
S Y S T E M D E M O N S T R A T I O N
F L A U B E R T : AN U S E R F R I E N D L Y S Y S T E M F O R M U L T I L I N G U A L T E X T

G E N E R A T I O N

FREDI~RIC MEUNIER
meunier @ linguist.jussieu.fr

TALANAUFRLinguist ique
Case 7003-2, Place Jussieu

75251 Paris
France

LAURENCE DANLOS
danlos @ linguist.jussieu.fr

1 Introduction . . .

FLAUBERT is an engine for text generation. Its first applications has been for instructional texts, both in
French and in English, in software and aeronautics domains. I t is an implementation of G-TAG, a

- formalism for generation inspired from TAG ([Danlos & Meunier 96], [Meunier 97]). This formalism is
a lexicalized text generation system ([Danl0s 98a], [Danlos 98b]).
All linguistic data are outside of the engine code program. They are maintained directly by linguists
under a Simple text editor. The syntactic TAG grammar we use for French is that-written by ([Abeill6
91]). Moreover, the French families of elementary trees are automatically generated thanks to the
hierarchical representation of LTAGS ([Candito 96]). The TAG grammar we use for English is home
made.
This engine runs on Sun Solaris with 32 M • RAM (generator and interface), and is written in Ada 95
(generator) and C (interface). It is compiled by the GNU compilers, and uses GNU Scripts (bash, perl ,
sed, awk).

2 Description
AS in DRAFTER ([Paris et al. 95]), FLAUBERT takes as input a conceptual representation provided by
the user who fills a questionnaire through an interface that proposes cascading menus based on a domain
model (see below). The emphasis is put on linguistic issues such as lexical choices (including choices of
connectives), parallelism issues, stylistic issues (e.g. length and content of clauses and sentences), etc.
FLAUBERT uses three databases:

0 A domain model describing an ontology of concepts in a typed feature formalism. In a
standard way, the concepts include objects, actions, states and relations between them;

• A set of lexical data bases associated withconcepts; the lexical database for a given concept
describes its semantico-lexical realizations (lexical heads + argument structures) accompanied
with tests of applicability for right semantics and well formdness;

• A TAG grammar whose syntactic informations allow a derived tree to be computed from a
derivation tree (see the data flow below).

3 Data f low

The dataflow o f FLAUBERT is given in Figure 1. The system is sequential:
• compiling the input data;
• building a lexicalized tree structure called a "g-derivation tree";
• building a derived tree;

284

!

I
!

I

I
I

i word re-ordering, typographic considerations, etc.).

I ~ - q ~ user interface

III

• post-processing.
The first step deals with concepts of the domain and their instances provided by the user. It leads to a
conceptual representation. Afterwards, the system search in the lexical data bases to make lexical choices
and builds a g-derivation tree. During this step, it uses also other linguistic resources (lexical entry as
well as syntactic functions) to optimize lexical choices (parallelism, aggregation, etc.). Next the system
builds a derived tree (syntactic representation), using standard algorithms ([Schabes & Shieber 94]) and
an existing TAG grammar designed for syntactic analysis. Finally, the text is post-processed (flexion,

bulding
lexicalized tree

structure

~-q~ TAG grammar

3.1 User interface

post-processing

Figure 1: Data flow

Figure 2: Cascading menus

285

Since the user may encounter difficulties to give input to FLAUBERT, we have developed a friendly user
interface which proposes him/her to instanciate concepts with cascading menus as it is shown in Figure 2.
This interface is under X, and can be displayed on most X servers. It •invokes the generator• in a Xterm
which is automatically opened.

3.2 .Conceptual representation
Below an example of conceptual representation for an instructional text (in software application domain):

E3 := Ot,~ [
E1 opened=> TOK4]

E2

E3]

EO. : = ~a.,-ax:x.tcm [
g o a l =>

b o d y > ~ - - - .

effect =>

El : = ~ [

- Creator =>

• Created =>

E 2 : = ~tx~sszcn [
ist-event =>

2DJfl-event =>

E4 :-- O~m ["

opener

opened

E5 := CLmC~ [.
clicker •

clicked

HI

TOKZ]

FA

E5]

HI :=Usm []

TOKI := U~ZR_XD []

name => "User ID"]

=> HI TOK3 := BOT~m [

=> ~3K2] n a m e => , ' A d d . . . "]

=> HI TOK4 := ~ [

=> .TOK3] name . =>"User name"]

3.3 Semantic representation

From E0, the system computes for French the g-derivation tree shown in Figtlre 3. In this tree, each •node
written in bold (possibly accompanied with a [T__Feature], e.g. [T._R4duc]) points • to a TAG
lexicalized elementary tree, except newS, a special tree which adds a new sentence to a text.

B

creer

agent- " ~bjet

HI TOKI

• pour
P1

HI

ouvrir
° [T R~uit]
agent---. ,,~r

• " obj e ~

TOK2 avant
[T_R~duc]

subordonn4e

cliquer
[T_R~duit)

agent- - ob3 e t

• HI " TOK3

news

2nd '

ouvrir
[T_Moyen]

objet:

TOK4

Figure 3 " G-derivation tree

286

3.4 Syntactic representation
From the g-derivation tree in Figure 3 and with a French TAG grammar, the derived tree schematically
• resumed in Figure 4 is composed.

S

PP

Prep. S

pour NO V N1 C ouvrir

I m°dTinf
E cr4er

S S

NO V N1 S m°dl=imp ~ PP PP

" PERIOD

NO

A
V

C 1 Vs

I I
se ouvrir

Figure 4: Derived tree

3.5 French and English Texts
French: Pour crder un identificateur d'utilisateur, ouvrez la fen~tre "User ID" avant de cliquer sur le
bouton "Add... ". La fen~tre "User name" s'ouvre.
English: In order to create an user ID, open the "User ID" window. Afterwards, click on the "Add..."
button. The "User name" window is opened.

References
[Abeill6 91] Abeillr, A. 199!. Une grammaire lexicalis~e d'arbres adjoints pour lefran~ais. Ph.D., Universit6 de
Paris 7.
[Candito 96] Candito, M.-H. 1996. A principle-based hierarchical representatio n of LTAGS. Proceedings of
COLING'96, Copenhagen.
[Danlos&Meunier 96] Danlos, L., and F. Meunier. 1996. G-TAG, un formalisme pour la grn4ration de textes :
prrsentation et applications industrielles. Actes de ILN'96, Nantes.
[Danlos 98a] Danlos, L. 1998. Linguistic way for expressing a discourse relation in a lexicalized text generation
system. Proceedings of COLING-A CL'98, Montrral.
[Danlos 98b] Danlos, L. 1998. G-TAG: A formalism for text generation inspired from TAG. In A. Abeill6 and O.
Rambow (eds). Tree Adjoining Grammars, CSLI, Stanford.
[Meunier 97] Meunier, F. 1997. Implantation duformalisme de ggnEration G-TAG. Ph.D., Universit6 de Paris 7.
[Paris et al. 95] Paris, C., K. Vander Linden, M. Fischer, A. Hartley, L. Pemberton, R. Power, and D. Scott. 1995: A
support Tool for Writing Multilingual Instructions. Proceedings oflJCAI-95, 1398-1404, Montreal.
[Schabes&Shieber 94] Schabes, Y., and S. Shieber. 1994. An alternative Conception of Tree-Adjoining Derivation,
Computational Linguistics, 20:1.

287

