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This paper examines dependencies between separated (non-adjacent) morphemes in natural- 
language words and a variety of ways to constrain them in finite-state morphology. Methods 
include running separate constraining transducers at runtime, composing in constraints at 
compile time, feature unification, and the use of FLAG DIACRITICS. Examples are provided 
from Modern Standard Arabic. In choosing a practical solution, developers must iveigh the 
size, performance and flexibility of the overall system. 

1 Introduction 

In finite-state morphotactics, the efficient constraint of separated (non-adjacent) morpheme de- 
pendencies is a serious practical challenge. This paper will examine some typical separated 
dependencies, using examples from Modem Standard Arabic, showing various methods that 
have been invented, and perhaps reinvented several times, to block lexical overgeneration. The 
challenge in working systems is to enforce the necessary constraints without causing the lexi- 
cons to explode in size and without slowing the nmtime performance too badly. 

The term MORPHOLOGY, as used by linguists in the Two-Level and Finite-State traditions, 
encompasses both MORPHOTACTICS (also called MORPHOSYNTAX), and the phonological or 
orthographical VARIATION rules that map between LEXICAL strings (i.e. abstract or underly- 
ing strings) and SURFACE strings. The theory and practical use of finite-state variation rules 
are well documented (Koskenniemi, 1983; Karttunen, 1983; Antworth, 1990; Karttunen and 
Beesley, 1992; Sproat, 1992; Karttunen, 1994) and will not be dealt with here. In the area 
of morphotactics, the commonly available languages for finite-state lexical specification pro- 
vide linguists with a notation wherein related classes of morphemes, e.g. verb endings, noun 
endings, direct-object clitic suffixes, etc., are grouped together into sublexicons, and each in- 
dividual morpheme is assigned a CONTINUATION CLASS which designates which subclasses 
of morphemes can follow it in a valid word (Karttunen, 1993). In formal terms, the group- 
ing together of related morphemes into sublexicons translates into the union operation, and 
continuations translate into the concatenation operation. As far as concatenating languages are 
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concerned, these two finite-state operations are often sufficient for defining the language of 
possible lexical strings. 

Where there are morphotaetie dependencies, i.e. where some morphemes require or prohibit the 
appearance of other morphemes in a word, and where the morphemes in question are adjacent, 
the necessary dependencies can be constrained via appropriate definition of the continuation 
classes. However, when similar co-occurrence restrictions exist between morphemes that are 
physically separated in a word, then the continuation-class notation breaks down and must 
be supplemented by one of the mechanisms to be discussed below. We shall conclude with a 
presentation of FLAG DIACRITICS as a practical compromise that keeps lexicons small, runs 
efficiently, provides linguists with a notation reminiscent of feature-unification, and is compat- 
ible with general finite-state computation. 

2 Arabic Morphotactics 

Arabic and other Semitic languages are most notable for having a partially non~concatenative 
morphotactics wherein STEMS are formed by the interdigitation of ROOTS and PATTERNS, a 
process naturally formalized in finite-state morphology as intersection (Kataja and Kosken- 
niemi, 1988; Beesley, 1996; Beesley, 1998). However, stem formation does not concern us 
here; we shall look only at noun examples, assuming that we have a sublexicon of thousands of 
noun stems including kitaab ("book"), kutub ("books"), lmatib ("scribe,), malaab ("office"), 
miktaab ("typewriter"), OaRris ("student"), mudarr is  ("teacher"), tadriis ("instruction"), etc. 
Outside of the stems, Arabic morphotactics is fairly straightforward, involving prefixes and 
suffixes that concatenate to the stems in the usual way. 

However, a too straightforward description of Arabic morphotactics will overgenerate seriously 
because of separated dependencies. To illustrate this, we note first that words can begin with a 
noun stem and end with any one of six mutually-exclusive case suffixes, schematically 

NounStem 

~+u Definite Nominative 
+a Definite Accusative 
+i Definite Genitive 

+un 

+an 

+in 

Indefinite Nominative 
Indefinite Accusative 
Indefinite Genitive 

Compiled into a finite-state machine, with non-final states represented as single circles; the 
start state labeled S, the final state represented as a double circle, and transitions represented as 
labeled arcs, we get a diagram as in Figure 1. We also use just kitaab and daaris to represent 
the entire union of noun stems. Every path through the FSM represents a valid lexical word, 
including kitaab+u, ki taab+a,  kitaab+in,  daar is+un,  etc. 

Arabic noun stems can optionally co-occur with an overt definite-article, represented here as 
just i+, which concatenates to the stem as a prefix. The most straightforward way to represent 
an optional prefix in finite-state terms is as in Figure 2, where the 0 represents an empty or 
"epsilon" arc. However, if the overt definite article is present, then the indefinite case suffixes 
are in fact illegal, The new diagram overgenerates, producing illegal strings like *l+kitaab+un. 
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u 

Figure 1: Noun Stems and Case Endings 

I1 

1 k ~ b  

Figure 2: An Overgenerating Lexicon 

To complicate the picture further, certain Arabic prepositions like bi+ can attach as prefixes 
in front of !+, or directly to the front of the noun stems if no !+ is present. This bi+ by itself 
always requires the genitive case ending, either +i or +in. When bi+ combines with i+, the 
only legal case ending is +i. 

bi+kitaab+i 
bi+kitaab+in 
bi+l+kitaab+i 

There are many more such separated dependencies in Arabic, 2 but these two will suffice, 

3 Constraining Separated Dependencies 

There are severai quite workable ways to constrain the !+ and hi+ dependencies and prevent 
overgeneration; these include running concurrent rule transducers at runtime, composing the 
constraints into the lexicon at compile time, and resorting to a feature-unification system like 
D-PATR. All have advantages and disadvantages. We'll examine these approaches and end 
with a presentation of Flag Diacritics, which for our purposes provide an optimal compromise 
of size, performance, and notational perspicuity. 

3.0.1 Running Concurrent Rule Transducers 

Even if a lexicon overgenerates by itself, separate rules applying concurrently during lookup 
can block and eliminate illegal solutions at runtime. In a classic KIMMO-style two-level mor- 
phology, the phonological variation rules axe compiled into finite-state transducers that are 
applied in parallel at runtime, constraining possible pairings of lexical and surface strings. 
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LEXICAL LEVEL 

Rule1 Rule2 Rule3 Rule4 Rule5 ... Rulen 

SURFACE LEVEL. 

If suitable "feature" symbols are injected into the lexical strings, then separated dependencies 
can be treated as pseudo-phonological phenomena. Let "Art be defined as a single symbol 
(with a multi-character print name) that occurs always and only with !+, the definite article 
prefix; and let ~'NeedGen occur always and only with prefixes like hi+. 

1 ^Art + 

b i ^NeedGen + 

Similarly, let symbols "Nom, "Ace and "Gen occur always and only with nominative, accusative 
and genitive case suffixes respectively. And let "Indef' mark all and only indefinite case suffixes, 
while "Def marks all and only definite case suffixes. The case-sufl~ strings then would look 
like the following (the position of the feature symbols in the strings is not important). 

+ u ^Def ^Nom 

+ a ^Def ^Acc 

+ i ^Def ^Gen 

+ u n ^Indef ^Nom 

+ a n ^Indef ^Acc 

+ i n ^Indef ^Gen 

Overall, the resulting lexicon will generate legal strings that look like the following 

k i t a a b + u ^Def ^Nom 

d a a r i s + a n ^Indef ^Acc 

1 ^Art + k i t a a b + a ^Def ^Acc 

b i ^NeedGen + 1 ^Art + d a a r i s + i'^Def ^Gen 

and many illegal strings including 

1 ^Art + k i t a a b + a n ^Indef ^Acc 

b i ^NeedGen + 1 ^Art + d a a r i s + a ^Def .^Acc 

b i ^NeedGen + 1 ^Art + d a a r i s + i n ^Indef ^Gen 

As in standard Two-Level Morphology notation, let l :s  be a symbol pair relating a lexical 
symbol I and a surface symbol s. Let l: denote all symbol pairs from the alphabet of the rules 
with I on the lexical side (not specifying what is on the surface side); and let :s denote all 
symbol pairs from the alphabet with s on the surface side. The symbol : by itself therefore 
stands for any symbol pair in the alphabet. Assuming that each feature symbol like ^Art is 
realized in surface strings as zero, the empty string, the necessary constraints are imposed by 
the following two-level rules: 

121 



Rule I: ^Art:0 /<= _ "* ^Indef:0 ; 

Rule 2: ^NeedGen:0 /<= _ "* [ ^Nom:0 I ^Acc:0 ] ; 

Rule 1 specifies that the lexical "Art symbol never occurs in a string where it is followed 
by the qndef  symbol. Compiled into a finite-state transducer and consulted constantly during 
analysis, it "remembers" when it sees an "Art symbol by moving into an "I saw ^Art" state. 
Once in that state, if the rule sees qnde f  anywhere in the remainder of the word, it fails, 
causing the analysis to backtrack for a different solution. Similarly, Rule 2 remembers when it 
sees ^NeedGen, and, having seen it, will fail if it subsequently sees ^Nora or ̂ Ace. 3 

In a typical research-oriented Two-Level Morphology, where dozens of phonological rules are 
consulted at every step at runtime, the addition of a few morphotactic constraint rules like Rule 
1 and Rule 2 will hardly be noticed, and they work perfectly well. In some commercial en- 
vironments, acceptable performance can be achieved by pre-eomposing and intersecting most 
of the component transducers of a system together into a single transducer, but reserving the 
constraint of long-distance dependencies to a separate filter or small set of filters which run 
concurrently at runtime, weeding out illegal solutions on the fly. However, in commercial ap- 
plications where performance is absolutely critical, 4 running multiple transducers at runtime, 
or even just two, is sometimes an unattractive overhead. 

3.0.2 Composing in Constraints at Compile Time 

While the solution above shortstops illegal analyses at mntime, by detecting and blocking il- 
legal paths through the lexicon, an alternative approach is simply to eliminate the illegal paths 
altogether at compile time. Xerox applications have traditionally intersected all the role trans- 
ducers into a single transducer; and because the lexicon also compiles into a transducer, it 
can be composed together with the rules into a single data object called a LEXlCAL TRANS- 
DUCER (Karttunen et al., 1992; Karttunen, 1994). If constraints are also composed into the 
lexical transducer at compile time, then at runtime only a single transducer is manipulated, 
rather than multiple transducers, with proportional improvement in the performance. 

Assuming the presence of the lexical feature symbols discussed above, we can characterize 
one set of illegal strings in regular-expression terms as [:* ^Art :* "Indef :*]. An equivalent 
notation, using the Xerox "contain" operator ($) is $["Art :* ^Indef]. Another set of illegal 
strings is characterized as $[^NeedGen :* [ "Nom I "Ace ] ]. All the illegal strings can be 
notated as the union of these two languages, and the complement (') of this union matches all 
lexical strings except the illegal ones: "[ $[ "Art :* ̂ Indef] I $[ ̂ NeedGen :* [ ^Nora I ̂ Ace ] ] ]. 

When this complement language (the "Filter") is composed on top of the overgenerating lexical 
transducer at compile time, only good strings are matched, and the unmatched illegal strings 
simply disappear in the process of the composition. (The composition operator is shown as .o..) 

~[ $[ ^Art :* ^Indef] I 
*O° 

OvergeneratingLexiconFST 

$[ ^NeedGen :* [ ^Nom [ ^Acc ] ] ] 

While this solution is formally elegant, and while the result runs very efficiently with less 
backtracking, it often causes the resulting transducer to explode in size. In general, structures 
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between the dependent morphemes get copied when the constraints are "composed into" the 
lexicon itself. In our example, the entire sublexicon of noun stems is copied once, for the !+ re- 
striction, and then that result is copied again, to capture the bi+ restriction, almost quadrupling 
the final size of the transducer. In a full-scale system such an explosion may be unacceptable. 

3.1 Feature Unification 

Both the runtime rules and the compile-time filters require that feature-like symbols be injected 
into lexical strings. Some linguists dislike that practice or simply prefer to express morphotactic 
constraints using more abstract (and traditional) semantic features that exist in a realm separate 
from the phonological symbols. 

Feature-unification notation, as in D-PATR, has been proposed and even implemented in a 
number of morphology systems for constraining morphotactic dependencies (Karttunen, 1984; 
Karttunen, 1986; Bear, 1986; Kataja and Kbskenniemi, 1988; Beesley et al., 1989; Trost, 1990). 
The basic idea is that each morpheme can be assigned a set of feature:value pairs, and as each 
morpheme is identified during analysis, its feature set must unify with the unified feature set 
for all the morphemes previously encountered. The final feature set for a successful analysis 
characterizes the entire word. 

This method also works well, keeping the network small, and it allows the use of powerful 
notational conventions that are already familiar from semi-formal linguistic description. How- 
ever, this method requires a separate feature-unification mechanism to run in parallel with the 
usual morphological symbol processing, and this may degrade performance unacceptably. 

3.1.1 Flag Diacritics 

The final method to be presented here is FLAG DIACRITICS, a method that injects feature-like 
symbols into phonological strings but which recognizes and interprets them specially during 
lookup to enforce the indicated dependencies. The very finite mount  of memory required is 
carried by the enhanced lookup process itself. Flag diacritics were inspired by the "feature 
requirements" of the Ment model (Blaberg, 1994)and by similar schemes in use at Xerox, 5 but 
related schemes have apparently been invented and reinvented many times going back to the 
days of ATNs (Fraser and Bobrow, 1969; Komai, 1996). 

Despite the prejudice against injecting feature-like symbols into phonological strings, there are 
many practical advantages in doing so. For one, this keeps the overall system limited to finite- 
state networks, which can be manipulated and modified freely by operations such as union and 
composition. And in many cases, feature symbols like ^Art, AIndef and ^Nora appearing in 
lexical strings can be useful information for the human user or for subsequent parsing. 6 

Flag diacritics are defined like any other multicharacter symbols in a lexc grammar (Karttunen, 
1993), but they are always bounded by @-signs to give them a distinctive orthography that can 
be recognized automatically by the lookup routines. The spelling of each flag diacritic contains 
a first field indicating an operation, a second field indicating the name of a feature, and in most 
cases a third field indicating a feature value. Fields are separated by periods, schematically 
@ Operation.FeatureName.Feature Value @. 

@C.Feat@ clear ((re)set to the neutral value), 
cannot fail 
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SP.Feat.Val@ positive (re)set of Feat to Val, 
cannot fail 

• N.Peat.Val@ negative (re)set of Feat to the 
complement of Val, cannot fail 

@U.Feat.Val@ unify-test, succeeds iff the current 
value of Feat is compatible with 
Val (if Feat is neutral, then 
sets it to Val) 

OR.Feat.ValO require-test, succeeds iff Feat has 
been set to Val 

OR.Feat8 require-test, succeeds iff Feat is set 
to some value other than neutral 

SD.Feat.Val@ disallow-test, succeeds iff the Feat has 
been set to a value that is 
incompatible with Val 

@D.Feat@ disallow-test, succeeds iff Feat is 
neutral 

In many practical applications, the U commands are often sufficient, with the others supplied 
for convenience and completeness. Getting back to the Arabic examples, we can build the lex- 
icon so that the lower-side language includes symbol @U.ART.YES@ as part of the definite 
article and so that the incompatible indefinite case suffixes are all marked @U.ART.NO@. 
In the course of analyzing a word, if a definite article is present, the lookup routine will 
find symbol @U.ART.YES@, interpret it as an epsilon for purposes of matching the input 
string, but setting and remembering that feature ART is set to value YES. If the symbol 
@U.ART.NO@ is found further on in the analysis path, the unification 7 will fail and the an- 
alyzer will be forced to backtrack to try to find another solution. Similarly, the bi+ prefix 
can be marked @U.CASE.GEN@, with the various case endings marked @U.CASE.NOM@, 
@U.CASE.ACC@ or @U.CASE.GEN@ as appropriate. 

The use of flag diacritics in general entails a slight runtime performance penalty, compared to 
composing in the same restrictions, because of increased backtracking. The flag diacritic no- 
tation is also not as powerful or perspicuous as genuine feature unification, as with D-PATR; 
but the runtime overhead of the simplified flag-diacritic checking is very light compared to 
the alternatives. Developers can also selectively remove flag diacritics from their ~alyzers by 
using the 'eliminate flag' algorithm, which simply composes the constraints into the network 
structure itself, with the usual penalties in size. In experiments on German, Arabic and Hun- 
garian morphology systems, experiments often show that only a handful of restrictions cause a 
noticeable size explosion, and only these need to be handled with flag diacritics. 

The use of just five flag diacritics reduced the size of a Hungarian morphologicaLanalyzer from 
over 38 megabytes to under 5 megabytes. The two systems are not completely comparable, but 
the benefit is even greater than these figures indicate. The 38 megabyte system had composed 
into it a small set of constraints chosen carefully to keep it from blowing up into an even bigger 
size. The 4.6 megabyte machine includes more important constraints, encoded as flag diacritics, 
that cannot be composed in because the size of the network becomes uncomputably large. 
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4 Conclusion 

Pure finite-state networks have no stack or other "memory" to store information about what 
morphemes or features have been accumulated; each transition from one state to the next de- 
pends only on the current input symbol. Where languages have separated morphotactic de- 
pendencies, as with the Arabic l+ and bi+ morphemes, capturing the dependencies in a pure 
finite-state network requires copying the structures between the dependent morphemes, with a 
resulting explosion in size. To keep such systems small, some way is requital, to inject a tiny bit 
of memory into the overall syste.m. In traditional KIMMO-style systems, the memory can he 
simulated in the states of concurrently running rule transducers. In a system with an auxiliary 
feature-unification mechanism, the memory is implemented in the unified feature sets that are 
calculated and passed along during analysis. With Hag Diacritics and similar mechanisms, all 
the featuie information is represented as special symbols in the network itself, and the lookup 
routines axe modified to recognize such symbols, perform a small set of unification-like op- 
elations, and remember the results. In working morphology systems at Xerox, Flag Diacritics 
have proved to be an optimal compromise, keeping networks small, providing good runtime 
performance, and retaining the advantages of computing with finite-state machines. 

Notes 

1Kenneth R. Beesley, D.Phil. 1983, University of Edinburgh, is a Principal Scientist at the 
Grenoble Laboratory of the Xerox Research Centre Europe. 

2For example, definite case endings are optionally followed by possessive-pronoun suffixes 
as in ldtaah+u+hu ("his book"), but these possessive-pronoun suffixes are also incompatible 
with the overt definite article, e.g. *l+kitaab+u+hu. The possible combinations of imperfect 
verb prefixes and suffixes can also be described in terms of separated dependencies. 

3In the current grammar, where every noun string eventually gets marked ^Def or "Indef, 
the same constraint could be imposed by the rule "Art:0/< = _ V'Def:0* .#. where V'Def:0 
denotes all symbol pairs other than ^Def:0 and .#. represents the end of word. Similarly, the 
constraint imposed by Rule 2 could also he stated as "NeedGen:0 I<= _ V'Gen:0* .#. 

4Customers demanding maximum efficiency include database providers and Internet search 
engines that use finite-state morphological analysis, or baseform reduction, for indexing of 
massive document collections. With their servers running at capacity, any compromise in per- 
formance translates directly into additional expenditures for hardware. 

5Ron Kaplan and Mike Wilkins, 1994--1995, personal communications; also 
http://www.xrce.xerox.com/research/mltt/fsNLP/traJn.htrni. 

6In KIMMO-style systems, various featural or "diacritical" symbols like a stress mark (e.g. 
') were often injected into lexical strings to control phenomena such as consonant doubling in 
English: 'budget+ing/budgeting vs. for'get+ing/forgening. The two-level roles were written 
to match (or not match) such diacritics so that they would fire and double the consonants only 
for words marked with stress on the final syllable. Such feature symbols tended to accumulate 
in the lexical strings, and there was no satisfactory way to get rid of them. When a user entered 
a string for generation, he or she would have to know the system intimately in order to include 
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all the diacritical symbols in the right places. However, in full finite-state morphology, not 
limited to two levels, lexical-level stress marks and similar symbols can do their work and then 
be removed trivially by a final composition of a "clean-up" transducer on top of the network, 
mapping them to the empty string. 

7Flag diacrit ics are intentionally nonmonotonic, so the use of the term "unification" for the 
U operation is not quite accurate. It was kept for historical reasons. 
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