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Abstract. This paper presents a listwise approach as an alternative to commonly used pair-
wise approaches to the task of coreference resolution in multiple languages. In this listwise
approach, all antecedent candidates are examined simultaneously and assigned corresponding
scores expressing the probability that each candidate is coreferent with a given mention. The
experimental results on the corpora of SemEval-2010 shared task 1 showed that our proposed
system gave the good results in English and Spanish, and comparative results in Catalan
when compared to previous participating systems. These results prove that this approach is
appropriate and quite efficient for Coreference Resolution in Multiple Languages.
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1 Introduction
Reference resolution (Jurafsky and Martin, 2009) (chapter 21, section 21.4) is a task of determin-
ing to which entities are referred by which linguistic expressions. This task plays an important
role in a large number of NLP applications such as Information Retrieval, Question Answering
and Machine Translation. Therefore, it has attracted many attentions within the NLP community.
Many works on various aspects (linguistic features (Ng, V., 2007), (Haghighi and Klein, 2009);
machine learning models (Soon et al., 2001); multiple languages (Recasens et al., 2010a); and so
on) of the coreference resolution task have been published.

Until the release of the SemEval-2010 task 1 (Recasens et al., 2010a), there has no competi-
tion or public corpus that allows evaluating different coreference resolution systems in multiple
languages. Most published systems only focus on a specific language and use the same data sets
for example ACE or MUC corpora to train and test the systems. This makes the systems easy to
unintentionally adapt themselves to the corpus but not to the problem in general. Therefore, this
SemEval-2010 task 1 (Recasens et al., 2010a) made it possible to evaluate and compare various
automatic coreference resolution systems in the aspects of: (i) the portability of systems across
languages, (ii) the relevance of different levels of linguistic information, and (iii) the behavior of
scoring metrics.

This shared task attracted lots of researchers’ attentions, but finally only six teams submitted
their final results. The participating systems differed in terms of architecture, machine learning
methods, etc. These systems mostly based on pairwise models, graph partitioning and entity-
mention models. Unfortunately, these models suffered from an important weakness (Ng, V., 2010).
In these models, each antecedent candidate is resolved independently with the other candidates.
So the models could not determine the best candidate in the relation with the other candidates. To
address this drawback, ranking models were proved to be a useful solution (Denis and Baldridge,
2007), (Ng, V., 2005), (Yang et al., 2003). Motivated from ranking models, in this paper, we
present our proposal approach for learning-based reference resolution task in multiple languages.
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We exploit the listwise approach, which is originally proposed for learning to rank task in infor-
mation retrieval (Cao et al., 2007), to solve the SemEval-2010 Task on Coreference Resolution
in Multiple Languages. This method allows the system to choose the best candidate for a given
mention in the relation with other candidates. This means that all candidates will be examined
simultaneously and the candidate with the highest score will be selected as a correct antecedent.
This listwise approach has been successfully applied to information retrieval task (Cao et al.,
2007). Our experimental results on the corpora of SemEval-2010 shared task 1 showed that when
applied to coreference resolution task, this new listwise approach usually gave the better results
than previous approaches. When estimated on the latest metric BLANC, our proposed system got
the state-of-the-art performance.

The rest of the paper is organized as follows. Section 2 reviews related work proposed for
this shared task. Section 3 describes our listwise approach to this shared task. Section 4 presents
experimental results on the corpora of this SemEval-2010 shared task. Finally, section 5 gives
some conclusion and future work.

2 Related Work

In this section, we preview previous approaches of the systems participated in the SemEval-2010
shared task 1. The experimental results of these systems are also used to make an experimental
comparison with our proposed approach’s results. Here, we preview four systems: (1) RelaxCor
system (Sapena et al., 2010); (2) SUCRE system (Kobdani and Schutze, 2010); (3) TANL-1
system (Attardi et al., 2010); and (4) UBIU system (Zhekova and Kubler, 2010). Table 1 presents
an overview of the systems, their architecture and machine learning methods.

Table 1: Main characteristics of the previous systems.

Systems System Architecture Machine learning methods
RelaxCor Graph Partitioning (solved by relaxation labeling) Decision trees, Rules

SUCRE Best-first clustering, Relational database model, Decision trees, Nave Bayes,
Regular feature definition language SVM, MaxEnt

TANL-1 Highest entity-mention similarity MaxEnt
UBIU Pairwise model MBL

2.1 RelaxCor system

RelaxCor (Sapena et al., 2010) is a constraint-based graph partitioning approach to coreference
resolution solved by relaxation labeling. The approach combines the strengths of groupwise clas-
sifiers and chain formation methods in one global method. This system includes three phases:

Phase 1: Graph representation
Let G = G(V,E) be an undirected graph. Each mention mi in the document is presented

as a vertex vi ∈ V in G. An edge eij ∈ E is added to the graph for pairs of vertices (vi, vj)
representing the possibility that both mentions corefer. A subset of constraints Cij ∈ C is used to
compute the weight value wij of the edge connecting vi and vj .

Phase 2: Training process
Each mention pair (mi,mj) in training document is evaluated by the set of feature functions

which form a positive example if the mention pair corefers, and a negative otherwise. For each
type of mention mj (for example: pronoun, named entity or nominal), a decision tree is generated
and a set of rules is extracted with C4.5 rule-learning algorithm.

Given the training corpus, the weight of a constraint Ck is related with the number of examples
where the constraint applies and how many of them corefer.
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Phase 3: Resolution Algorithm
The algorithm solves weighted constraint satisfaction problem dealing with the edge weights

wij . In this manner, each vertex is assigned to a partition satisfying as many constraints as possible.
The algorithm assigns a probability for each possible label of each variable (corresponding to each
vertex inG). The process updates the weights of the labels in each step until convergence. Finally,
the assigned label for a variable is the one with the highest weight.

2.2 SUCRE system
This system developed a feature engineering which can help reducing the implementation effort
for feature extraction. SUCRE has a novel approach to model an unstructured text corpus in a
structured framework by using a relational database model and a regular feature definition lan-
guage to define and extract the features.

In learning, there are four classifiers integrated in SUCRE: Decision tree, Nave bayes, Support
vector machine and maximum entropy. However, finally the best reported results were achieved
with Decision tree. In decoding, the coreference chains are created. The system uses best-first
clustering. It searches for the best predicted antecedent from right-to-left starting from the end of
the document.

2.3 TANL-1 system
The system is built based on highest entity-mention similarity. The authors applied Maximum
Entropy classifier to determine whether two mentions refer to the same entity. The classifier is
trained using the features extracted for each pair of mentions. If the pairwise classifier assigns a
probability greater than a given threshold to the fact that a new mention belongs to a previously
identified entity, it is assigned to that entity. In the case that more than one entity has a probability
greater than the threshold; the mention is assigned to the one with highest probability by using
best-first clustering strategy.

2.4 UBIU system
Classification in UBUI is based on mention pairs. The UBIU system used a combination of ma-
chine learning, in the form of memory-based learning (MBL) in the implementation of TiMBL
(Daelemans et al., 2007), and language independent features. MBL uses a similarity metric to find
the k nearest neighbors in the training data in order to classify a new example.

Despite of the difference in feature engineering, learning methods and some processing tech-
niques, it can be seen that three later systems - SUCRE, TANL-1, and UBIU - belong to the
approach called pairwise approach. The typical machine learning approach of these three systems
includes two steps:

• Classification: systems evaluate whether each pair of mentions is coreferent with each other
or not.

• Formation coreference chain: Given the previous classification, the systems form coreference
chain (mostly based on best-first clustering).

The approach presented in RelaxCor system joined classification and chain formation into the
same step. In this manner, decisions are taken considering the whole set of mentions, ensuring
consistency and avoiding that classification decisions are independently taken.

3 A listwise approach to coreference resolution task

3.1 Coreference resolution as a ranking problem
In previous models, a classifier is trained to determine whether two NPs are coreferent or not. In-
stances are created based on mention to be resolved and an antecedent candidate. However, those
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models suffer from an important weakness. Since each antecedent candidate for an anaphoric NP
is considered independently of the others, it cannot determine how good an antecedent candidate
is relative to other candidates. To address this drawback, ranking models were proved to be useful
solutions (Denis and Baldridge, 2007), (Ng, V., 2005), (Yang et al., 2003). In the ranking model,
most authors use tournament by (Iida, 2003) and twin-candidate model by (Yang et al., 2003)
and cluster-ranking by (Rahman and Vincent, 2009) to solve the problem of ranking antecedent
candidates. However, this weakness is not fully solved in the aspect that these models cannot ex-
amine all antecedent candidates at the same time. They only directly compare pairs of antecedent
candidates by building a preference classifier based on triples of NP mentions.

In the next sub-section, we will present a new listwise approach - ListNet method - to this
task in multiple languages. It addresses the drawback of previous approaches to this coreference
resolution task as discussed above.

3.2 ListNet method

This sub-section briefly presents ListNet method - a listwise approach with Neural Network as the
model and Gradient Descent as the optimization algorithm. This method was proposed by (Cao et
al., 2007) for the task of learning to rank. We first state the learning problem in listwise approach
to learning to rank task. Then, we present ListNet method and the learning algorithm of ListNet.
In the following description, we use superscript to denote the id of the mention to be resolve and
subscript to denote the id of a candidate in the antecedent candidate list.

In listwise approach to learning to rank, a set of m samples S = s(1), s(2), . . . , s(m) is given.
Each sample s(i) consists of an object list o(i) = o

(i)
1 , o

(i)
2 , . . . , o

(i)

n(i) , where o(i)j denotes the jth

object and n(i) denotes the number of objects in ith sample. Furthermore, each object list o(i) is
associated with a list of scores y(i) = y

(i)
1 , y

(i)
2 , . . . , y

(i)

n(i) , where y(i)j , a real number, is the score

of the object o(i)j . In coreference resolution task, for example, a sample s(i) is associated with a

mentionm(i)to be resolved, each object o(i)j corresponds to an antecedent candidate c(i)j , and score

y
(i)
j denotes the judgment on an antecedent candidate c(i)j with respect to the mention m(i) (the

value of y(i)j expresses how relevant coreference an antecedent candidate c(i)j is with a mention
m(i) to be resolved).

A feature function φ will produce a real-valued feature vector for each object x(i)j = φ(o
(i)
j ),

i = 1, 2, . . . ,m; j = 1, 2, . . . , n(i). A list of feature vectors x(i) = x
(i)
1 , x

(i)
2 , . . . , xi

n(i) and the

corresponding list of scores y(i) = y
(i)
1 , y

(i)
2 , . . . , y

(i)

n(i) will form a training instance (x(i), y(i)).
The training set can be represented by the following set: D = (x(i), y(i))

m

i=1.
In training phase, we want to learn a ranking function f , that produces a real-valued score

f(x
(i)
j ) for each feature vector x(i)j .

Suppose that z(i) =
(
f(x

(i)
1 ), f(x

(i)
2 ), . . . , f(x

(i)

n(i))
)

is the list of scores produced by f on a

list of feature vectors x(i) = x
(i)
1 , x

(i)
2 , . . . , x

(i)

n(i) , and L is a loss function defined on two lists of
scores y(i) and z(i). We want to minimize the total losses on the training data:

m∑

i=1

L(y(i), z(i)) (1)

In ranking phase, given a new sample s
′

(a list of new objects o
′
), we first construct a list

of feature vectors x
′

using feature function φ, and then produce a list of scores y
′

using ranking
function f . Finally, objects are ranked in descending order of the scores.
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ListNet is a listwise method for learning to rank task. ListNet uses Cross Entropy metric as
loss function, Neural Network as model, and Gradient Descent as learning algorithm. If we use a
linear Neural Network model, the score of a feature vector can be calculated as follows:

fω(x
(i)
j ) =

〈
ω, x

(i)
j

〉
(2)

where 〈., .〉 denotes an inner product.
The following algorithm 1 shows learning steps of this ListNet method.

Algorithm 1 Learning Algorithm of ListNet method (cited from the paper of (Cao et al., 2007))
Input: Set of training instances: (x(i), y(i))

m

i=1

Parameter: iteration number T and learning rate η
Initialize parameter ω

for t = 1→ T do
for i = 1→ m do

Input x(i) to Neural Network and Compute score list z(i)(fω) with current value of ω
z(i)(fω) =

(
fω(x

(i)
1 ), . . . , fω(x

(i)

n(i))
)

Compute gradient ∆ω using equation (3)
Update ω = ω − η ×∆ω

end for
end for

Output: Neural Network model ω

∆ω is computed using the following formula:

∆ω =
δL(y(i), z(i)(fω))

δω
=

− 1
∑n(i)

j=1 exp(y
(i)
j )

∑n(i)

j=1 exp(y
(i)
j )

δfω(x
(i)
j )

δω + 1
∑n(i)

j=1 exp(fω(x
(i)
j ))

∑n(i)

j=1 exp(fω(x
(i)
j ))

δfω(x
(i)
j )

δω (3)

3.3 Modeling the listwise approach to coreference resolution task
In previous models, they only determine how good a candidate antecedent is relative to the
anaphoric NP, but not how good a candidate antecedent is relative to other candidates. In other
words, they fail to answer the question of which candidate antecedent is the most probable. Our
proposed model will allow us to determine which candidate antecedent is the most probable given
an NP to be resolved. For example, we have four mentions named A,B,C, and D in the order
of their occurrence in the document. Given that we are resolving an anaphoric mention D to
determine a true antecedent among A,B, and C.

The following describes our training and resolution phase of the system.
Training phase
In this phase, trained instance is created as follows:
The training instances for this listwise approach are built based on a mention to be resolved

D and a list of its antecedent candidates together with their scores. The candidate set includes all
mentions occurring before an anaphoric mention D. The score denotes whether each candidate
corefers with mention D and whether each candidate is closest to mention D if they corefer. The
way of getting our training data is a way to rank candidates based on coreference and distance
criterion. This way is somewhat like a way of human score. In learning, the system has to induce
the model that determines these rankings based on not only the distance but also other criteria
such as other features and relations between them. In the above example, if we create an instance
corresponding to mention D, we have an instance in the form of (D − A : Pr(D − A);D − B :
Pr(D −B);D − C : Pr(D − C)). In that Pr(D − x) is determined as follows:
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Pr(D − x) =





0 if D is not coreferent with x
1 if D is coreferent with x and x is closest to D
0.5 if D is coreferent with x and x is not closest to D

These training instances are used to learn parameters of the Neural Network model ω according
to the algorithm 1.

Resolution phase
Figure 1 visualizes the resolution phase. In our listwise approach, we create instance as a list

of candidates in learning and the learning function will assign a score for each candidate in that
list. The candidate is chosen as a true antecedent is the one that has the highest score. To allow
a mention to be non-anaphoric, we set up a threshold θ to determine whether a given mention is
anaphoric or not. This parameter will be chosen using the development set. In figure 1, we assume
that B is selected as an exact antecedent of mention M among the candidate list of A, B, C, and
so on.

Figure 1: Visualizing the resolution phase.

4 Experiments

4.1 Describing the corpus and evaluation metrics

In these experiments, we used the corpora of SemEval-2010 task 1 on Coreference Resolution in
Multiple Languages. We tested our system using three different languages (Catalan, English, and
Spanish). The size of the task datasets are provided in the table 2:

Table 2: Size of the task datasets.

Languages Training Development Testing
#docs #sents #tokens #docs #sents #tokens #docs #sents #tokens

Catalan 829 8,709 253,513 142 1,445 42,072 167 1,698 49,260
English 229 3,648 79,060 39 741 17,044 85 1,141 24,206
Spanish 875 9,022 284,179 140 1,419 44,460 168 1,705 51,040

In the experiments, we evaluate our system using closed gold-standard setting. It means that we
use the gold-standard columns with true mention boundaries and our system was built strictly with
the information provided in the task datasets. This is because our system focuses on evaluating
various approaches of previous participating systems versus our proposed listwise approach.

To evaluate our system, we also use four metrics which are CEAF (Luo, 2005), MUC (Vilain et
al., 1995), BCUB (Bagga and Baldwin, 1998) and BLANC scores ( Recasens and Marti, 2010b)
provided by this shared task. The first three measures have been widely used, while BLANC is a
proposal of a new measure interesting to test.
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MUC-6/7 (Vilain et al., 1995)
This is the oldest and most widely-used metric measure. This metric is based on coreference

links. First, we count the number of common links between the reference ( or ”truth”) and the
system output (or ”response”). The link precision is the number of common links divided by the
number of links in the system output, and the link recall is the number of common links divided
by the number of links in the reference.

BCUB (Bagga and Baldwin, 1998)
The MUC metric yields unintuitive results because of two main shortcomings. First, it does

not give any credit for single-mention entities since no link can be found in these entities. Second,
all errors are considered to be equal because in some tasks, some coreference errors do more
damage than others. These drawbacks lead to the proposal of BCUB metric. This metric first
computes a precision and recall for each individual mention, and then takes the weighted sum of
these individual precisions and recalls as the final metric. The choice of the weighting scheme is
determined by the task for which the algorithm is going to be used.

CEAF (Luo, 2005)
The BCUB metrics still has its own problems: for example, the mention precision/recall is

computed by comparing entities containing the mention and therefore an entity can be used more
than once. Thus, they proposed Constrained Entity-Aligned F-measure or CEAF metric. It finds
the best one-to-one mapping entities between the subsets of reference and system entities. They
are aligned by maximizing the total entity similarity under the constraint that a reference entity is
aligned with at most one system entity, and vice versa. After that, it computes the recall, precision
and F-measure.

BLANC ( Recasens and Marti, 2010b)
BLANC, a measure obtained by applying the Rand index (Rand 1971) to coreference resolution

and taking into account the shortcomings of above previous metrics. The Rand index seems to be
especially adequate for evaluating coreference since it allows us to measure ’non-coreference’ as
well as coreference links. Despite of its shortcomings, it addresses to some degree the drawbacks
of previous metrics.

4.2 Feature Sets
In this task, the feature sets were selected from the feature pool presented in (Haghighi and Klein,
2009). We selected 22 features which are divided into 3 groups as described in more detail in table
3. These features are popular and available in all languages of this SemEval-2010 shared task 1.

4.3 Experimental results
By implementing ListNet, our system had to choose the set of three parameters which are (1)
number of iteration T ; (2) learning rate η; and (3) the threshold θ to determine a candidate is
coreferent with a given mention or not. To determine the best parameter set, we varied their values
and selected parameters that maximize the sum of four metrics based on the development sets.
After that, we used these parameters to evaluate our proposed system on the test sets. The best
parameter sets for three languages are presented in the table 4.

The experimental results are compared with four models which are (1) RelaxCor system
(Sapena et al., 2010); (2) SUCRE system (Kobdani and Schutze, 2010); (3) TANL-1 system
(Attardi et al., 2010); and (4) UBIU system (Zhekova and Kubler, 2010). Table 4 shows our
experimental results of the proposed model for three languages using four metrics.

For Catalan language, our system got the best result on BLANC F-scores. It beat TANL-1 and
UBIU systems in all four F-scores. In comparison with RelaxCor system, MUC and BLANC F-
score increase significantly from 42.5 to 55.42 and from 59.7 to 67.13; CEAF and BCUB F-score
decrease from 70.5 to 67.15, and from 79.9 to 76.35. In comparison with SUCRE system, our
system only increases on BLANC F-scores and decreases on three remaining F-scores.
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Table 3: The feature set for all languages.

Features describing mj , a candidate antecedent
1. PRONOUN 1 Y if mj is a pronoun; else N
2. SUBJECT 1 Y if mj is a subject; else N
3. NESTED 1 Y if mj is a nested NP; else N

Features describing mk , the mention to be resolved
4. NUMBER 2 SINGULAR or PLURAL, determined using a lexicon
5. GENDER 2 MALE, FEMALE or UNKNOWN, determined using a list of common first names
6. PRONOUN 2 Y if mk is a pronoun; else N
7. NESTED 2 Y if mk is a nested NP; else N
8. SEMCLASS 2 The semantic class of mk

9. HEAD MATCH C if the mentions have the same head noun; else I
10. STR MATCH C if the mentions are the same string; else I
11. SUBSTR MATCH C if one mention is a substring of the other; else I
12. NUMBER C if the mentions agree in number; I if disagree;

NA if numbers for one or both mentions cannot be determined
13. GENDER C if the mentions agree in gender; I if disagree;

NA if genders for one or both mentions cannot be determined
14. AGREEMENT C if the mentions agree in both gender and number;

I if they disagree in both number and gender; else NA
15. BOTH PRONOUNS C if both mentions are pronouns;

I if neither are pronouns; else NA
16. SEMCLASS C if the mentions have the same semantic class; I if they don’t;

NA if the semantic class information for one or both mentions cannot be determined
17. DISTANCE Binned values for sentence distance between the mentions

Additional features describing the relationship between mj ,mk

18. NUMBER’ The concatenation of the NUMBER 2 feature values of mj and mk

19. GENDER’ The concatenation of the GENDER 2 feature values of mj and mk

20. PRONOUNS’ The concatenation of the PRONOUN 2 feature values of mj and mk

21. NESTED’ The concatenation of the NESTED 2 feature values of mj and mk

22. SEMCLASS’ The concatenation of the SEMCLASS 2 feature values of mj and mk

For English language, our system got the best results on three F-scores of CEAF, BCUB and
BLANC and got the second best on the remaining MUC F-score. In that, CEAF and BLANC
F-scores increase significantly from the previous highest scores 75.6 to 78.58, and from 70.8 to
75.66. Our system also overcomes three systems of RelaxCor, TANL-1 and UBIU in all four
metrics.

For Spanish language, our system got the best results on two F-scores of BLANC and MUC.
For the two remaining F-scores of CEAF and BCUB, we got the results which are comparative to
previous best scores (CEAF: 69.15 in comparison with 69.8; and 77.81 in comparison with 78.2).
Our system beat TANL-1 and UBIU system. Compared with RelaxCor, our system got higher
results on three F-scores of CEAF (from 66.6 to 69.15), MUC (from 24.7 to 57.82) and BLANC
(from 55.6 to 67.38) which are all significant increase. For the remaining BCUB F-score, our
system decreases insignificantly (from 78.2 to 77.81). Compared to SUCRE system, our system
increases the F-score of MUC, BCUB and BLANC and decrease insignificantly on the CEAF
F-score.

4.4 Discussion

The experimental results on these corpora showed that our proposed system gave the good results
in English and Spanish; and comparative results in Catalan when compared to previous participat-
ing systems. When applied to coreference resolution task in multiple languages, this new listwise
approach overcomes most of previous approaches for all four available metrics. For other sys-
tems which our system cannot overcome, usually we got the comparative results or insignificantly
decrease in one metric and significantly increase in other remaining metrics.

Among lots of metrics proposed for evaluating a coreference resolution system, none of them
is fully adequate. Each metrics has its own strong points as well as weak points as we discussed
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Table 4: Experimental results of the proposed model for three languages and four metrics.

Languages Systems MUC BCUB CEAF BLANC
R P F1 R P F1 R P F1 R P F1

English

RelaxCor 21.9 72.4 33.7 74.8 97.0 84.5 75.6 75.6 75.6 57.0 83.4 61.3
SUCRE 68.1 54.9 60.8 86.7 78.5 82.4 74.3 74.3 74.3 77.3 67.0 70.8
TANL-1 23.7 24.4 24.0 74.6 72.1 73.4 75.0 61.4 67.6 51.8 68.8 52.1
UBIU 17.2 25.5 20.5 67.8 83.5 74.8 63.4 68.2 65.7 52.6 60.8 54.0

Our system 48.62 62.4 54.66 81.29 89.19 85.05 78.17 78.99 78.58 73.75 77.92 75.662 - 0.005 - 0.25

Spanish

RelaxCor 14.8 73.8 24.7 65.3 97.5 78.2 66.6 66.6 66.6 53.4 81.8 55.6
SUCRE 52.7 58.3 55.3 75.8 79.0 77.4 69.8 69.8 69.8 67.3 62.5 64.5
TANL-1 16.6 56.5 25.7 65.2 93.4 76.8 66.9 64.7 65.8 52.5 79.0 54.1
UBIU 9.6 18.8 12.7 46.8 77.1 58.3 45.7 59.6 51.7 52.9 63.9 54.3

Our system 58.15 57.49 57.82 78.5 75.9 77.81 69.13 69.16 69.15 71.69 64.62 67.385 - 0.01 - 0.25

Catalan

RelaxCor 29.3 77.3 42.5 68.6 95.8 79.9 70.5 70.5 70.5 56.0 81.8 59.7
SUCRE 51.4 58.4 56.2 76.6 77.4 77.0 68.7 68.7 68.7 72.4 60.2 63.6
TANL-1 17.2 57.7 26.5 64.4 93.3 76.2 66.0 63.9 64.9 52.8 79.8 54.4
UBIU 8.8 17.1 11.7 47.8 76.3 58.8 46.6 59.6 52.3 51.6 57.9 52.2

Our system 55.28 55.56 55.42 77.11 75.6 76.35 67.13 67.16 67.15 70.79 64.67 67.132 - 0.001 - 0.15

in section 4.1. This situation makes it hard to successfully compare systems. Getting the state-of-
the-art performance based on all this four common metrics seems to be a difficult task. Until now
there is no common agreement on a standard measure for coreference resolution task.

However, based on formulas and characteristics of each metric, we saw that later-proposed
metrics usually give the better quality than metrics proposed early. If using this criterion, we saw
that we got the highest F-score for the latest proposed BLANC metric in all three languages. In
other words, our proposed system got the state-of-the-art performance for coreference resolution
task in multiple languages.

5 Conclusion and Future Work

In this paper, we present a new listwise approach to the task of SemEval-2010 task 1 on corefer-
ence resolution in multiple languages. This new listwise approach allows all candidate antecedents
are considered simultaneously and therefore brings in more benefit than traditional pairwise ap-
proaches. The experimental results on the public corpora showed that this new proposed approach
gave relatively good performance in all three languages. For the latest proposed metric BLANC,
we got the state-of-the-art performance for this coreference resolution task in multiple languages.

For the future works, we will continue to do experiments using other settings of the SemEval-
2010 task 1 to fortify the strength of this listwise approach.

A straightforward generalization of twin-candidate model is the ranker model proposed by
(Denis and Baldridge, 2007). In this ranker model, the computation of the model’s expectation
of a feature is directly based on the probabilities assigned to the different candidates by using
supervised maximum entropy ranking approach. In the future, we also would like to investigate
other ranker models like this one on the corpora of this SemEval-2010 shared task number 1.
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