
A Structure-Shared Trie Compression Method

Thanasan Tanhermhong	 Thanaruk Theeramunkong	 Wirat Chinnan
Information Technology program, Sirindhorn International Institute of technology,

Thammasat University
P.0 Box 22 Thammasat Rangsit Post Office,

Pathumthani 12121, Thailand
thanasan@kind.siit.tu.ac.th	 ping@ldnd.siit.tu.ac.th	 winnie@kind.siit.tu.ac.th

Abstract

Trie, a well-known searching algorithm, is a basic and important part of various computer
applications such as information retrieval, natural language processing, database system,
compiler, and computer network. Although a merit of trie structure is its searching speed, the
naïve version of trie structure size may not be acceptable when the key set is very large. To
reduce its size, several methods were proposed. This paper proposes an alternative approach
using a new tie structure called, structure-shared trie (SS-trie). The main idea is to reduce
unused space using shared common structure and bit compression. Three techniques are used:
(1) path compression, (2) structure sharing, and (3) node compression. A number of
experiments are conducted to investigate trie size, sharing rate, and average depth of the
proposed method in comparison with binary search, naïve trie, PAT, and LC-trie. The result
shows that our method outperforms other methods.

1	 Introduction

Trie structure is a data structure frequently used for searching a datum from sources of data, such as
natural language dictionaries, databases, tables in compilers and so forth. One of the merits of trie
structure is its searching efficiency. The searching time in trie structure depends only on the length of
keyword, while that of other structures involves the number of words (or entries). However, a problem
of an original trie is that it wastes a lot of space. Some memories in the trie is reserved even though
they are not used.

According to trie uses an array for fast accessing to the needed data, the size of array in trie is fixed
to the maximum possible numbers of alphabets (or cardinality of alphabets). This introduces a lot of
explicit useless space for a large cardinality of alphabets through small average branching factor. In
order to solve this problem, the cardinality of alphabets is reduced to two for binary trie, ten for 10-ary
trie, and so forth. Although the problem of explicit useless space is reduced, the number of nodes and
transitions are increased, which leads to slow searching speed.

During the past few decades, a number of ideas were proposed to reduce the size of trie structure
such as PAT (Morrison 1968), Double Array Trie (Aoe 1989), and LC-trie (Nilsson and Karlsson
1999, Zandieh 1999). However, it is still in a question whether there is more efficient compression
method than these approaches. The idea of reducing branching factor of trie may have other ways to
solve the space usage problem. In this paper, we propose a new idea called structure-shared trie (SS-
trie) to reduce the size of trie structure and preserve quality of retrieval speed.

The SS-trie is an overhead-reducing version for a 256-ary trie. It uses the combination of three
techniques: (1) path compression, (2) structure sharing, and (3) node compression to solve trie
problem. SS-tie uses the path compression technique to discard the node with only one child. Then
the second technique, Structure sharing, is applied to solve explicitly useless space by sharing
frequently used node structure. For unshared structure, SS-trie uses the node compression to compress
explicitly useless space into bit vectors. With the combination of these techniques, it can reduce size of
trie structure more than naïve trie structure but still preserving the quality of searching speed.
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For the rest of this paper, section 2 explores some previous works related with trie compression.
Section 3 illustrates the main idea of SS-trie. In section 4, the effectiveness of SS-trie is shown
through a set of experiments. Finally conclusion and discussion are given.

2	 Previous Works

Searching algorithm is a basic and important operation for computer applications. In the past, a lot of
searching algorithms were introduced. It can be classified into two types: indexing approaches and
non-indexing approaches. Non-indexing approaches are slow, but there is no need to have a preprocess
for indexing and indexing space are not requited. Efficiency of non-indexing approach is measured
from searching speed. For indexing approaches, they give faster searching speed, but need a indexing
process and indexing space. Efficiency of indexing approach is measured based on both searching
speed and indexing space.

Trie is a type of indexing algorithm. The indexing algorithms normally use the concept of search
tree (and hashing). For instance, inverted file algorithm (Harman, Fox, Baeza-Yates, and Lee 1992)
uses one or two levels of a search tree. Naive trie (De La Briandais 1959, Fredkin 1960) is a completed
search tree. Searching speed normally depends on appropriate level or the depth of search tree. There
is a trade off between searching speed and indexing space.

There were some well-known algorithms to reduce the size of trie such as bst trie (Clampett,
1964), L tie (Ramesh, Babu, and Kincaid 1989), ternary trie (Bentley and Sedgwick 1997), two-trie
(Aoe, Morimoto, Shishibori, and Ki-Hong 1996), DAWG, DAT (Aoe 1989), PAT (Morrison 1968).
These algorithms can roughly be classified to five main techniques.

The first technique is a combination of trie and binary search such as bst trie and L-trie. For bst trie
(binary search tree), binary search is used to search a child from sorted and contiguous children in
each node in a trie. The merit is no waste of space but searching speed depends on the number of
entries and keyword length. For L-trie, binary search is used instead of some sub trees in trie that have
low children density. L-trie can improve both searching time and tie size (indexing size). Using
binary search can reduce much on trie size but this method is slower than an original trie in the case
that the needed data does not exist in data entries.

The second technique is to decrease an average unused space per node by discarding some low
children density nodes such as PAT. PAT (PATRICIA: practical algorithm to retrieve information
coded in alphanumeric) tries to get rid of unused space per node by changing cardinality of alphabets
to 2 and discarding nodes whose branching factor is 1. Now the branching factor is exactly 2. On the
other hand, PAT is similar to a perfect binary tree. PAT has an important property that number of
nodes is exactly equal to number of entries minus 1.

The next technique is to adjust larger appropriate cardinality of alphabets for a trie or branching
factor of each node. The examples of this type are binary search tree and LC-trie. Binary trie is a trie
with cardinality of alphabets is 2. For binary tie, the size is smaller but the speed is slow down
because of a trade-off between branching factor and depth. LC-trie (level-compressed trie) is an
improved version of PAT. It improves PAT by changing branching factor of some nodes if some
certain conditions are satisfied. LC-trie is faster than PAT because LC-tries increase branching factor
and then the depths of tie become shallow. LC-trie size is smaller than PAT although branching factor
increases.

Another technique is used in a well-known DAT, double array trie, uses the idea of sharing
children between parents. Searching speed of DAT is quite, good but DAT construction is difficult to
optimize. The last technique is to divide trie into two or more parts, using the appropriate data
structure for each part. The example of this technique is two-trie. Two-trie divides a tie into the front
part and the rear part.

There are other techniques for reduce usage space of trie such as 1st tie, and DAWG. Lst trie is a
the that use list instead of array. Its size is smaller but the searching speed is very slow. DAWG is a
the that uses the concept of graph. It can share all transitions for both front and rear, respectively. In
general, a DAWG has states with more than one outgoing transition after a state with two or more
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incoming transitions. Thus, there is no guarantee that can determine information for each key
correctly.

3	 Structure-Shared Trie

SS-trie is an overhead-reducing version for 256-ary trie using three techniques: (1) path compression,
(2) structure sharing, and (3) node compression. The main idea is to reduce the unused space using
sharing and compression of the explicit useless space into bits. SS-trie has a parameter i to identify
level of the depth of sharable structure. We uses SS(i)-trie to represent SS-trie with the ith level of the
depth of sharable structure. In the rest of paper, we use a term SS-trie for SS(1)-trie. When this
structure combines with those three techniques, SS-trie can reduce trie structure size more than other
algorithms. The detail of each technique is explained in the following section.

3.1 Path Compression

The first technique, so called path-compression (Morrison 1968), is a well-known technique that can
increase retrieval speed and reduce trie structure size by removing internal nodes with only one child.
From Fig 1, the circle is represented as an internal node and the rectangle is represented as a leaf or an
external node. The internal nodes with only one child are shown in the shadow box. These nodes can
be skipped while searching because there is only on way in the path. The number of nodes that have
been skipped on each path is stored as the skipped value in the corresponding node as show in Fig 1.b.
The path-compression binary trie is also known as PAT.

a)
	

b)

Figure 1. a) Naïve trie b) Path-compression version of trie showed in Fig 1.a.

3.2 Structure Sharing

Structure sharing, the second technique, is to share common structures in a trie.

3.2.1 General Concept

Structure sharing separates trie into 2 parts: (1) shared part and (2) unshared part. The shared part,
called SP, is ith depth-limit tree structure for SS(i)-trie. It is used to store a frequently used structure in
the trie as shown in Fig 2.b. A technique, applied to increase sharing rate is applied to SP in order to
achieve smaller size. The details of this technique are described in the next section. The unshared part,
called USP, is a list-trie like structure that each node stores its children with/without its structure
identifier (id) as shown in Fig 2.a.

To illustrate structure-sharing concept, Figure 2 shows a SP and USP part of 55(1)-trie of a trie
structure as shown in Fig 1. Assume that the keyword "bbc" is retrieved. Initially, we are starting at
"root" of the USP part as shown in Fig 3.a. In this node, its structure id is 0. This means that there is
sharing structure in the SP part as shown in Fig 3.b. The 0th structure identifies that "b" means the
second link of "root" to "node 1". Here, the structure id is 0 again. Then the next character "b" is the
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Figure 3. A SS(1)-trie of trie showed in Fig 2. a) USP part b) SP part
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a)	 b)

Figure 4. Sharing Rate Improvement using different between transitions.

From the investigation of data, there are many structures similar to Fig 4.a. These kinds of data have
some similarities such as that the difference between each transition results in the same value. If
normal structure sharing technique is applied, there is no sharing between these kinds of data.
Therefore, the relative transition technique is used to improve the sharing rate as show in Fig 4.b. As
the keyword "ae" is retrieved, we are starting at "root" as shown in Fig 4. In this node, its structure id
is 0 and starting alphabet is "a". This means that there is sharing structure in the SP part. It calculates
the path from the distant of that alphabet comparing with the path number given in the SP part.
Therefore, the 0th path number of alphabet "a" is "a" and the 1st path number of alphabet "a" is "b".
From this, the 0th structure and alphabet "a" identifies the first link of "root" to "node 1". Here, the
structure id is 0 again and the alphabet is "d". So it uses the same sharing structure in the SP part, then
the next character "e" is the second link of "node 1" to "node 2". From node 2, the string "ae" is
found.

3.3 Node Compression

a)	 b)	 c)
Figure 5. a) Tree representation of node S. b) Array representation of node S (1024bytes).

c) Bit vector representation of nodes S.
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The last technique, node compression, is to compress four high bits and four low bits of the node
transitions from Fig 5.a to bit vectors as shown in Fig 5.c. Initially, the processes of compression come
from the trie structure in Fig 5.a and the array of its address in Fig 5.b. This array shows the transition
between nodes via address mapping. From this Figure, there are three node transitions from S to Tl,
T2 and T3. The addresses of these transitions are 57, A9, and AA respectively. Then this technique
compresses this array into a bit vector as seen in Fig 5.c. For high bits, 5 and A, is set to 1 in the
"highl" in the Fig. After that, the low bit of 5, which is 7 is set in lowl and the low bits of A, which is
9 and A is set in the low2. From this compression, address location in Fig 5.c is calculated from the
number of 1 prior to that transition; for example, transition AA to node T3 has 21's before it. The first
bit comes from position 9 in low2 and the second bit comes from position 7 in lowl. In this case, the
address 02 keeps the transition node T3.

This technique can compress useless space into 4 to 34 bytes size of bit vectors and an average bit
vector size is about 6 bytes.

—- . - Minimum
Data

— - Random
	 Maximum

—,

17	 33	 40	 05	 81	 07	 113 120 145
	

181
	 177 103 200	 225 241

Number at Children

Figure 6. The effect of number of entries with overhead of node compression.

Figure 6 shows the overhead of SS-trie structure. There are minimum and maximum overhead in
the Figure. For maximum overhead, it has two kinds of data: random data and normal data. Here, our
approach is closer to minimum overhead than maximum overhead. In addition, it gets small
increasement of overhead when the data set is growing. So our approach can preserve the searching
speed as the naïve trie structure.

However, bit manipulation is very slow. So, in order to preserve quality of speed here, 64K-bytes
or 32K-bytes (slower version) size lookahead table is applied. This lookahead table is a function to
find the number of 1 's before a certain position. The equation of this function is

15

f(x,y) = E (x and (2' p.
i=15-y

Where:
x is a 16 bits integer number.
y is a position indicator, range from 0 to 15.

For example f((1011100101010001) 2,4) = 4.
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4	 Experimental Results

To investigate the efficiency of SS-trie, three experiments are made. The word lists are automatically
segmented and downloaded from Internet. They have total distinct words from the range of 1,000 to
100,000 words. The first experiment is made to evaluate effect of the number of entries on space
complexity of SS-trie comparing with naïve trie, PAT, and LC-trie. The second experiment is for
evaluating the effect of number of entries on the sharing rate of structure. The last experiment is made
to study the effect of number of entries and keyword length effect on these trie. The next section
describes the detail of each experiment.

4.1 Space Complexity

Through the trie structure, naïve trie is a n-ary trie but PAT and LC trie is a binary trie. So PAT and
LC-trie yields the far better space reduction than naïve trie structure. Although our approach, SS-trie,
is a 256-ary trie structure, it can reduce more space than the binary trie. The experiment is conducted
to compare space complexity of trie structure. In this experiment, PAT, LC-trie, and SS-trie are
compared together to investigate the memory consumption. This result of experiment shows the space
complexity graph of trie structures in Fig 7.

700000 

600000

5m0.

400000 -

300000

200000

,00000

0   
,0000	 20000	 30000

	
50000	 60000	 70000	 8CI000	 90000	 ,00000
Number of Entries

Figure 7. The evaluation of space complexity.

Fig 7 shows the memory consumption in creating the trie structure for PAT, LC-trie, and SS-trie.
Here, SS-trie can reduce the useless space more than both PAT and LC-trie. For the small set of word
lists, LC-trie is the best choice among experimental approaches. It can reduce the useless space more
than other approaches. However, for the large set of word lists, SS-trie consumes less space than other
approaches. From Fig 7, SS-trie beats the LC-trie when the word list is more than 70,000. The
maximum size of structure using SS-trie is about 680,000 compared with PAT (800,000) and LC-trie
(700,000). Therefore, the result concludes that SS-trie outperforms than other approaches for a large
set of word lists.

4.2 Sharing Rate

From the word list of previous experiment, we can measure the sharing rate by using these 3
parameters: (1) Distinct Structures (2) Repeated Structure (3) Distinct Structure Among Repeated
Structure. The first parameter indicates the total distinct structure in the word list. For the second
structure is the total repeated structures, which have the same structures more than one in the word list.
The last structure is the distinct structure of all repeated structure. This parameter is calculated from
the total distinct structure, which retrieved from the repeated structure. For example, if "a, b, c, and d"
is represented as structure, assume that there are the set of structures "aabbcd". The distinct structure
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from this set is 2, which comes from c and d. For repeated structure is 4 from two of a and two of b but
the distinct structure among repeated structure is 2 from a and b. The result of the sharing rate of those
3 parameters is shown in the Fig 8.

0	 10000	 20000	 30000	 40000	 50000	 60000	 70000	 80000	 90000

Number of Ezttzies

Figure 8. The Sharing rate graph.

In Fig 8, the graph of distinct structure is not proportional to the repeated graph. For the large set of
word lists, the repeated structure is increasing while the distinct structure is decreasing. Thus, the
sharing structure technique is work well for the large set of information. Moreover, the experimental
result shows that the sharing structures are about 75% in the average case. With the information from
graph, there are only 5% are totally distinction among the repeated structure. Therefore, our technique
can compress the information from 75% to 5% and reduce the usage space of trie structure.

4.3 Average Depth

This experiment is conducted to compare the average depth of trie structure. In this experiment, PAT,
LC-trie and SS-trie are compared together to investigate the average depth. The Fig 9 shows the graph
of average depth of each approach.
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Figure 9. Average depth of each experimental approach.
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The average depth of trie structure can be represented as the searching speed of trie structure. If trie
structure has a large number of average depth, the searching speed of that tie is slow. From this graph,
indicates that the average depth of SS-trie is 5 compared with PAT and LC-trie, which is 14 and 23
respectively. This result concludes that the searching speed of SS-trie is faster than both PAT and LC-
trie. Therefore, our approaches can preserve the searching speed of trie structure.

5	 Discussion

Our structure uses three techniques for compressing trie structure. Each technique has its own benefit.
The first technique, path-compression, is used to reduce an average depth of trie. Then, the structure
sharing, the second technique, can reduce frequently used node structures. For the last technique, node
compression is applied to compress node size up to 128 times. With the combination of these three
techniques, the result shows that SS-trie also beats the size reduction. Therefore, SS-trie is better than
both binary and n-ary trie. Moreover, the Structure sharing technique can be use widely in most trie
structure.

6	 Conclusion

SS trie structure can reduce more space usage when comparing with naïve the structure and preserving
the quality of searching speed. This scheme presented is more practical than traditional tie structure
for a huge key set. However, the shared part of this technique described here are one-depth tree
structure. It is possible to share higher-depth structures. In addition, SS-trie requires the development
of searching, updating and deleting time of trie structure. All of these remain in our future work.
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