
Using Wikipedia for Hierarchical Finer Categorization
of Named Entities?

Aasish Pappu

Language Technologies Institute
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213
aasish@cs.cmu.edu

Abstract. Wikipedia is one of the largest growing structured resources on the Web and can
be used as a training corpus in natural language processing applications. In this work, we
present a method to categorize named entities under the hierarchical fine-grained categories
provided by the Wikipedia taxonomy. Such a categorization can be further used to extract
semantic relations among these named entities. More specifically, we examine instances
of different kinds of Named Entities picked from Wikipedia articles categorized under 55
categories. We employ a Maximum Entropy based method to perform supervised learning
that learns from local context of a named entity as well as a higher-level context such as
hypernyms/hyponyms from Wikipedia and WordNet.

Keywords: hierarchical categorization, Named entity categorization, Wikipedia as corpus

1 Introduction

Ever-growing demand for classification of Named Entities is driven by open domain Question An-
swering and other search problems. The ability to perform fine-grained categorization of named
entities is important due to the fact that it provides useful context information in Question An-
swering, Web Search and many other major Natural Language Processing (NLP) tasks. Very few
works, however, aimed at broader and highly diverse categorization of named entities in open-
domain. A popular named entity could be classified under a different class as the local context
deems it.

A named entity categorization model requires a large-scale open-domain tagged corpus for
training. Of late, large-scale resources have been a choice of corpus. Therefore, we believe that
a more structured and organized encyclopedic corpus like Wikipedia (www.wikipedia.org) is a
suitable training corpus mainly for two reasons. Firstly, Wikipedia contains text on a wide range
of topics that is continually created and edited by volunteers. Secondly, the structure of Wiki
provides hyperlinks over important phrases linked to other articles from Wikipedia besides links
to redirected and disambiguation pages. Therefore, it offers a natural way to harvest a large volume
of “labelled” training data. In fact, some emerging works tried to exploit Wikipedia as a knowledge
resource (Ponzetto and Strube, 2006; Cucerzan, 2007).

In this paper, as a first step towards our task, we discuss the usability of Wikipedia as training
corpus and different facets of Wikipedia. One of these facets is exploiting structure of Wikipedia
to create training corpus for training for use with different machine learning algorithms. Further,

? We would like to thank Chua Tat-Seng for his valuable guidance throughout this work and also thank anonymous
reviewers for their useful feedback.

Copyright 2009 by Aasish Pappu

779

23rd Pacific Asia Conference on Language, Information and Computation, pages 779–786



another facet being hierarchical taxonomy of Wikipedia and the way we employed this facet in per-
forming hierarchical categorization of named entities. Then, we present how to induce WordNet
and Wikipedia domain taxonomy into the feature space of our classification model. We performed
experiments with Maximum Entropy and SVM classifier and observed statistically significant im-
provement with Maximum Entropy model compared to SVM classifier.

2 Related Work

As the focus is shifted from coarse categorization of named entities to finer categorization of
named entities latest works emerged and tackled the current problem in different perspectives.

Kazama and Torisawa (2007) used Wikipedia as external resource to boost the performance of
an CRF-based NE tagger. They extracted gloss text found in Wikipedia articles, induced them in
feature space and obtained improved results for NER on CoNLL 2003 dataset.

Dakka and Cucerzan (2008) presented a work on tagging the Wikipedia data with coarse named
entity tags. They employed page-based and link based features for their classification task.

Bunescu and Pasca (2006) built a disambiguation system based on Wikipedia. Their approach
focussed on building a dictionary of proper names, then mapping them to their named entity types.

These works exploited various features of Wikipedia, substantiating our claim about Wikipedia
as one of the best training corpus. We contend that besides above features, there are more nuggets
in Wikipedia such as category hierarchy which could be directly used to perform hierarchical
fine-grained categorization of named entities.

3 Corpus Creation

We have used snapshot of 10-18-2007 english version of Wikipedia as corpus. This particular
dataset contains about 2 million articles and 292,384 categories. According to the snapshot we
have used, there are 5882 Wikipedia Stub categories across 105 domains1 (hereafter we refer
sections as domains), are arranged in a taxonomy with a depth about ten.

There are about 105 basic and specific domains in Wikipedia taxonomy under which categories
are created. Particularly, domain-wise placement of categories in Wikipedia stub taxonomy is
clearly visible due to its smaller size compared to taxonomy with main-stream categories. There
are about 17 higher level domains in Wikipedia and there is a sub-tree under each of the higher
level domains. Wikipedia domain structure is quite flat and its depth is about five.

Now, we discuss the process of carving out training corpus from Wikipedia. Firstly, we intro-
duce the process of identifying categories under which named entity instances are categorized.

3.1 Categories in Wikipedia

Articles in Wikipedia are placed under highly specific to highly generic concepts called cate-
gories. These categories constitute the Wikipedia taxonomy linked to other categories across
depth and breadth of the taxonomy. Since, most of the categories are linked across the breadth
also, Wikipedia contains cycles through its taxonomy. This was also observed by (Zesch and
Gurevych, 2007) and they proposed a method to tackle with cycles in Wikipedia. Therefore,
Wikipedia taxonomy is not a tree unlike commonly found knowledge structures.

3.2 Named entity categories

There are 17 basic domains and 88 sub-domains in the domain hierarchy. For an instance, some of
the domains are specific likeFANTASY,SCIENCE FICTION,HORRORand some are basic such
asECONOMIC AND FINANCE,GOVERNMENT,COMPANIES. Particularly, there are 51 second
level domains and 4 out 17 basic domains do not have sub domains. We want to have unbiased
choice of categories from all domains and sub-domains in the taxonomy. We follow certain rules
to choose set of categories to qualify as named entity categories. These rules are discussed below.

1 http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Stub_sorting/List_of_stubs

780



1. To ensure diversity in the categorization task, we picked up atleast one category per every
second level domain including its sub domains or atleast one category per every basic domain
that do not have second level domains.

2. To ensure we select balanced categories: depth, number of sub-categories and number of
pages are defined as parameters to determine characteristic of a category as discussed in
previous section.

3. We consider category with value for each parameter closest to mean value for that parameter
under that domain, including its sub-domains.

This procedure avoids the bias towards any particular domain, although there is a skewed distri-
bution among the classes due to the fact that there are fewer instances in some of them.

3.3 Procedure

We extracted named entity phrases using Stanford POS tagger (Toutanova and Manning, 2000)that
is reported to achieve 86.91% accuracy on unseen words. Then we extract typed dependency
relationships between named entities and other tokens in a sentence. To extract the content words
around a named entity, we used chunked output from the parser to collect the NPs (noun phrases)
and VPs (verb phrases).

There is a problem in considering all of the named entities in a sentence because we do not
know category of every instance in a sentence, hence cannot be considered for validation purposes.
Although, we know the category of the main named entity. We also like to consider as many
instances as possible. Therefore, we employed a heuristic to deterimine the category of instances
other than main named entity.

1. Firstly, we look for redirected and disambiguated article titles matching with first name of
the named entity.

2. If, there are more than one such titles, consider the target title using minimum edit distance
metric.

3. Pick all articles that fall under the same category as the target article.

4. Look for those articles that fall under the special categories that are chosen for the classifi-
cation task.

5. Find the article that shares maximum number of categories with the target article and label
the target article with the its special category.

There are about 450 such instances whose categories were not predetermined and their cate-
gories were determined by the above-mentioned heuristics.

Figure 1: Data distribution

781



About 10,000 samples are divided into training and testing in 75% and 25% proportions respec-
tively. Figure 1 shows the distribution of training data stacked over the distribution of the testing
data. The major implication of this distribution is that number of training instances in a category
is directly proportional to performance of system on a particular named entity category. Infact, we
observed from the experimental results that 85% of the test results obey this implication.

4 Features

In this section, feature classes are discussed in detail. We employed four types of feature sets for
our classification task. One of them is a syntactic feature set and the rest are semantic features.
Since, we use a POS tagger to identify proper noun phrases in a sentence, lexical features are
already handled by the POS tagger. It is necessary to supplement the system with syntactic and
semantic features. We consider typed dependency relations to capture syntactic features in the
context around a named entity instance. Regarding semantic features, we captured semantics in
different perspectives of content words in the context around a named entity instance. Following
are the semantic feature sets used in our model:

1. Hypernym of a content word.

2. WordNet domain of first synset of a content word.

3. Wikipedia domain of a content word.

We contend that hypernym of a word is more specific compared to a domain of a word. Therefore,
we prefer to have a specific semantic feature and a generic semantic feature.

Features are discussed below :

4.1 Typed Dependency Feature

Typed dependencies and phrase structures are different ways of representing the structure of a sen-
tence. While a phrase structure parse represents nesting of multi-word constituents, a dependency
parse represents dependencies between individual words. A typed dependency parse additionally
labels dependencies with grammatical relations, such as subject or indirect object.

Dependency relations give an additional clue about semantic relation between tokens in a sen-
tence. As an example a sentence from an article in Wikipedia reads:Chris Aldridge is a news-
reader and continuity announcer on BBC Radio.and one of the dependency relations of this
sentence isprep on:BBC Radio. The relation denotes the locativeness directed at the named entity
BBC Radio. Clearly, it gives a clue about probable semantic relations that can be associated with
the named entity.

4.2 Hypernyms

Limitations of a syntactic feature is that it is too generic, therefore we bank upon WordNet hyper-
nyms as one of the semantic features pertaining to the content words in the context. We preferred
to have a hypernym feature which is semantically specific. Therefore, hypernyms of all synsets
are inversely ordered according to their depth in the hypernym tree. Then, deepest hypernym in
the lot is choosen as the target feature for that content word.

We employed another criteria as a tie breaker if more than one hypernym have maximum
depth. Then hypernym with least number of synsets as child nodes is chosen, once again to ensure
specificity.

4.3 Domain based features

As discussed earlier, WordNet hypernym feature is specially incorporated as a specific natured
feature in the feature space. To balance this act, we introduced two domain features each from
different sources into feature space. One is based on WordNet based domain hierarchy and other
is based on Wikipedia domain hierarchy discussed earlier.

782



Figure 2: WordNet domain model vs wikipedia domain model

4.3.1 Wordnet domains Wordnet Domain Hierarchy (WDH) proposed by (Luisaet al., 2004)
is composed of 164 domain labels selected from dictionaries and codes in Dewey Decimal Clas-
sification (DDC), a widely used taxonomy for library organization purposes. WDH is interwined
with Princeton WordNet application. Every synset in WordNet is associated a domain label in
WDH. The domain labels are organized in five main trees of maximum depth of four.

There are five top-level domains and 46 basic domains in WDH. We incorporated this feature
to evaluate the influence of domain-type semantic features on our system.

4.3.2 Wikipedia domains Similar to WordNet based domain system, we used the Wikipedia
domain system, that has been discussed earlier sections. We indexed Wikipedia using Lucene
and content words are searched in the index for the categories that contain more number of pages
containing a content word. Especially, pages with links are weighed double the pages that contains
the word without a hyperlink.

4.3.3 WDH vs Wikipedia Domain SystemWe have evaluated each feature class’ performance
by building a model using each feature class individually. Figure 3 shows comparison among
these features’ (features discussed above) performance across all classes. We could see following
observations from Figure 3:

• Only in four cases both of them failed to classify instances under the respective classes.

• When both of them reach their peak performance, they almost stand at same accuracy level.

• In 12 classes, both features perform equally, i.e. achieve equal accuracy. Whereas, in 23
classes, Wikipedia feature outperforms WDH feature. Overall, this observation shows that
Wikipedia domain feature gets a slight edge over the WDH feature.

5 Experiments

We have chosen 75% training data and the rest is considered as testing data. L-BFGS(quasi-
Newton optimization technique) parameter estimation has been chosen for training the Maximum
Entropy Model with 20 iterations, the gaussian prior smoothing value set to 0.8. To avoid over-
fitting while training, the tolerance value has been set to 2E-04. The log-likelihood convereged to
-1.507336E+00 after 20 iterations and training accuracy was found to be 72.92%. There was no
heldout data, but training has been performed for different set of parameters to check if there is
any over-fitting while training. The difference between accuracies on training and testing data is
minimum at the parameters mentioned above.

Additionally, we have tried out various combinations of features to generate the classification
model to inspect the influence of each feature on the overall accuracy of the system. Please note
that the accuracy reported in the results is 55-way classification.

783



We performed another set of experiments using multi-class LIBSVM classifier(Chang and Lin,
2001) with kernel set to radial basis function. Cost parameter and gamma value set to 2.0 and
0.125 respectively after performing cross-validation and grid-search. We observed SVM fails to
do better than Maximum Entropy Model consistently on all kinds of models shown in Table 1.
Also, the difference in the performance is also proportionately consistent as per the experimental
results in Table 1.

Table 1: Results on combination of features

Feature All Feature 1,2,3 Feature 1,2,4 Feature 1,2 Feature 1,3 Feature 1,4
Train Test Train Test Train Test Train Test Train Test Train Test

SVM 76.68 57.56 72.69 55.40 74.27 55.98 68.16 51.95 43.98 41.38 42.80 38.94
MaxEnt 72.92 60.79 69.17 58.78 71.25 58.57 68.22 58.13 49.01 47.28 48.38 45.41

From Table 1, we could interpret that system consistently improves on performance with both
the machine learning methods, on adding additional features.

Please, note that for convenience we have used following labels to refer each feature in the
analysis:

Table 2: Feature legend

Typed Dependency FeatureFeature 1
Hypernym Feature Feature 2
WordNet Domain Feature Feature 3
Wikipedia Domain Feature Feature 4

Table 3: Results on individual features

Feature 1 Feature 2 Feature 3 Feature 4
SVM 10.90 51.73 40.88 37.72
MaxEnt 10.61 58.64 44.90 43.75

5.1 Experiment 1: Feature wise model

We can infer from Table 3 that feature 1 individually doesnt look promising, attributes to its generic
nature and proves that individually syntactic features cannot classify named entities. Yet, we have
investigated its behavior with other features pair-wise to substantiate its presence improves overall
performance.

Feature 2 individually looks impressive, almost close to the all-feature model with MaxEnt
method but not close enough to the all-feature model with SVM classifier. Therefore, we have
anticipated an improvement in the performance, coupled Feature 2 with Feature 1. We observed
improvement on the individual feature 2 model with SVM classifier, but a slight decline in per-
formance with MaxEnt method. Possibly, Feature 2 reaches its peak performance individually at
58.64 with MaxEnt.

Feature 3 and Feature 4 are of similar nature they are extracted from different sources. At times,
both features behaved in a complementary manner and improving overall performance. Feature 3
and 4 individually behaves similarly by achieving accuracy about 44%.

5.2 Experiment 2: Feature combination model

From Table 1 we can observe that by adding Feature 1 to each model, they have achieved improve-
ment with both of the machine learning methods, proving to be useful feature in spite of its poor
individual performance.

784



Since, we realize that Feature 3 and Feature 4 behave similarly and best pair of features are 1
and 2 together. We tried out the following combinations of features as models: 1, 2, 3 and 1, 2, 4.

Interestingly, their performance on test set found to be similar. Once again proving that Feature
3 and 4 are similar in nature with respect to performance. Finally, we created a model using all
features and obtained better performance than all earlier models. There is 1.68% improvement
over 2nd best model with SVM classifier, whereas there is 2.01% improvement over 2nd best
model with MaxEnt method. Over, class-level accuracy we have examined how significant is the
improvement of Maximum Entropy Model over SVM. Therefore, we have performed t-test with
a 95% confidence interval and found that p value equals 0.0147, which is considered statistically
significant.

Figure 3: Top five classes Figure 4: Bottom five classes

From Figure 3 we could see clear domination of All-Feature model over other models across
the top 5 classes with respect to accuracy.

About the first ranked class, the 1,2,3 model and 1,2,4 model performs equally with 75.42%.
Thus, giving a good discrimination after combining all features performing with 89.71% accuracy.

Whereas, there is no change with respect to 2nd and 3rd ranked class in the performance of the
three models.

However, 4th ranked class shows interesting pattern, (1,2,4) model performs with 67.63% ac-
curacy, on the other hand (1,2,3) model performs with 79.75% accuracy. There is major difference
in the accuracy, this is one of the very few cases in our experiments when (1,2,3) model outper-
forms (1,2,4) by large margin. Each time, one of the (1,2,3), (1,2,4) models outperformed other by
larger margin, it reflected as slight decline in the all-feature models performance compared to the
best accuracy in that class. This observation leads to an interesting fact that not all content words
in the context present in Wikipedia stub categories.

Whereas, according to Figure 4 most of the bottom classes have all-feature models with best
performance. There is steady rise in the performance in other models also, although we have
ranked the classes according to their all-feature model’s accuracy.

5.3 Experiment 3: Error analysis

The arrow mark in the figure below (Figure 5) denotes mean error against the all-feature model.
The minimum and maximum error are the lowest and highest points of the line corresponding to
each model.

All-Feature Model under-performs in certain cases compared to other models. The figure de-
picts the error against each model. A soaring error against the 1, 3 model is the maximum error
made by all-feature model. After inspecting that class, we understood that other features in the
samples under that class failed to classify Named Entities. Overall, only Feature 3 successfully
classified Named Entities under that class with 44%. It seems a rare instance of complete failure,
since we could see that overall mean error is about 10%.

785



Figure 5: Error analysis

6 Conclusion

We have presented a named entity categorization system that employs Wikipedia categories as
classes and exploits the vastness and wide variety of data present in Wikipedia. We adapted hier-
achial categorization of Wikipedia, thereby giving scope to mine relations among named entities.
Furthermore, Wikipedia domain feature set leads to idea of topic modeling using various facets in
Wikipedia. Our system explores the potency of Wikipedia as full-fledge open-domain corpus and
substantiates its usefulness with the accuracies obtained over diverse classes.

References

Bunescu, R. and M. Pasca. 2006. Using Encyclopedic Knowledge for Named Entity Disambigua-
tion. Proceedings of Conference of the European Chapter of the Association for Computational
Linguistics, pp.9-16.

Chang, C. and C. Lin. 2001. LIBSVM: a library for support vector machines. Software available
at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

Cucerzan, Silviu. 2007. Large-Scale Named Entity Disambiguation Based on Wikipedia Data.
Proceedings of the 2007 Joint Conference on EMNLP and CoNLL, pp.708-716.

Dakka, W. and S. Cucerzan. 2008. Augmenting Wikipedia with Named Entity Tags.Proceedings
of the IJCNLP.

Kazama, J. and K. Torisawa. 2007. Exploiting Wikipedia as External Knowledge for Named
Entity Recognition.Proceedings of EMNLP and CoNLL 2007, pp.698-707.

Luisa, B., F. Palmer, B. Magnini and E. Pianta. 2004. Revising WordNet Domains Hierarchy:
Semantics, Coverage and Balancing.COLING 2004 Workshop on Multilingual Linguistic Re-
sources, pp.101-108.

Ponzetto, S.P. and M. Strube. 2006. Exploiting semantic role labeling, WordNet and Wikipedia
for coreference resolution.Proceedings of the NAACL 2006..

Toutanova, K. and C. Manning. 2000. Enriching the Knowledge Sources Used in a Maximum
Entropy Part-of-Speech Tagger.Proceedings of EMNLPNLC-2000, pp.63-70.

Zesch, T. and I. Gurevych. 2007. Analysis of the Wikipedia Category Graph for NLP Applica-
tions. Proceedings of TextGraphs-2: Graph based Algorithms for NLP, pp.1-8.

786


