tej K. Bhatia, eds. 1996.
Bilingual language mixing, universal grammar, and
second language acquisition. Handbook of second
language acquisition: 627-688.

PACLIC 28

357

