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Abstract 

We present preliminary results of experiments with two 
types of recurrent neural networks for a natural language 
learning task. The neural networks, Elman networks and 
Recurrent Cascade Correlation (RCC), were trained on 
the text of a first-year primary school reader. The 
networks performed a one-step-look-ahead task, i.e. they 
had to predict the lexical category of the next following 
word. Elman networks with 9 hidden units gave the best 
training results (72% correct) but scored only 63% when 
tested for generalisation using a "leave-one-sentence-out" 
cross-validation technique. An RCC network could learn 
99.6% of the training set by adding up to 42 hidden units 
but achieved best generalisation (63%) with only four 
hidden units. Results are presented showing network 
learning in relation to bi-, t'i-, 4- and 5-gram 
performance. Greatest prediction uncertainty (measured 
as the entropy of the output units) occurred, not at the 
sentence boundaries but when the first verb was the input. 

1. Introduction 
Elman (1990) emphasised that natural language input 
unfolds in time and therefore, recurrent networks which 
can accept a sequence of input patterns are the preferred 
choice for many connectionist natural language 
processing tasks. In recurrent networks, knowledge is 
represented in activation patterns over hidden units and 
revealed (i.e. made explicit) by hierarchical cluster 
analysis or other statistical methods. Furthermore, 
recent evidence from cognitive neuroscience (Singer, 
1995) points to the importance of recurrent connections 
for the formation of coherent cell assemblies. 

Recent work on recurrent neural networks has 
focussed on formal languages (Wiles & Elman, 1995). 
In this paper, we present preliminary results of 
experiments with recun'ent neural networks for a natural 
language learning task. Our strategy is to start with 
simple children's texts and to step-wise increase the 
complexity of these texts to explore the learning 
characteristics of recurrent neural networks. In the first 
experiments reported here, we are starting with a first- 
year primary school reader from which sentences with 
embedded structures have been diminatecL In future 
experiments, we will use unmodified first-year texts and 
will continue with second-year textbooks and so on. 

1.1 Elman and RCC networks 

Simple recurrent networks (SRN's) of the Elman type 
are similar to three-layer perceptrons but with recurrent 
connections from the hidden layer to a context layer 
(also called state layer) which becomes part of the 
input. The activation patterns of the hidden units at time 
step t are copied onto the context units and presented 
with the input at the next time step. The hidden units 
have the task of mapping both an external input, and 
also the previous internal state in order to produce some 
desired output. Thus, the internal representations that 
develop are sensitive to temporal context; the effect of 
time is implicit in these internal states (Elman, 1990). 

Finding the optimum hidden layer size for an Elman 
network is a matter of trial and error and can be time 
consuming. One approach to finding the optimum 
hidden layer size is to l~aln an RCC net which 
implements an inoremental learning algorithm. The size 
of the generated RCC network gives an indication of a 
reasonable size for a SRN. It is important however to 
distinguish between the ability of an RCC network to 
learn the training set and the generalisation of the 
resulting network. 

Fahlman (1991) introduced the RCC architecture. 
Instead of only adjusting the weights of a fixed network 
topology, the idea is to start with a minimal network and 
to add hidden units as necessary. The initial network 
starts with no hidden units, and only the weights to the 
outputs are trained, If  the resulting performance is not 
satisfactory, a new hidden unit has to be added. 

The learning and network construction process works 
as follows: The algorithm starts with a set of new units, 
called the candidate pool. These units have randomly 
initialized, weighted connections from the input nodes 
and all the hidden units already present in the network. 
At that time their outputs are unconnected. Then, their 
incoming links are trained on the training set and 
adjusted in order to maximize the correlation between 
the candidates' outputs and the remaining error 
(Fahlman, 1991). When there is no improvement, this 
process stops and the candidate with the best 
'correlation score' is added permanently. These weights 
are then frozen, which means that this node becomes a 
new feature detector in the network. In order to integrate 
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this new hidden unit, the weights of  the output layer are 
trained for multiple epochs (Fahlman, 1991). This 
scheme of adding hidden units and retraining the output 
layer weights is repeated until success (when the error 
falls below a predefined threshold or no bit errors are 
found) or a maximum number of hidden units is reached 
(which means failure). Fahlman points out that this 
learning algorithm is a 'greedy' algorithm because the 
network is extended stepwise until a solution is found. 

Note that every new hidden unit adds a new hidden 
layer to the network, because it is connected to all 
previous hidden units. Recurrence is achieved by adding 
self-recurrent links to all hidden units. So at time step 
t+l the activation of time step t is fed back to the bidden 
unit. Such a constructive learning algorithm is expected 
to build a near minimal network for a given problem, 
because every hidden unit serves as a unique feature 
detector, and no a priori and maybe inappropriate 
guesses about the size of  hidden layers have to be made. 

1.2. Overv iew 

In the remainder of this paper, we present results for 
Elman networks which were evaluated by use of  cross- 
validation. We elucidate the Elman network's learning 
phases and compare its performance with RCC 
networks. N-gram scores are used as benchmarks. We 
examine the Elman network's uncertainty regarding the 
prediction of the next lexieal category and also the 
sequences it has correctly learned. 

2. Methods 

2.1. The data 

The natural language corpus used in these experiments 
was obtained from a first-year primary school reader 
published circa 1950's (Hume). This text was chosen 
because of its limited vocabulary and sentence structure. 
For this initial study, sentences with embedded 
structures (relative clauses) and a length of more than 
eight words were eliminated. The resulting corpus 
consisted of 106 sentences ranging from three to eight 
words in length, average length 5.06 words. The words 
were converted to 10 lexieal categories, including a 
sentence boundary marker. The categories and their 
abbreviations as used in the subsequent text and figures 
are listed in Table 1. 

The resulting data consisted of a string of 643 
categories in 106 sentences. There were 62 distinct 
sentence sequences of  which 43 occurred only once, the 
rest being replicated. The maximum replication of any 
sequence was eight-fold. Category frequencies are given 
in Table I. 

For some experiments, the total data were used, for 
training and in other experiments the data were divided 

into training and test sets. The test set consisted of every 
fourth sentence taken from the total data yielding a 
string of 158 categories in 26 sentences. The training set 
consisted of the remaining data, a string of 486 
categories in 80 sentences. Due to replication of some 
sentences, the test set contained sentence sequences that 
also occurred in the training set. 

TABLE 1: Percent frequencies of the ten lexical 
categories in the text. 

Lexical Category %frequency 

Article AR 8% 
Conjunction CC 1% 
Preposition IN 7% 
Adjective JJ 4% 
Noun NN 30% 
Pronoun PR 10% 
Possessive ('s) PS 2% 
Adverb RB 1% 
Verb VB 20% 
Sentence /S 17% 

boundary 

2.2. The networks 
The two networks used in this study were an Elman 
network and an RCC network. For both nets there were 
ten input and ten output units representing the sparsely 
coded lexical categories. The task in all cases was to 
predict the next lexical category given the current 
category. State unit activations were not reset to zero on 
presentation of a sentence boundary as is sometimes 
done. The Elman network was trained by standard 
backpropagation using momentum = 0.9. Step-size and 
number of training epochs varied depending on the 
requirement for slow or fast training. The slow training 
regime used stepsize = 0.0001 for 100,000 epochs and a 
typical fast training regime was 200 epochs at 0.01 
followed by another 200 at 0.001. One training epoch 
consisted of one complete presentation of the training 
data. The RCC network was trained by Quickprop. 
Error of the outputs was measured as the root-mean- 
square (rms) of the difference between the output and 
some target or reference value averaged over the 
outputs. The entropy of the outputs was calculated as 

I0 

I4o = - ~  o i log 2 o ; .  
i=1 

2.3. N-grams 
In order to assess the learning of the neural networks, 
prediction performance was compared with that of n- 
grams obtained by a statistical analysis of the data. 
Using the complete data sequence of 643 word 
categories, 48%, 62%, 72% and 76% correct predictions 
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could be obtained using bigram, trigram, 4-gram and 5- 
gram probabilities respectively. 

3. Results 

3.1. Learning by Eiman networks 

An Elman network having 9 hidden units and trained for 
100,000 epochs was able to learn 72% of the total data. 
However using a "leave-one-sentence-out" 106-fold 
cross-validation technique, the best generalisation result 
following fast training was 63%. Figure 1 shows the 
fraction of the training data learned from I0 to 100,000 
epochs of slow training. Early learning appears to 
proceed in discrete phases. In the first phase (up to 1000 
epochs), the network predicts only NN, the category 
having highest frequency (30%). In phase 2 (1000 to 
3000 epochs) the network predicts only NN or /S  and 
scores 45% (the combined frequency of NN and/S is 
47%). In phase 3 (3000 to 4000 epochs) the network 
predicts either NN,/S or VB, the three most common 
categories and at 5000 epochs it is predicting either NN, 
/S, VB orAIL 

The network's rms error with respect to the targets 
(labeled as "target error" in Figure 1) declined 
eontinuonsly during learning down to 0.160 at 80,000 
epochs and increased slightly subsequently. It is also 
useful to measure the network's rms error with respect 
to n-gram probabilities on the assumption that the 
network should be learning n-gram probabilities with n 
increasing during training. These errors are referred to 
as bigram, trigram and 4-gram errors in Figure 1. 
Bigram error is initially less than trigram and 4-gram 
errors and declines most rapidly from 800 to 3000 
epochs. It begins to increase again after 4000 epochs 
while trigram and 4-gram errors continue to decline. 
Al~er about 8,000 epochs, trigram error reaches a 
minimum value of 0.067 and then starts to increase. 4- 
gram error continue~ to decline to a value of 0.068 at 
80,000 epochs after which it also starts to increase. 5- 
gram error (not shown in Figure 1 to preserve clarity) 
declines to a value of 0.076 at 100,000 iterations but is 
beginning to level out. 

To confirm that the Elman network is making 
predictions based on conditional probabilities and also 
to justify the calculation of output entropy as defined in 
the Methods section, we require that the sum of outputs 
should be close to 1.0. In Figure 2 it can be observed 
that from about 100 epochs, the average sum of outputs 
is indeed close to 1.0, although the standard deviation of 
the average sum increases from 0.02 at 100 epochs to 
0.19 at 100,000 epochs. The entropy of the outputs (a 
measure of the network's 'uncertainty' about the next 
predicted category) declines as learning proceeds 
(Figure 2), but showing two 'fiat' periods corresponding 
to 'fiat' periods in target error. 

3.2. Compar ison of  Eiman and RCC 
networks 

When trained on the set of 485 training patterns, the 
RCC network continued to add hidden units and was 
able to learn 99.6% of patterns after adding 42 hidden 
units (Figure 3). However a maximum generalisation of 
63% on the test set was achieved after only 4 hidden 
units and generalisation declined with further addition 
of hidden units (Figure 3). By contrast, when Elman 
networks with 1-50 hidden units were trained on the 
same data, there was no simple recognisable 
relationship between generalisation and hidden layer 
size. An Ehnan network with 4 hidden units scored 60% 
on the test set, 3% lower than an RCC net of the same 
size. An Elman network with 9 hidden units scored 
64%. However the best generalisation score of 68% was 
achieved with 42 hidden units. 

3.3 Predietio n~U ncertainty 

Figure 4 shows a graph of prediction uncertainty 
(measured as the entropy of the output units) over a part 
of the sequence of category targets. Each point is 
labeled with the target category. Highest entropy always 
occurs when the input is the first VB in the sentence. An 
increase in entropy is also associated with the first 
category in the sentence. By contrast there is a low 
entropy associated with the prediction of sentence 
termination, 89% of sentence endings being correctly 
predicted. 

3.4. Correct ly  predicted sequences 

It is possible to reconstruct the sequences correctly 
learned by the Elman network that had learned 72% of 
the training set. They are shown in Figure 5. The 
transitions marked with an asterix (>*) are those not 
predicted by trigram probabilities. Sequences 1 and 5 
include complete and grammatical sentence structures. 

4. Discussion 

4.1. Training the Elman network 

After 10 iterations, the network was predicting the NN 
category for every pattern. Since NN was the highest 
frequency category, this was the quickest way for the 
network to reduce its initial prediction error. It could be 
said that the network was performing equivalently to a 
unigram predictor. 
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Figure 1: Learning by a simple recurrent neural network of the Elman type having 9 hidden units. Y-axis shows 
progression of r.m.s, error with respect to the targets, bigram and trigram probabilities and the fraction of training set 
learned as a function of training epochs. 
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Figure 2: The progression of sum of outputs and entropy of the outputs of an SRN trained over 100,000 epochs. 
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Figure 3: Progression of the score on training set and test set during the training of an RCCN. 
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NN 
V "R . 

PR > V B  > N N  > /S  

AR >* NN >* VB >* JJ >* IS 

IN >* PR >* /S 

Figure 5: Category sequences correctly learned by a simple recurrent neural network. Those sequences marked with 
>* are not predicted by trigram probabilities. 

Although VB has the second highest frequency 
(higher than/S), during the second learning phase the 
network outputs were confined to NN or /S  (not V'B). 
This is because the network was beginning to learn 
bigram probabilities and an inspection of the bigrarn 
frequency table revealed that there were 100 instnnees 
of /S  prediction using bigram probabilities but only 35 
instances of predicting a VB. It is during this second 
learning phase that the bigram error decreases most 
rapidly. 

In phase 3, the VB category is added to the network's 
prediction capability and in phase 4, AR is added, there 
being only 19 instances where AR would be predicted 
using bigram probabilities. In fact, using bigram 
probabilities only these four categories (NN,/S, VB and 
AR) can be predicted. At~er about 5000 epochs the 
network was also correctly predicting other categories, 
which indicates that it was making predictions based on 
the current and previous inputs. And indeed we observe 
/.hat the trigram error rate falls below the bigram error 
rate around 5000 epochs (Figure 1). 

In Figure 5 it is apparent that the network has 
correctly learned category transitions that are not 
predicted by trigram probabilities. This is indicative that 

the network was using at least the current and two 
previous inputs as context for its decisions. In fact 4- 
gram error continues to decline up to 80,000 epochs. 
Since the average sentence length is 5.05 words, it is not 
surprising that the 5-gram error remains above 4-grarn 
error throughout learning. 

Of course it is not being suggested here, that a 
recurrent network is first learning all the probabilities of 
a bigram model and then moves on to learn the trigram 
model and so on. Network learning is driven by the 
requirement to minimise predictive error. Thus longer 
sequences having high frequency will bias learning 
more than infrequently occurring short sequences. 
Nevertheless an interesting feature of learning apparent 
in Figure 1 was that minimum bigram error was 
achieved at 4000 epochs when the network had learned 
48% of the training set, equivalent to the performance of 
a bigram predictor. Similarly minimum trigrarn and 4- 
gram error was achieved when the network had learned 
the equivalent of a lrigram and 4-gram predictor 
respectively. 

Mention should be made of the decision not to reset 
state unit activations to zero when the Elman network 
encountered d sentence boundary. When resets were 
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used, network predictive performance dropped from 
70% to 69% with otherwise similar training regimes. In 
other words, there was minimal information transfer 
over sentence boundaries and it is more interesting to 
observe this aspect of network learning than to impose 
'forgetting' artifieiaUy. The slight increase in 
performance without resets was probably due to the 
repetitive nature of the sentences in this text meant for 
early readers. An additional reason for not using resets 
was that it made comparisons of network performance 
with n-gram statistics easier. 

4.2. Comparison of Eiman network and 
R C C  nets 

Although the RCC net was capable of learning 
almost the entire training set, the hidden unit 
representations that the network acquired did not 
generalise well. On the other hand, the best generalising 
RCC net with four hidden units did better than an Elman 
network with the same number of bidden units. Due to 
different learning algorithms, the two networks 
presumably acquired different hidden unit 
representations of the underlying task. It is clear that, 
for this task at least, training an RCC net to find the 
optimum number of hidden units for an Elman network 
is not a satisfactory technique. 

The maximum RCC score on the test set of 63% 
was, in fact, an unexpectedly high score. A bigram 
model acquired from the training set of 80 sentences, 
predicted 48% and 45% of the training and test set 
words respectively. The equivalent scores for the 
trigram model were 63% and 17% respectively. The 
poor generalisation of the n-gram models for n > 2 arose 
because the test sequences did not have the same 
statistical slructure as the training sequences for n > 2. 
This is the consequence of using natural language 
sentences and converting the words to lexical 
categories. A similar difficulty was noted by Lawrence 
et al (1996) for their NL task which required recurrent 
networks to classify sentences as either grammatical or 
ungrammatical. 

The experimental paradigm used in our experiment 
demands alternative measures of generalisation. These 
might include (1) testing on an artificially generated 
sequence that has the same n-gram (statistical) structure 
as the NL training sequence (2) testing on the training 
sequence corrupted with output noise (3) testing on the 
training sequence but with the sentences in random 
order. This last is appropriate where resets are not used 
during training. Such alternative tests of generalisation 
will be considered in future work. 

4.3. Prediction Uncertainty 
Elman (1990) found that when a recurrent net was 
trained on letter sequences consisting of concatenated 
words, its prediction error tended to decrease from 

beginning to end of each word. Thus a sharp increase in 
prediction error could be used to segment the letter 
sequence into words. 

In our study, there was low entropy associated with 
end-of-sentence prediction, 89% of/S being correctly 
predicted. Furthermore, when the input was/S, output 
entropy increased in 84% of cases. However by far the 
most obvious increase in prediction uncertainty 
occurred when the input was the first VB of the 
sentence (Figure 4). 

We should not expect that prediction uncertainty will 
decrease from beginning to end of a sentence in the 
same way that it does for words, because the rules 
which govern word structure are different from those 
which govern sentence structure. For example, the 
inventory of units that makes up words is so much 
smaller and the articulation of phoneme sequences is 
more highly constrained. It is not surprising therefore, to 
find that in our task, a sharp increase in the network's 
prediction uncertainty occurs other than when it 
encounters a sentence boundary. 

The first VB in our tagging system was either an 
auxiliary, or modal or the verb itself, if there was no 
auxiliary. In other words, the first VB has the largest 
number of highly probable successors. A linguistic 
interpretation of the network behaviour is complicated 
by the small number of lexical categories used in the 
study. I ra  more fine-grained system of tagging had been 
used, the progression of prediction uncertainty through 
the sentences would have been different. All the 
sentences in the text consisted of single clauses and the 
network behaviour is consistent with the verb being the 
most important determinant of sentence or clause 
structure. 

5. Conclusions 

We have described results for the training of Elman and 
RCC networkson a natural language task. The task is to 
predict the part-of-speech category of the next word in a 
sentence given the category of the current word as input. 
The Elman network appears to be a more useful model 
for this one-step-look-ahead task than the RCC network. 

Elman networks are statistical learners and we have 
shown that network learning can be interpreted in t=rrts 
of learning n-gram statistics. However because network 
learning is driven by minimisation of predictive error, 
longer sequences having high frequency bias learning 
more than infrequently occurring short sequences. 

The sequences correctly learned by the Elman 
network included some that were not predicted by 
trigram probabilities, evidence that the network was 
using the previous three or more inputs as context for 
prediction. 

Prediction uncertainty was highest when the input was 
the first verb category in the sentence, possibly 
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consistent with the important role that the verb plays in 
the syntactic structure of a sentence. 
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