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Abstract

Formal properties of functions denoted by
higher order anaphors likeeach otherand
syntactically complex expressions contain-
ing each otherare studied. A partial com-
parison between these functions and func-
tions denoted by (simple and complex) re-
flexives is draw. In particular it is shown that
both types of function are predicate invari-
ant (in a generalised sense). These results
allows us to understand the anaphoric char-
acter of both reflexive and reciprocal expres-
sions.

1 Introduction

By higher order anaphor, I mean expressions like
each other, sometimes called basic higher order
anaphors, and various complex expressions syn-
tactically containingeach other. These complex
anaphors include Boolean compounds likeeach
other and most students,each other and them-
selvesand various modifications ofeach otherlike
only each otheror at least each other. Higher
order anaphors are also expressions formed by
the application of ahigher order anaphoric de-
terminer like each other’sor every ...except each
other to a common noun (CN). All such expres-
sions will be called reciprocals and sentences con-
taining them (in object position) will be called re-
ciprocal sentences.

Higher order anaphors can be opposed to (logi-
cally) simple anaphors whose basic example is the
reflexive pronounhimself/herself/themselves. This
simple basic anaphora can also occur in Booleanly
complex anaphors likehimself and most students
or in modified expressions likeonly himself, even
themselves. So the distinction between simple and
higher order anaphors is of logical nature: as we

will see below functions denoted by higher or-
der anaphors take binary relations (or binary rela-
tions and sets) as arguments and give sets of type
〈1〉 quantifiers as output whereas simple anaphors
have arguments of the same type as higher order
ones (that is their arguments are binary relations
or sets and binary relations) but their output are
sets (of individuals).

The semantics of reciprocal sentences is a com-
plex matter (as shown for instance in Dalrymple
et al., 1998; Cable, forthcoming; Dotlačil, forth-
coming; Mari, forthcoming). In fact there does
not seem to be any general agreement concerning
the data and the interpretation of reciprocal con-
structions (cf. Beck, 2000). In this paper I am
not, strictly speaking, interested in the semantics
of higher order anaphors but in the formal proper-
ties of functions denoted by higher order anaphors.
Two types of such properties will be discussed:
those which are similar to properties of functions
denoted by simple anaphors and those which make
them different from functions denoted by simple
anaphors. Formal properties of functions denoted
by simple anaphors have been studied in Keenan
(2007), Zuber (2010b) and Zuber (2011) and some
formal properties of higher order anaphors are
given in Sabato and Winter (2012) and Peters and
Westerst̊ahl (2006). As far as I can tell, no compar-
ison between the two types of function have been
made. Moreover, only basic anaphors (that is syn-
tactically simple anaphors) have been taken into
consideration.

2 Formal preliminaries

We will consider binary relations and functions
over universeE which is supposed to be finite. If a
function takes only a binary relation as argument,
its type is noted〈2 : τ〉, whereτ is the type of
the output; if a function takes a set and a binary
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relation as arguments, its type is noted〈1, 2 : τ〉.
If τ = 1 then the output of the function is a set
of individuals and thus the type of the function
is 〈2 : 1〉. For instance the functionSELF , de-
fined asSELF (R) = {x : 〈x, x〉 ∈ R}, is of
this type. The case we will basically consider here
is whenτ corresponds to a set of type〈1〉 quanti-
fiers and thusτ equals, in Montagovian notation,
〈〈〈e, t〉t〉t〉. In short, the type of such functions
will be noted either〈2 : 〈1〉〉 (functions from bi-
nary relations to sets of type〈1〉 quantifiers) or
〈1, 2 : 〈1〉〉 (functions from sets and binary rela-
tions to sets of type〈1〉 quantifiers).

Let R be a binary relation. Then :dom(R) =
{x : ∃y〈x, y〉 ∈ R} andrg(R) = {x : ∃y〈y, x〉 ∈
R}. Furthermore, for anya ∈ E, aR = {x :
〈a, x〉 ∈ R} andRa = {x : 〈x, a〉 ∈ R}. The
relationR−1 is the converse ofR (that isR−1 =
{〈x, y〉 : 〈y, x〉 ∈ R}) and the relationRS is the
maximal symmetric relation included inR, that is
RS = R ∩ R−1. A type 〈2 : 1〉 or type〈2 : 〈1〉〉
function F is convertible iff F (R) = F (R−1).
RelationI is defined asI = {〈x, x〉 : x ∈ E}.
The relationRt is the transitive closure of the re-
lation R, that is the smallest transitive relation in
whichR is included.

Basic type〈1〉 quantifiers are functions from
sets (sub-sets ofE) to truth-values. In this case
they are denotations of subject NPs. However,
NPs can also occur in oblique positions and
in this case their denotations do not take sets
(denotations of verb phrases) as arguments but
rather denotations of intransitive verb phrases,
that is relations, as arguments. To account for
this eventuality it has been proposed to extend the
domain of application of basic type〈1〉 quantifiers
so that they apply to n-ary relations and act as
arity reducers, that is have as output an (n–1)-ary
relation. Since we are basically interested in
binary relations, the domain of application of
basic type〈1〉 quantifiers will be extended by
adding to their domain the set of binary relations.
In this case the quantifierQ can act as a”subject”
quantifier or a ”direct object” quantifier giving
rise to thenominative case extensionQnom and
accusative case extensionQacc respectively. They
are defined as follows (Keenan, 1987; Keenan and
Westerst̊ahl, 1997):

D1: For each type 〈1〉 quantifier Q,
Qnom(R) = {a : Q(Ra) = 1}.

D2: For each type 〈1〉 quantifier Q,
Qacc(R) = {a : Q(aR) = 1}.

From now on Qnom(R) will be noted Q(R).
Nominative and accusative extensions can thus be
considered as functions from binary relations to
sets. By type〈1〉 quantifiers I will mean basic type
〈1〉 quantifiers as well as their nominative and ac-
cusative extensions.

Given that type〈1〉 quantifiers and their ar-
guments form Boolean algebras, every quantifier
Q has its Boolean complement, denoted by¬Q,
and its post-complementQ¬, defined as follows:
Q¬ = {P : P ⊆ E ∧ P ′ ∈ Q} (where
P ′ is the Boolean complement ofP ). The dual
Qd of the quantifierQ is, by definition,Qd =
¬(Q¬) = (¬Q)¬. A quantifierQ is self-dual iff
Q = Qd. These definitions work also for extended
type〈1〉 quantifiers. It easy to see for instance that
¬(Qacc) = (¬Q)acc and(Qd)acc = (Qacc)d. A
type〈1〉 quantifierQ is positiveiff Q(∅) = 0.

A special class of type〈1〉 quantifiers is formed
by individuals, that is ultrafilters generated by an
element ofE. ThusIa is an individual (generated
by a ∈ E) iff Ia = {X : a ∈ X}. Ultrafilters
are special (principal) filters. A (principal) filter
generated by the setA ⊆ E is the following quan-
tifier: Ft(A) = {X : X ⊆ E ∧ A ⊆ X}. Thus
ultrafilters are principal filters generated by single-
tons.

One property that we will use is the property of
living on. The basic type〈1〉 quantifier lives on the
setA (whereA ⊆ E) iff for all X ⊆ E, Q(X) =
Q(X ∩ A). If E is finite then there is always the
smallest set on which a quantifierQ lives: it is the
meet of all sets on whichQ lives. The fact thatA
is the smallest set on which the quantifierQ lives
will be notedLi(Q,A). If A ∈ Q thenA is called
the witness set ofQ: A = wt(Q). The quantifier
Q is calledplural, notedQ ∈ PL, iff ∃a,b∈E such
thatQ ⊆ Ia ∩ Ib.

Functions from pairs of sets to truth-values
or binary relations between sets are type〈1, 1〉
quantifiers. In NLs they are denoted by (unary)
nominal determiners, that is expressions which
take one CN as argument and give a NP as
output. Denotations of nominal determiners obey
various constraints. Recall first the constraint
of conservativity for type〈1, 1〉 quantifiers. A
well-known definition of conservativity is given
in D5:
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D3: F ∈ CONS iff for any propertyX, Y one
hasF (X, Y ) = F (X, X ∩ Y )

Definition D3 can be generalised so that it ap-
plies to type〈1, 2 : τ〉 functions (cf. Zuber 2010a):

D4: A functionF of type〈1, 2 : τ〉 is conservative
iff F (X, R) = F (X, (E ×X) ∩R)

Observe that the above definition does not de-
pend on the typeτ of the result of the application
of the function. So obviously it can be used with
higher order functions. Type〈2 : 1〉 functions
can also be (predicate or argument) invariant and
invariance is a property depending on the type of
the output of the function. Thus (see Keenan and
Westerst̊ahl, 1997):

D5: A type 〈2 : 1〉 function F is predicate
invariant iff a ∈ F (R) ≡ a ∈ F (S) whenever
aR = aS.

For instance the functionSELF is predicate
invariant. The following definitions are general-
isations of predicate invariance applying to type
〈2 : 〈1〉〉 and type〈1, 2 : 〈1〉〉 functions:

D6: A type 〈2 : 〈1〉〉 function F satisfiesHPI
(higher order predicate invariance) iff for any pos-
itive type〈1〉 quantifierQ, anyA ⊆ E, any binary
relationsR,S, if A = Wt(Q) and Ft(A)R =
Ft(A)S thenQ ∈ F (R) iff Q ∈ F (S).
D7: A type〈1, 2 : 〈1〉〉 functionF satisfiesD1HPI
(higher order predicate invariance for unary de-
terminers) iff for any positive type〈1〉 quantifier
Q, anyA ⊆ E, any binary relationsR andS, if
A = Wt(Q1) andFt(A)R ∩ X = Ft(A)S ∩ X
thenQ ∈ F (X, R) iff Q ∈ F (X, S).

3 Reciprocals and reflexives

In this section I briefly present simple syntactic, or
categorial, similarities and, possibly, differences,
between reflexives and reciprocals, both simple
and syntactically complex.

We will consider sentences of the form given in
(1):

(1) NP TVP GNP

In this schema, GNP is a generalised noun phrase.

GNPs are linguistic objects that can play the role
of syntactic arguments of transitive verb phrases
(TVPs). So ”ordinary” NPs or DPs (determiner
phrases) are GNPs. However there aregenuine
GNPs which differ from ”ordinary” NPs in that
they cannot play the role of all verbal arguments;
in particular they cannot occur in subject position.
This is the case of anaphoric expressions.

The GNPs related to reflexives and reciprocals
are anaphoric noun phrases(ANPs). Roughly,
their (”referential”) meaning depends on the
meaning of another expression in the sentence,
the so-calledantecedent of the anaphor, by which
it is bound. In the simplest case the antecedent
is the subject NP. Thus a more specific form of
sentences that we will consider of the form given
in (2) instantiated in (3) and (4):

(2) NP TVP ANP.
(3) Most students washed themselves.
(4) Leo and Lea hate each other.

Thus the GNPs we consider are ANPs. In the
above examples we have syntactically simple
ANPs. Such ANPs can occur as syntactic parts
of complex GNPs; in particular they can be parts
of Boolean compounds and can be modified by
categorially polyvalent modifiers such asonly,
also, even, at least, let alone, etc. :

(5a) Leo and Lea admire themselves and most
teachers.
(5b) Leo and Lea admire each other, themselves
and two teachers.
(6) Two monks hug each other only.

A special class of complex ANPs is formed by
the application ofanaphoric determiners(ADets),
to CNs. Again, this can be done both with reflex-
ive determiners and with reciprocal ones. Many
languages have possessive anaphoric determiners.
This is the case with Slavic languages which
have the possessive ”determiner-pronoun”SV OJ
(meaning, roughly ’ones own’) which can be
considered as ADet with reflexive meaning (cf.
Zuber, 2011). Similarly, marking the simple
reciprocaleach otherin English by the possessive
marker results in a ADet with reciprocal meaning.
This possibility is indicated in the following
examples:
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(7) Leo and Lea admire their own books.
(8) Leo and Lea admire each other’s books.

Thustheir ownin (7) is a ADet with a reflexive
meaning andeach other’sin (8) is an ADet with
reciprocal meaning.

More interestingly it is possible to use an
ordinary determiner (or its ”part”) and the simple
ANPs himself/herself/themselvesto form a ADet
with reflexive meaning and to use an ordinary de-
terminer and the simple ANPseach otherto form
an ADet with reciprocal meaning. Thus, roughly
speaking (Zuber, 2010a), ifD is an ordinary one
place determiner, denoting monotone increasing
function, thenD..., including himselfor D...in ad-
dition to themselvesare ADets with the reflexive
meaning. IfD is a determiner denoting monotone
decreasing functions thenD, not even himselfis
an ADet as well. The following sentences contain
various complex ADets with reflexive meaning:

(9) Two students admire most teachers in addition
to themselves and Picasso
(10) Leo and Lea washed some vegetarians
including at least themselves.
(11) Leo and Lea admires no philosophers, not
even themselves or Socrates.

Quite similar procedure can be applied, though
probably somewhat less productively, to (syntac-
tically) simple and complex reciprocals in order
to obtain ADets with reciprocal meaning. The
following examples illustrate this possibility:

(12) Two students shaved most students including
each other.
(13) Leo and Lea admire most logicians in
addition to each other.
(14) Leo and Lea admire no philosopher, let alone
each other.

As the following examples show simple and
complex reflexives and reciprocals can occur also
in other than direct object positions. The follow-
ing example show that reflexives and reciprocals
can be arguments of a verb taking three arguments:

(15) Leo protected himself/himself and Lea from
Al.
(16) Leo and Lea protected every students from
themselves.

(17) Most philosophers protect themselves from
themselves.
(18) Most philosophers protect themselves and
the president from themselves.
(19) Two monks protect themselves from the guru
and themselves.
(20) Five philosophers protected each other from
themselves.
(21) Leo and Lea/every student protected each
other from Al.
(22) Leo and Lea protected every philosopher
from each other.

This shows that reflexives can occur twice in a
sentence in two different argumental positions of
the verb. This is not the case with reciprocals:

?(23) Leo and Lea prevented each other from each
other
?(24) Leo and Lea gave each other each other’s
book.

The above sentences are not acceptable, or at
least not interpretable.

The difference pointed out by the above exam-
ples is related to the difference in the categorial
status of reflexives on the one hand and reciprocals
on the other. Thus it is usually assumed that ANPs
with reflexive meaning are ”argument” reducers:
when applied to a di-transitive verb phrase they
give a transitive verb phrase, and when applied to
a transitive verb phrase they give just a VP.

The situation with reciprocals is different.
Recall that ANPs are GNPs. GNPs apply to TVPs
and give VPs as result. So what is the category
of such VPs. Ignoring directionality, the subject
NPs in the constructions we are interested in are
of the categoryS/(S/NP ). This means that, in
order to avoid type mismatch, verb phrases must
be raised and have the categoryS/(S/(S/NP )).
Then their denotational type is〈〈〈e, t〉t〉t〉. Con-
sequently, sentences of the form (1) are true iff
the quantifier denoted by theNP is an element
of the set denoted byTV P GNP . Thus ANPs
with reciprocal meaning denote type〈2 : 〈1〉〉
functions. This categorial difference is related to
the following semantic difference. Consider the
following examples:

(25a) Leo and Lea washed themselves
(25b) Bill and Sue washed themselves.
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(26) Four persons, Leo, Lea, Bill and Sue washed
themselves.
(27a) Leo and Lea hug each other.
(27b) Bill and Sue hug each other.
(28) Four persons, Leo, Lea, Bill and Sue hug
each other.

Clearly (25a) in conjunction with (25b) entails
(26) whereas (27a) in conjunction with (27b) does
not entail (28). This means that the quantifiers de-
noted by the subject NPs in (27a) and (27b) do
not apply to the predicate denoted by the complex
VPs in these sentences and that the GNPs likeeach
otherdenote type〈2 : 〈1〉〉 functions.

There are of course genuine type〈〈〈e, t〉t〉t〉 (or
type 〈2 : 〈1〉〉 in our notation) functions, that is
such that they are not lifts of simple type〈2 : 1〉
functions.

4 Higher order anaphors

We have seen that higher order anaphors denote
type 〈2 : 〈1〉〉 functions. Any type〈2 : 1〉
function whose output is denoted by a VP can
be lifted to the type〈2 : 〈1〉〉 function. This
is in particular the case with the acusative and
nominative extensions of a type〈1〉 quantifier.
For instance the accusative extension of a type〈1〉
quantifier can be lifted to type〈2 : 〈1〉〉 function
in the way indicated in (29). Such functions will
be calledaccusative lifts. More generally iffF is
a type〈2 : 1〉 function, its lift FL, a type〈2 : 〈1〉〉
function, is defined in (30):

(29)QL
acc(R) = {Z : Z(Qacc(R)) = 1}.

(30)FL(R) = {Z : Z(F (R)) = 1}

The variableZ above runs over the set of type〈1〉
quantifiers.

As we have seen, simple reflexives are inter-
preted by the functionSELF . This function is
of type 〈2 : 1〉, that is a function which takes
binary relations as argument and gives a set as
result. Complex reflexives are interpreted by cor-
responding Boolean combination ofSELF with
(lifted) denotations of NPs being a part Boolean
compounds or, in the case of modification by
categorially polyvalent particles, by modifications
of SELF . Obviously, they are also of type
〈2 : 1〉. These functions satisfy predicate invari-
ance defined in D5. The functionSELF , but not
the functions denoted by complex reflexives, also

satisfies the left predicate invariance:

D 8: A type 〈2 : 1〉 function F is left predicate
invariant iff for any a ∈ E and any binary
relationsR,S, if Ra = Sa then a ∈ F (R) iff
a ∈ F (S) whereRa = {x : 〈x, a〉 ∈ R}.

Accusative extensions of type〈1〉 quantifiers,
which can also be considered as type〈2 : 1〉
functions, satisfy a stronger condition than predi-
cate invariance. They satisfy so-calledaccusative
extensioncondition AE (Keenan and Westerståhl,
1997):

D 9: A type 〈2 : 1〉 function F satisfies AC iff
for anya, b ∈ E and any binary relationsR,S, if
aR = bS thena ∈ F (R) iff b ∈ F (S).

It is important (Keenan, 2007) that functions de-
noted by reflexive expressions, simple and com-
plex, do not satisfy AC and thus they are different
from accusative extensions of type〈1〉 quantifiers
denoted by ”ordinary” NPs in the object position.
. In that sense, reflexive expressions are also gen-
uine GNPs.

The corresponding higher order extension
condition is defined in D10:

D10: A type 〈2 : 〈1〉〉 function F satisfies
HEC (higher order extension condition) iff
for any positive type〈1〉 quantifiers Q1 and
Q2, any A,B ⊆ E, any binary relationsR,S,
if A = Wt(Q1) and B = Wt(Q2), and
Ft(A)R = Ft(B)S then Q1 ∈ F (R) iff
Q2 ∈ F (S).

Functions which are accusative lifts satisfy
HEC. We will see that functions denoted by
higher order anaphors do not satisfyHEC
because functions satisfyingHEC have the
following obvious property:

Proposition 1: LetF be a type〈2 : 〈1〉〉 function
which satisfiesHEC and letR = E × C, for
C ⊆ E arbitrary. Then for anyX ⊆ E either
Ft(X) ∈ F (R) or for anyX, Ft(X) /∈ F (R).

In order to present various properties of func-
tions denoted by higher order anaphors I will dis-
cuss only some such functions and not define
all functions which constructions discussed in the
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previous section denote. Some other functions are
discussed in Zuber (2012).

Consider first the function given in (31):

(31) RFL-RECIP (R) = {Q : ∃A⊆EA =
Wt(Q) ∧Q(Dom(A×A) ∩ (R ∩R−1)) = 1}

Informally, this function can be considered as
the denotation of an anaphor likeeach other or
oneself or themselves. In other words it does not
makea priori a distinction between ”purely” re-
flexive and ”purely” reciprocal interpretation, as
apparently it happens in many languages. Observe
in particular that individuals can be in the output
of this function. Furthermore, the meet of two in-
dividuals can be in the output of this function even
if they are in the relationR with themselves only.

The following function excludes the ”reflexive
part” and interprets purely reciprocal anaphors (in
their strong logical reading):

(32) SEA(R) = {Q : A = Wt(Q) ∧ |A| ≥
2 ∧ Q(Dom((A × A) ∩ (R ∩ R−1) ∩ I ′)) = 1},
whereI ′ is the complement of the identity relation
I.

Consider now example (33), where, clearly, a
Boolean composition of two higher order func-
tions is involved, one of which is an accusative lift:

(33) Leo and Lea admire each other and most
teachers.

We want to give a function interpreting the
complex anaphoreach other and most teachers.
Obviously this function has to entail the func-
tion SEA above and be completed by the part
corresponding tomost teachers. It is given in (34):

(34)SEAQ(R) = {Z : Z ∈ SEA ∧ Z ∈ QL
acc}

The above functions are based on the relation
RS . Sentences in (35) have somewhat illogical
interpretation. Functions corresponding to these
interpretations are given in (36):

(35a) Five students followed each other.
(35b) All pupils followed each other and two
teachers.
(36a)ILEA(R) = {Z : ∃A⊆E(Li(Z,A) ∧ A ×
A ∩ I ′ ⊆ Rt}

(36b)ILEAQconj(R) = ILEA(R) ∩QL
acc(R)

Let us see now some constraints on the above
functions. First we have:

Proposition 2: FunctionsRFL-RECIP , SEA
andSEAQ satisfyHPI.

Proof We prove only that RFL-RECIP
satisfies HPI. Suppose thatA = Wt(Q)
and that Q ∈ REF -RECIP (R). We
have to show that if for some binary rela-
tion S (i) holds (i): ∀x∈A(xR = xS) then
Q ∈ RFL-RECIP (S). Given the defini-
tion of RFL-RECIP this happens when
Q(Dom((A×A)∩(S∩S−1) = 1. But if (i) holds
then(A×A)∩(R∩R−1) = (A×A)∩(S∩S−1).
HenceQ ∈ RFL-RECIP (S).

It is easy to prove, using proposition 1, that:

Proposition 3: FunctionsRFL-RECIP , SEA
andSEAQ do not satisfyHAI.

Proof: We prove only that the functionRFL-
RECIP does not satisfy HAI. Given its
definition in (31) we can see that forC ⊆ E
arbitrary , for anyC1 such thatC ⊆ C1 we
have Ft(C1) /∈ RFL-RECIP (E × C) and
for any C2 ⊆ C we haveFt(C2) ∈ RFL-
RECIP (E × C). Hence, given proposition 1,
RFL-RECIP does not satisfyHPI.

Here are some other properties:

Proposition 4: Let F ∈ {RFL-
RECIP, SEA, ILEA} and R = S−1. Then
F (R) = F (S)

Proposition 4 has an interesting consequence:
sinceR = (R−1)−1, it follows from Proposition
2 that functionsRFL-RECIP, SEA andILEA
are convertible.

The above properties do not hold for complex
higher order functions that is functions denoted
by syntactically complex reciprocals. For higher
order functions based on the relationRS the
following proposition holds:

Proposition 5: Let F ∈ {RFL-
RECIP, SEA, SEAQ}, R = S−1 and
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Dom(R) = Dom(S). ThenF (R) = F (S).

To illustrate Proposition 5 consider the follow-
ing examples:

(37a) Five students followed each other.
(37b) Five students preceded each other.

If we consider that the relation expressed byfol-
low is the converse of the relation expressed by
precedethat (37a) and (37b) are equivalent.

Observe that the property of functions ex-
pressed in Proposition 6 does not depend on the
type of the output of the function. It is easy to
see, for instance that many reflexives functions
denoted by reflexives have a similar property.
More precisely we have:

Proposition 6: LetF ∈ {SELF, SELF ⊗Qacc},
where⊗ is a Boolean connective,R = S−1 and
Dom(R) = Dom(S). ThenF (R) = F (S).

Thus Propositions 5 and 6 express, informally,
properties of functions sensitive to some aspects
of their arguments only. Conservativity, as
defined in D4 is such a property. Definition
of conservativity given in D4 naturally applies
to functions denoted by anaphoric determiners.
The conservativity of anaphoric determiners
giving rise to reflexives is discussed in Zuber
(2010b). We are not directly interested here in the
semantics of anaphoric determiners but it would
be easy to show that the anaphoric determiner
Every...except each otheras it occurs in (38)
denotes a conservative function:

(38) Two students washed every student except
each other.

To conclude let us see some other properties of
functions denoted by anaphors. These functions
are ”sensitive” to some aspects of their arguments,
that is to some properties of the binary relations
to which they apply. Consider the following
definition:

D11: A type 〈2 : τ〉 function F is symmetry
sensitive,F ∈ SY MS, iff F (R) = F (S)
wheneverR ∩R−1 = S ∩ S−1.

FunctionsSELF , RFL-RECIP and SEA

are symmetry sensitive. Functions denoted by
complex anaphors (reflexive or reciprocal) do
not have this property. They have the following
property:

D12: A type 〈2 : τ〉 function F is symme-
try and range sensitive,F ∈ SY MRS iff
F (R) = F (S) wheneverR ∩ R−1 = S ∩ S−1

andRg(R) = Rg(S).

Note thatSY MS ⊆ SY MRS. Thus not only
functions denoted by complex anaphors but also
those denoted by simple anaphors are symmetry
and range sensitive. This is what all anaphors have
in common. In order to distinguish anaphors with
purely reflexive meaning from those with purely
reciprocal meaning the following definitions can
be used:

D13: A type 〈2 : τ〉 function F is symmetry
only sensitive,F ∈ SY MOS, iff F (R) = F (S)
wheneverR ∩ R−1 ∩ I ′ = S ∩ S−1 ∩ I ′ and
Rg(R) = Rg(S).
D14: A type 〈2 : τ〉 function F is reflexiv-
ity and range sensitive,F ∈ REFLRS, iff
F (R) = F (S) wheneverR ∩ I = S ∩ S ∩ I and
Rg(R) = Rg(S).

For instanceonly each otherdenotes a sym-
metry only sensitive function andhimself or him-
self and most studentsdenote reflexivity and range
sensitive functions.

Observe thatSY MOS ⊆ SY MRS and
REFLS ⊆ SY MRS. Similarly SY MS ⊆
SY NRS. Thus purely reflexive anaphors denote
functions which are not symmetry only sensitive
and purely reciprocal anaphors denote functions
which are not reflexivity sensitive but both classes
are symmetry and range sensitive.

5 Conclusive remarks

It has been shown that it is preferable to treat sim-
ple and complex reciprocal expressions, belonging
to the class of higher order anaphors, as denoting
type 〈2 : 〈1〉〉 functions (that is functions having
relations as arguments and sets of type〈1〉 quan-
tifiers as result) and not as denoting type〈1, 2〉
quantifiers, as usually proposed. The main reason
for this treatment is the fact that the basic recip-
rocal expressioneach othercan combine not only
with NPs (which denote (extensions of) type〈1〉
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quantifiers) but also with expressions which de-
note functions which are not quantifiers (or their
extensions). In that respect the reciprocals are sim-
ilar to reflexives since functions interpreting re-
flexives (like functionSELF , its modifications
and its Boolean compounds) are neither quanti-
fiers not extensions of a type〈1〉 quantifier.

It is well-known (Keenan 2007; Zuber 2010b)
that the existence of anaphors in NLs shows that
the expressive power of natural languages would
be less than it is if the only noun phrases we
needed were those interpretable as subjects of
main clause intransitive verbs. The reason is that
anaphors likehimself, herselfmust be interpreted
by functions from relations to sets which lie out-
side the class of generalised quantifiers as classi-
cally defined. In this paper some preliminary re-
sults are presented to show that the existence of
higher order anaphors even further extends the ex-
pressive power of NLs.

The move to consider that higher order
anaphors denote genuine type〈2 : 〈1〉〉 functions
allows us to understand the ”non-Boolean” be-
haviour of the conjunctionand in their context.
Observe, for instance, that (39a) in conjunction
with (39b) does not entail (40):

(39a) Leo and Lea hug each other.
(39b) Bill and Sue hug each other.
(40) Four people hug each other.

Functions denoted by higher order anaphors sat-
isfy higher order invariance: they are predicate
invariant in a generalised sense. They are differ-
ent from quantifiers denoted by NPs on the di-
rect object position because they do not satisfy
the higher order accusative extension which ac-
cusative lifts satisfy. In that respect they similar to
functions denoted by simple anaphors (reflexives)
which are predicate invariant and do not satisfy the
accusative extension condition.

Various conservativity-like properties of func-
tions denoted by reciprocals have been also exhib-
ited. Thus it has been indicated that both types of
anaphoric determiners, those giving rise to reflex-
ives and those giving rise to reciprocals, denote
conservative functions. Moreover, it has been for-
mally expressed how both types of functions are
”sensitive’” only to some aspects of binary rela-
tions which are their arguments.
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