Experiments in Unsupervised Entropy-Based Corpus Segmentation

André Kempe
Xerox Research Centre Europe - Grenoble Laboratory
6 chemin de Maupertuis - 38240 Meylan - France
andre.kempe@xrce.xerox.com
http://www.xrce.xerox.com/research/mltt

Abstract

The paper presents an entropy-based approach to segment a corpus into words, when no additional information about the corpus or the language, and no other resources such as a lexicon or grammar are available. To segment the corpus, the algorithm searches for separators, without knowing a priory by which symbols they are constituted. Good results can be obtained with corpora containing "clearly perceptible" separators such as blank or new-line.

1 Introduction

The paper presents an approach to segment a corpus into words, based on entropy. We assume that the corpus is not annotated with additional information, and that we have no information whatsoever about the corpus or the language, and no linguistic resources such as a lexicon or grammar. Such a situation may occur e.g. if there is a (sufficiently large) corpus of an unknown or unidentified language and alphabet. ${ }^{1}$ Based on entropy, we search for separators, without knowing a priory by which symbols or sequences of symbols they are constituted.

Over the last decades, entropy has frequently been used to segment corpora [Wolff, 1977, Alder, 1988, Hutchens and Alder, 1998, among many others]. and it is commonly used with compression techniques. Harris [1955] proposed an approach for segmenting words into morphemes that, although it did not use entropy, was based on an intuitively similar concept: Every symbol of a word is annotated with the count of all possible successor symbols given the substring that ends with the current symbol, and with the count of all possible predecessor symbols

[^0]given the tail of the word that starts with the current symbol. Maxima in these counts are used to segment the word into morphemes.

All steps of the present approach will be described on the example of a German corpus. In addition, we will give results obtained on modified versions of this corpus, and on an English corpus.

2 The Approach

2.1 The Corpus

We assume that any corpus \mathcal{C} can be described by the expression:

$$
\begin{equation*}
\mathcal{C}=\mathcal{S} * \mathcal{T}[\mathcal{S}+\mathcal{T}] * \mathcal{S} * \tag{1}
\end{equation*}
$$

There must be at least one token \mathcal{T} ("word") which is a string of one or more symbols s :

$$
\begin{equation*}
\mathcal{T}=s^{+} \tag{2}
\end{equation*}
$$

Different tokens \mathcal{T} must be separated form each other by one or more separators \mathcal{S} which are strings of zero or more symbols s :

$$
\begin{equation*}
\mathcal{S}=s^{*} \tag{3}
\end{equation*}
$$

Separators can consist of blanks, new-line, or "real" symbols. They can also be empty strings.

2.2 Recoding the Corpus

We will describe the approach on the example of a German corpus.

First, all symbols s (actually all character codes) of the corpus are recoded by strings of "visible" ASCII characters. For example: ${ }^{2}$

[^1]Für Instandsetzung und Neubau der \backslash Kanalisation dürften in
den nächsten zehn Jahren Beträge in \} Milliardenhöhe ausgegeben werden.
Allein in den alten Bundesländern müssen bis \} zur Jahrhundertwende die
Kommunen km des insgesamt km langen \} Kanal- und
Leitungsnetzes sanieren.
is recoded as: ${ }^{3}$
FürbLInstandsetzung BLund BLNe ubaublder BLKanalisationBLdürf ten BLin NL den BL nächsten BLzehn BLJahren BLBeträgeblin BL Millia rdenhöheBLausgegeben BL werden . NLAllein BLin BL den BLalten BLBu ndesländern BLmüssen BL bis BLzu rBLJahrhundertwendebldieNLKo mmunen blambldes BLinsgesamt BLkmBLlangen BLKanal-BLundNL Leitungsnetzesblanieren. BL
If the language and the alphabet are unknown or unidentified, the symbols of the corpus can be encoded by arbitrarily defined ASCII strings.

2.3 Information and Entropy

We estimate probabilities of symbols of the corpus using a 3rd order Markov model based on maximum likelihood. The probability of a symbol s with respect to this model M and to a context c can be estimated by:

$$
\begin{equation*}
p(s \mid M, c)=\frac{f(s, M, c)}{f(M, c)} \tag{4}
\end{equation*}
$$

The information of a symbol s with respect to the model M and to a context c is defined by:

$$
\begin{equation*}
I(s \mid M, c)=-\log _{2} p(s \mid M, c) \tag{5}
\end{equation*}
$$

Intuitively, information can be considered as the surprise of the model about the symbol s after having seen the context c. The more the symbol is unexpected from the model's experience, the higher is the value of information [Shannon and Weaver, 1949].

The entropy of a context c with respect to this model M expresses the expected value of information, and is defined by:

$$
\begin{equation*}
H(M, c)=\sum_{s \in \Sigma} p(s \mid M, c) I(s \mid M, c) \tag{6}
\end{equation*}
$$

Monitoring entropy and information across a corpus shows that maxima often correspond with word

[^2]boundaries [Alder, 1988, Hutchens and Alder, 1998, among many others].
More exactly, maxima in left-to-right entropy $H_{L R}$ and information $I_{L R}$ often mark the end of a separator string \mathcal{S}, and maxima in right-to-left entropy $H_{R L}$ and information $I_{R L}$ often mark the beginning of a separator string, as can be seen in Figure 1. Here, an information value is assigned to every symbol. This value expresses the information of the symbol in a given left or right context. An entropy value is assigned between every two symbols. It expresses the model's uncertainty after having seen the left or right context, but not yet the symbol.
When going from left to right, an end of a separator, is often marked by a maximum in entropy because the next word to the right can start with almost any symbol, and the model has no "idea" what it will be. There is also a maximum in information because the first symbol of the word is (more or less) unexpected; the model has no particular expectation.
Similarly, when going from right to left, a beginning of a separator is often marked by a maximum in entropy because the word next to the left can end with almost any symbol. There is also a maximum in information because the last symbol of the word is (more or less) unexpected; the model has no particular expectation.
Usually, there is no maximum at a beginning of a separator, when going from left to right, and no maximum at a separator ending, when going from right to left, because words often have "typical" beginnings or endings, e.g. prefixes or suffixes.
This means, when we come from inside a word to the beginning or end of this word then the model will anticipate a separator, and since the number of alternative separators is usually small, the model will not be "surprised" to see a particular one. On the other side, when we come from inside a separator to the beginning or end of this separator, although the model will expect a word, it will be "surprised" about any particular word because the number of alternative beginnings or endings of words is large.
It also may be observed that the maxima in one direction are bigger then the maxima in the other direction due to the fact that a particular language may have e.g. stronger constraints on endings than on beginnings of words: A language may employ suffixes with most words in a corpus, which limits the number of endings, but rarely use prefixes, which allows a word to start with almost any symbol.

Figure 1: Entropy and information across a section of a German corpus

2.4 Thresholds

Not all maxima correspond with word boundaries. Hutchens and Alder [1998] apply a threshold of $0.5 \log _{2}\|\Sigma\|$ to select among all maxima, those that represent boundaries.

The present approach uses two thresholds that are based on the corpus data and contain no other factors: The first threshold $\tau_{\text {all }}$ is the average of all values of the particular function, $H_{L R}, H_{R L}, I_{L R}$, or $I_{R L}$, across the corpus. The second threshold $\tau_{\max }$ is the average of all maxima of the particular function. All graphs of Figure 1 contain both thresholds (as dotted lines).

To decide whether a value v of $H_{L R}, H_{R L}, I_{L R}$, or $I_{R L}$ should be considered as a boundary, we use the four functions:

$$
\begin{array}{lll}
b_{0}(v) & : & v \geq \tau_{\max } \\
b_{1}(v) & : & v \geq \tau_{a l l} \\
b_{2}(v) & : & i s \max (v) \\
b_{3}(v) & : & \operatorname{-ismin}(v) \tag{10}
\end{array}
$$

2.5 Detection of Separators

To find a separator, we are looking for a strong boundary to serve as a beginning or end of the separator. In the current example, we have chosen as a criterion for strong boundaries:

$$
\begin{align*}
& \left(b_{0}(h) \wedge b_{2}(h)\right) \wedge\left(b_{1}(i) \vee b_{3}(i)\right)= \tag{11}\\
& \left(\left(h \geq \tau_{\max }(H)\right) \wedge i \operatorname{smax}(h)\right) \\
& \wedge\left(\left(i \geq \tau_{a l l}(I)\right) \vee \neg i \operatorname{smin}(I)\right)
\end{align*}
$$

Here H and I mean either $H_{L R}$ and $I_{L R}$ if we are looking for the end of a separator, or $H_{R L}$ and $I_{R L}$ if we are looking for the beginning of a separator. The variables h and i denote values of these functions at the considered point.

Once a strong boundary is found, we search for a weak boundary to serve as an ending that matches the previously found beginning; or to serve as a beginning that matches the previously found ending. For weak boundaries, we use the criterion:

$$
\begin{align*}
& \left(b_{1}(h) \wedge b_{2}(h)\right) \wedge\left(b_{1}(i) \vee b_{3}(i)\right)= \tag{12}\\
& \left(\left(h \geq \tau_{\text {all }}(H)\right) \wedge i s m a x(h)\right) \\
& \wedge
\end{align*} \quad\left(\left(i \geq \tau_{a l l}(I)\right) \vee \neg i s m i n(I)\right) .
$$

If a matching pair of boundaries, i.e. a beginning and an end of a separator, are found, the separator
is marked. In Figure 1 this is visualized by \mid for empty and \{ \} for non-empty separators.

The search for a weak boundary that matches a strong one is stopped (without success) either after a certain distance ${ }^{4}$ or at a breakpoint. For example, if we have the beginning of a separator and search for a matching end then the occurrence of another beginning will stop the search. As a criterion for a breakpoint we have chosen:

$$
\begin{align*}
& \left(b_{1}(h) \wedge b_{2}(h)\right) \vee\left(b_{1}(i) \wedge b_{2}(i)\right)= \tag{13}\\
& \quad\left(\left(h \geq \tau_{\text {all }}(H)\right) \wedge \text { ismax }(h)\right) \\
& \vee\left(\left(i \geq \tau_{\text {all }}(I)\right) \wedge \text { ismax }(i)\right)
\end{align*}
$$

If the search for a matching point has been stopped for either reason, we need to decide whether the initially found strong boundary should be marked despite the missing match. It will only be marked if it is an obligatory boundary. Here we apply the criterion:

$$
\begin{align*}
& \left(b_{0}(h) \wedge b_{2}(h)\right) \wedge\left(b_{0}(i) \wedge b_{2}(i)\right)= \tag{14}\\
& \quad\left(\left(h \geq \tau_{\max }(H)\right) \wedge i s \operatorname{sax}(h)\right) \\
& \wedge \quad\left(\left(i \geq \tau_{\max }(I)\right) \wedge i s \operatorname{sax}(i)\right)
\end{align*}
$$

In Figure 1 these unmatched obligatory boundaries are visualized by $\{\mathbf{u}$ or $\} \mathbf{u}$.
Each of the four criteria, for strong boundaries, weak boundaries, break points, and obligatory boundaries, can be built of any of the four functions $b_{0}()$ to $b_{3}()$ (eq.s 7 to 10).

2.6 Validation of Separators

All separator strings that have a matching beginning and end marker are collected and counted.

Alias	$f_{\text {separ }}$	$f_{\text {contert }}$	$f_{\text {total }}$	Separator
l_{0}	95103	1484	115619	BL
l_{1}	10841	850	20011	NL
l_{2}	45475	621	1024152	
l_{3}	3464	450	11637	t BL
l_{4}	697	360	3096	-
l_{5}	1271	281	5736	. BL
l_{6}	1328	241	17053	e BL
h_{7}	3223	199	48136	s
l_{8}	6793	160	138769	e
l_{9}	3306	126	32049	er
l_{10}	545	119	4110	. NL
l_{1}	162	108	1372	t NL

Table 1: Separators from a German corpus (truncated list)

[^3]Table 1 shows such separators collected from the German example corpus. Column 5 contains the strings that constitute the separators, column 2 shows the count of these strings as separators, colunm 3 says in how may different contexts ${ }^{5}$ the separators occurred, colunm 4 shows the total count of the strings in the corpus, and column 1 contains aliases furtheron used to denote the separators. In Table 1 all separators are sorted with respect to column 3. From these separators we retain those that are above a defined threshold relative to the number of different contexts of the top-most separator. In all examples throughout this article, we are using a relative threshold of 0.5 , which means in this case (Table 1) that the top-most two separators, "BL" and "NL" that occur in 1484 and 850 different contexts respectively, are retained. ${ }^{6}$

In the corpus, all separators that have been retained (Table 1) and that have at least one detected boundary (Fig. 1), are validated and marked. For the above corpus section this leads to:
 baubderbKanalisation bdürften bin NLden bnächsten beehnloJahr en b Beträgebin bMilliardenhöh ebausgegeben bwerden. hallein bin bdenbalten biandeständern bmüssenbbis bzurbJahrhundert. wende bdient Kommunen $\mathrm{b}_{\mathrm{km}}^{\mathrm{m}} \mathrm{b}$ de sloinsgesamt BLkmblangen bKan al-BLund hleitungsnetzesblsani eren. BL

2.7 Recall of Separators

For the above corpus we measured a recall of 86.0% for both blank (BL) and new-line (NL) together (Table 2).

Alias	Separator	Recall	$f_{\text {found }}$	$f_{\text {fot ol }}$
h_{0}	BL	88.6%	102412	115619
h_{1}	NL	71.2%	14254	20011
All				
86.0%	116666	135630		

Table 2: Recall of separators from a German corpus
Due to the approach, the precision for BL and NL is 100%. A string which is different from BL and NL cannot be marked as a separator in the above example. If empty string separators were admitted, the precision would decrease.

[^4]
3 More Examples

We applied the approach to modified versions of the above mentioned German corpus and to an English corpus.

3.1 German with Empty String Separators

For this experiment, we remove all original separators, "BL" and "NL", from the above German corpus:

FürinstandsetzungundNeubaude rKanalisationdürftenindennäch stenzehnJahrenBetrageinMillia rdenhöheausgegebenwerden. All einindenalten Bundestandernmü ssenbiszurjahrhundertwendedie Kommunenkmdesinsgesamtkmla ngenkanal-undLeitungsnetzess anieren.

From this corpus, we collected the separators in Table 3

Alias	$f_{\text {separ }}$	$f_{\text {context }}$	$f_{\text {total }}$	Separator
${ }^{6}$	110969	1257	888522	
1	6355	580	33335	en
b_{2}	5872	466	54278	t
13	7975	407	138769	e
4	5661	374	32158	er
${ }_{5}$	916	345	11178	
${ }_{6}$	3063	306	48136	s
$\stackrel{\square}{6}$	505	297	3096	-
k	399	206	4566	ten
b	621	189	15836	te

Table 3: Separators from a German corpus without blanks and new-line (truncated list)
and obtained the result:
Fürlabstbandsetzbubng bund bNeubbaubderbKanalis bation dürfbten binden bäahbsten bee hnJahren beträghebin bMillia rdben bhöhbeausbgelogeben bw erden $\mathrm{b}_{\text {. All be bin bind ben balte }}$
 n b biszurbJahrh bund berfotwen debdieb Kommunenbkmdebshin s bgesambtbkmblangenbKanalund bleibtbungsbnetzessan bie rento.

3.2 German with Modified Separators

For the next experiment, we changed all original separators, "BL" and "NL", in the above German corpus into a string from the list $\{$ "", "-", "- "", "\#", "\# \#", "- - -", "\# \#", "- -" \} : ${ }^{7}$

Für---Instandsetzung\#\#und--N eubauder-Kanalisation--dürfte n\#in\#\#den---nächsten\#\#zehn--JahrenBeträge-in--Milliardenh öhe\#ausgegeben\#\#werden.-.-A llein\#\#in--denalten-Bundestän dern--müssen\#bis\#\#zur---Jahr hundertwende\#\#die--Kommune nkm-des--insgesamt\#km\#\#lang en---Kanal-\#\#und--Leitungsne tzessanieren.-

From this corpus, we collected the separators in Table 4

Alias	$f_{\text {separ }}$	$f_{\text {context }}$	$f_{\text {total }}$	Separator
l_{0}	127490	844	1108920	
l_{1}	4966	618	33907	\# \#
l_{2}	3875	591	17247	--
l_{3}	3516	532	68198	--
l_{4}	6876	292	138769	e
l_{5}	4494	268	32059	e r
l_{6}	3699	265	48136	s
h_{7}	5161	227	54278	t
l_{8}	378	189	2437	. \# \#
l_{b}	335	179	3732	--
l_{10}	1588	170	32909	e n
h_{1}	1555	140	41035	a

Table 4: Separators from a German corpus with modified separators (truncated list.)
and obtained the result:
Fürbin bst band bsbetzbung b\#
 albisation $\begin{aligned} & \text {--dürfloten\#inh den }\end{aligned}$
 träge-in la b Milliardbenlıöh be\# bausbgebgebben b \# \# bwerden b. ballein b\#\#bin lad benalbten - Bundesländernlabmüssben\#bi shbzurbjahrhund ber botwende b\#\#diekKommunbentokm-des b --bins bgesamt\#km\#\# blangen blokanalb-\#\#undlal beit bungs buetzbebssanbierea.-

[^5]
3.3 English Corpus

On an English corpus where all original separators have been preserved: ${ }^{8}$

```
In the days when the spinning-wheels \(\backslash\)
    hummed busily in the
farmhouses and even great ladies clothed \(\backslash\)
    in silk and
thread lace had their toy spinning-wheels \(\backslash\)
    of polished oak there might be seen in \}
    districts far away among the lanes
or deep in the bosom of the hills certain \(\\)
    pallid undersized
men who by the side of the brawny \(\backslash\)
    country-folk looked
like the remnants of a disinherited race.
```

we measured the information and entropy shown in Figure 2, collected the separators in Table 5,

Alias	$f_{\text {separ }}$	$f_{\text {context }}$	$f_{\text {total }}$	Separator
b	164744	1082	181518	BL
${ }_{1}$	7700	602	20000	NL
12	19983	374	1096301	
${ }^{3}$	2689	323	5895	. BL
4	4009	223	32576	e BL
15	734	216	1253	. NL
b_{6}	6039	171	105185	
h	357	167	647	. ' NL .
${ }_{8}$	646	154	2876	. NL
6	489	99	17789	t BL
l_{10}	1932	96	71247	a
h_{11}	180	96	1742	-

Table 5: Separators from an English corpus (truncated list)
and obtained the result:

In bothe bodays bwhen bothebspinn ing-wheels lohummedbbusily bin bthehfarmhouses band beven bg reatbladies bclothed bin bsilk bo andNLthread blacelohadlotheir b toy bspinning-wheels BLofbpolis hed boak botherebmight bobebsee n bin bodistricts lofarbaway BLam ong lotheblanesNLor lodeeplon bt he boosom bof bothe lohills becerta in bopallid bundersized hmen bow o bby bthelosideBLof bothelbbraw ny bcountry-folk looked lilikeb the loremnants BLof ba bdisinheri ted brace.

[^6]
4 Conclusion and Future Investigations

The paper attempted to show that entropy and information can be used to segment a corpus into words, when no additional knowledge about the corpus or the language, and no other resources such as a lexicon or grammar are available.

To segment the corpus, the algorithm searches for separators, without knowing a priory by which symbols or sequences of symbols they are constituted.

Good results were obtained with a German and an English corpus with "clearly perceptible" separators (blank and new-line). Precision and recall decrease if the original separators of these corpora are removed or changed into a set of different co-occurring separators.

So far, only separators and their frequencies have been taken into account. Future investigations may include:

- the use of frequencies of tokens and their different alternative contexts, to validate these tokens and the adjacent separators. and
- a search for criteria (based on the corpus itself and on the obtained result) to evaluate the "quality" of segmentation, thus enabling a selfoptimizing approach.

Acknowledgements

Many thanks to the anonymous reviewers of my article and to my colleagues.

References

[Alder, 1988] Mike Alder. Stochastic grammatical inference. Master's thesis, University of Western Australia, 1988.
[Harris, 1955] Zellig S. Harris. From phoneme to morpheme. Language, 31(2):190-222, 1955.
[Hutchens and Alder, 1998] Jason L. Hutchens and Michael D. Alder. Finding structure via compression. In David M. W. Powers, editor, $N e M$ LaP3/CoNLL98: Joint Conference on New Methods in Natural Language Processing and Computational Natural Language Processing Learning, pages 79-82, Sydney, Australia, 1998. Association for Computational Linguistics.

Figure 2: Entropy and information across a section of an English corpus
[Shannon and Weaver, 1949] Claude E. Shannon and Warren Weaver. The Mathematical Theory of Communication. University of Illinois Press, 1949.
[Wolff, 1977] J. G. Wolff. The discovery of segments in natural language. British Journal of Psychology, 68:97-106, 1977.

[^0]: ${ }^{1}$ Such a corpus can be electronically encoded with arbitrarily defined symbol codes.

[^1]: ${ }^{2}$ In this example, \denotes that the current line is not finished yet but rather continues on the next line.

[^2]: ${ }^{3}$ Note that blanks become "BL" and new-lines become "NL".

[^3]: ${ }^{4}$ In the example, the maximal separator length is set to 6 . This seems sufficient because we found no separators longer than 3 so far (Tables 1 to 5).

[^4]: ${ }^{5}$ As context of a separator, we consider the precerling and the following symbol.
 ${ }^{6}$ In the Tables 1 to 5 the retained separator strings are separated by a horizontal line form the others.

[^5]: ${ }^{7}$ The replacement of every blank and new-line was done by rotation through the list.

[^6]: ${ }^{8}$ In this example, \backslash denotes that the current line is not finished yet but rather continues on the next line.

