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A b s t r a c t  

The  paper  presents a new statistical method, for 
parsing discourse. A parse of discourse is defined 
as a set of semantic dependencies among sentences 
tha t  make up the discourse. A collection of news 
articles from a Japanese economics daily are man-  
ually marked for dependency and used as a train- 
ing/ test ing corpus. We use a C4.5 decision tree 
method to develop a model of sentential dependen- 
cies. However, rather  than to use class decisions 
made by C4.5, we exploit information on class dis- 
tr ibutions to rank possible dependencies among sen- 
tences according to their probabilistic s t rength and 
take a parse to be a set of highest ranking dependen- 
cies. We also study effects of features such as clue 
words, distance and similarity on the performance of 
the discourse parser. Experiments  have found tha t  
the method performs reasonably well on diverse text  
types,  scoring an accuracy rate of over 60%. 

1 I n t r o d u c t i o n  

At tempts  to the automatic  identification of a struc- 
ture in discourse have so far met  with a limited 
success in the computat ional  linguistics li terature. 
Par t  of the reason is that,  compared to sizable da ta  
resources available to parsing research such as the 
Penn Treebank (Marcus et al., 1993), large cor- 
pora  annotated for discourse information are hard to 
come by. Researchers in discourse usually work with 
a corpus of a few hundred sentences (Kurohashi and 
Nagao, 1994; Li tman and Passonneau, 1995; Hearst,  
1994). The lack of a large-scale corpus has made it 
impossible to talk about  results of discourse studies 
with the sufficient degree of reliability. 

In the work described here, we created a corpus 
with discourse information, containing 645 articles 
from a Japanese economic paper,  an order of magni- 
tude larger than any previous work on discourse pro- 
cessing. It had a total of 12.770 sentences and 5,352 
paragraphs.  Each article in the corpus was manually 
annotated for a discourse dependency" relation. We 
then built a statistical discourse parser based on the 
C4.5 decision tree method (Quinlan, 1993), which 
was trained and tested on the corpus we have cre- 

Figure 1: A discourse tree. 'S'  denotes a sentence. 

ated. The design of a parser was inspired by Haruno 
(1997)'s work on statistical sentence parsing. 

The  paper  is organized as follows. Section 2 
presents general ideas about  statistical parsing as 
applied to the discourse, After a brief introduction 
to some of the points of a decision tree model, we dis- 
cuss incorporating a decision tree within a statistical 
parsing model. In Section 3, we explain how we have 
built an annotated corpus. There  we also describe 
a procedure of experiments we have conducted, and 
conclude the section with their results. 

2 S t a t i s t i c a l  D i s c o u r s e  P a r s i n g  

First, let us make ourselves clear about  what  we 
mean by parsing a discourse. The  job of parsing is 
to find whatever dependencies there are among ele- 
ments that  make up a part icular  linguistic unit. In 
discourse parsing, elements one is interested in find- 
ing dependencies among correspond to sentences, 
and a level of unit under investigation is a discourse. 
We take a naive approach to the notion of a depen- 
dency here. We think of it as a re!ationship between 
a pair of sentences such that  the interpretat ion of one 
sentence in some way depends on that  of the other. 
Thus a dependency relationship is not a s t ructural  
one, but rather  a semantic or rhetorical one. 

The job of a discourse parser is to take as input 
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a discourse, or a set of sentences that  make up a 
discourse and to produce as output  a parse, or a 
set of dependency relations (which may give rise to 
a tree-like s tructure as in Figure 1). In statistical 
parsing, this could be formulated as a problem of 
finding a best parse with a model P(T I D),  where 
T is a set of dependencies and D a discourse. 

Tbest = arg maXTP(T [ D ) 

Tbe,t is a set of dependencies that  maximizes the 
probability P(T I D). Further, we assume that  a 
discourse D is a set of sentences marked for some 
pre-defined set of features F = { f l , . . - , f n } .  Let 
CF ($1) be a characterization of sentence $1 in terms 
of a feature set F .  Then for D = {S1, . . . ,Sm},  
C F ( D )  = { C F ( S 1 ) , C F ( S 2 ) , . . . , C F ( S m ) } .  Let us 
assume that:  

P(T I D) = r I  P(A ~ B [ CF(D)). 
A+..-BET 

'A ~- B '  reads like " sentence B is dependent on 
sentence A", where A,B  E {$ i , . . .  ,Sin}. The prob- 
ability of T being an actual parse of discourse D is 
estimated as the product of probabilities of its ele- 
ment dependencies when a discourse has a represen- 
tation CF(D) .  We make a usual assumption that  
element dependencies are probabilistically iiadepen- 
dent. 

2.1 D e c i s i o n  T r e e  M o d e l  

A general framework for discourse parsing described 
above is thus not much different from tha t  for sta- 
tistical sentence parsing. Differences, however, lie in 
a makeup of the feature set F .  Rather  than to use 
information on word forms, word counts, and part-  
of-speech tags as in much research on statistical sen- 
tence parsing, we exploit as much information as can 
be gleaned from a discourse, such as lexical cohesion, 
distance, location, and clue words, to characterize a 
sentence. Therefore it is impor tan t  that  you do not 
end up with a mountain of irrelevant features. 

A decision tree method represents one of ap- 
proaches to classification problems, where features 
are ranked according to how much they contribute to 
a classification, and models are then built with fea- 
tures most relevant to that  classification. Suppose, 
for example, that  you work for a travel agency and 
want to find out what features of a hotel are more 
important  for tourists, based on da ta  from your cus- 
tomers like Table 1. With decision tree techniques, 
you would be able to tell what features are more 
closely associated with customers '  preferences. 

The aim of the decision tree approach is to in- 
duce rules from data  tha t  best characterize classes. 
A particular approach called C4.5 (Quinlan, 1993), 
which we adopt here, builds rules by recursively di- 
viding the training data  into subsets until all divi- 
sions contain only single class cases. In which subset 

T a b l e  1: An illustration: hotel preferences. 
'Bath /shower '  means a room has a bath,  a shower or 
none. 'T ime '  means the travel t ime in min. from an 
airport.  'Class '  indicates whether a particular hotel 
is a customer 's  choice. 

ba th /shower  time room rate class 

1 ba th  15 expensive no 
2 shower 20 inexpensive no 
3 shower 10 inexpensive yes 
4 ba th  15 modera te  yes 
5 ba th  25 modera te  yes 
6 none 20 inexpensive no 
7 shower 50 inexpensive no 

Figure 2: A decision tree for the hotel example. 

bath/shower 

• h 

r o o m  raze 

• ive moderate 

NO YES 

I showcr~one 

time NO 

YES NO 

a particular case is placed is determined by the out- 
come of a ' t es t '  on that  case. Let us explain how 
this works by way of the hotel example above. Sup- 
pose that  the first test  is "ba th / shower ' ,  which has 
three outcomes, ba th ,  shower, and none. Then the 
da ta  set breaks up into three groups, {1,4,5} (bath) ,  
{2,3,7} (shower),  and {6}(none). Since the last 
group {6} consists of only a single case, there is no 
further division of the group. The b a t h  group, being 
a multi-class set, is further divided by a test "room 
rate",  which produces two subdivisions, one with { 1 } 
(expensive), and the other with {4,5} (moderate). 
Either set now consists of only single class cases. 
For the shower group, applying the time test(<=15) 
would produce two subsets, one with {3}, and the 
other with {2,7}. l Either one now contains cases 
from a single class. A decision tree for divisions we 
made is shown in Figure 2. 

Now compare a hand-created decision tree in Fig- 

i Here we choose a midpoint between I0 and 20 as in C4.5. 
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Figure 3: A tree for the hotel example by C4.5. 
Figures in parentheses indicate the number  of cases 
that  reach relevant nodes. A figure after a slash, eg. 
(4/1), indicates the number  of misclassified cases. 

room rale (7) 

NO (1) YES (2) NO (4/I) 

ure 2 with one in Figure 3, which is generated by 
C4.5 for the same data.  Surprisingly, the la t ter  tree 
consists of only one test node. This happens because 
C4.5 ranks possible tests, which we did not, and ap- 
ply one tha t  gives a most effective part i t ioning of 
da ta  based on information-theoretic criteria known 
as the gain criterion and the gain ratio criterion. 2 
The intuitive idea behind the criteria is to prefer a 
test with a least entropy, i.e., a test that  parti t ions 
da ta  in such a way that  a particular class may be- 
come dominant  for each subset it creates. Thus a 
feature that  best accounts for a class distribution in 
da ta  is always chosen in preference to others. For 
the da ta  in Table 1, C4.5 determined that  the test  
room r a t e  is a best class identifier and everything 

2 T h e  gain cri terion m e a s u r e s  t he  effect iveness of  pa r t i t ion-  
ing a d a t a  set  T with respect  to a tes t  X ,  and  is defined 
follows. 

gain(X) = info(T) - i n / o x ( T  ) 
Define info(T) to be an en t ropy  of T ,  t h a t  is, t h e  average  
a m o u n t  of informat ion  genera ted  by T .  T h e n  we have:  

k 

in/o(T) = - ~-~ freq.(Cj, T )  x log 2 freq(Cj' T) 
ITI IVl 

j = l  

freq(C,T) is the  n u m b e r  of  cases  f rom a class  C divided by 
the  s u m  of  cases  in T.  Now infox(T ) is the  average  a m o u n t  
of  in format ion  genera ted  by pa r t i t ion ing  T wi th  respect  to a 
tes t  X .  T h a t  is, 

in/ox(T) = ~ 1~  [ info(T,) 
i=1  

T h u s  a good  classifier would give a smal l  value  for info X (T) 
and  a large value for in/o X (T). 

T h e  gain ratio criterion is a modif ica t ion  to the  gain crite- 
rion. It has  the  effect of  m a k i n g  a sp l i t t ing  of  a d a t a  set less 
in tense .  

gain ratio(X) = gain(X)/split info~') 

where: 

split info(X) = - ~ IT, [ x " [ Ti I 
I T [ rag2 I T I 

*-=l 

T h e  rat io decreases  with an increase in the  n u m b e r  of  spli ts .  

else is irrelevant to identifying the classes. All tha t  
one needs to account for the class distribution in Ta- 
ble 1 turn out to be just  one feature. So we might 
just  as well conclude that  the customers are just in- 
terested in the room charge when they pick up a 
hotel. 

A benefit of using the decision tree method is tha t  
it enables us to identify relevant features for classi- 
fication and disregard those tha t  are not relevant, 
which is particularly useful for a task such as ours, 
where a large number  of features are potential ly in- 
volved and their  relevance to classification is not al- 
ways known. 

2.2 P a r s i n g  w i t h  D e c i s i o n  T r e e  

As we mentioned in section 2, we define discourse 
parsing as a task of finding a best tree T,  or a set of 
dependencies among sentences tha t  maximizes P(T  I 
D). 

Tbest = a r g  m a x T P ( T  [ D) 

F ( T  [ D) = H P(A ~ B [ CF(D)). 
A+--BET 

What  we do now is to equip the model with a fea- 
ture selection functionality. This can be done by 
assuming: 

P(A ~ B [ CF(D)) = P(A ~ B [ C F ( D ) , D T F )  

Z P ( X  ~- B [ CF(D) ,DTF)  
X<B 

(1) 
D T F  is a decision tree constructed with a feature 

set F by C4.5. ' X  < B '  means that  X is a sen- 
tence tha t  precedes B :  P ( X  ~ Y [ C F ( D ) , D T v )  
is the probabil i ty that  sentence Y depends on sen- 

' tence X under the condition tha t  both  CF(D) and 
D T F  are used. We est imate P ,  using class distribu- 
tions from the decision tree D T F .  For example,  we 
have numbers  in parentheses after leaves in the de- 
cision tree in Figure 3. They indicate the number  of 
cases tha t  reach a particular leaf and also the num- 
ber  of misclassified cases. Thus a leaf with the label 
i n e x p e n s i v e  has the total of 4 cases, one of which 
is misclassified. This means tha t  we have 3 cases 
correctly classified as "NO" and one case wrongly 
classified. Thus a class distribution for "NO" is 3/4 
and tha t  for "YES" is 1/4. In practice, however, 
we slightly correct class frequencies, using Laplace 's  
rule of succession, i.e., x /n  ~ x + 1/n + 2. 

Now suppose that  we have a discourse D = 
{ . . . , S i , . . . , S j , . . . , S k , . . . }  and want to know what 
Si depends on, assuming that  Si depends on either 
Sj or Sk. To find that  out involves constructing 

3 Note  t h a t  here  we are in effect m a k i n g  a c la im abou t  
the  s t r u c t u r e  of  a d iscourse ,  n a m e l y  t h a t  a s en t ence  modifies 
one t ha t  precedes  it. C h a n g i n g  it to s o m e t h i n g  like ' X  6 
D , X  # B '  allows one  to have  forward as well as backward  
dependenc ies .  
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Figure 4: A hypothetical decision tree. 

dist 

YES (10/3) YES (14/8) 

C F ( D )  and D T F .  Let us represent sentences Sj and 
Sk in terms of how far they are separated from Si, 
measured in sentences. Suppose that  dist(Sj) = 2 
and dist(Sj) = 4; that  is, sentence S.# appears 2 sen- 
tences behind Si and Sk 4 sentences behind. Assume 
further that  we have a decision tree constructed from 
data  elsewhere that  looks like Figure 4. 

With C F ( D )  and D T F  at hand, we are now in 
a position to find P ( A  ~ B I CF(D) ) ,  for each 
possible dependency Sj ~ Si, and Sk +-- Si. 

P ( S j  ~ Si l C a i , t ( D ) , D T a i , t )  
= ( 1 0 -  3 + 1)/(10 + 2). 
= .67 

P(Sk  +- Si [ Caist(D),  DTais t )  
= (14 - s + 1 ) / ( 1 4  + 2) 
= .44 

Since Si links with either Sj or Sk, by Equation 1, 
we normalize the probabil i ty estimates so that  they 
sum to 1. 

P ( S  i ~ Si I C d , t ( D ) )  = .67/(.67 + .44) = .60 

P(.-~ ~ Si [ Caist(D)) = .44/(.67 + .44) = .40 

Recall that  class frequencies are corrected by 
Laplace's rule. Let T 1 = {Sj ~ Si} and Tk = {,-~ 
Si} Then P(Tj  I D) > P(Tk t D). Thus Tb,,t = Tj. 
We conclude that  Si is more likely to depend on Sj 
than SI,. 

2.2.1 F e a t u r e s  

The  following list a set of features we used to encode 
a discourse. As a convention, we refer to a sentence 
for which we like to find a dependency as 'B' ,  and a 
sentence preceding 'B '  as 'A' .  

<DistSen> records information on how far ahead 
A appears from B, measured in sentences. 

#S(B)  - #S(A)  

3InT. .Sen_Distance 

' # S ( X ) '  denotes an ordinal number indicating 
the position of a sentence X in a text, i.e., 

#S(kth_sentence)  = k. 'Max_Sen_Distance' de- 
notes a distance, measured in sentences, from 
B to A, when B ocurrs farthest from A, i.e., 
#S(last_sentence_in_text) - 1. D i s tSen  thus has 
continuous values between 0 and 1. We discard texts 
which contain no more than  one sentence. 

<DistPax> is defined similarly to Dis tSen ,  except 
that  the distance is measured in paragraphs.  

# P a r ( B )  - # P a r ( A )  

M a x _ P a r . D i s t a n c e  

' P a r ( X ) '  is a paragraph tha t  contains a sentence 
X, and ' # P a r ( X ) ?  denotes an ordinal number  of 
P a r ( X ) .  'Max_Par_Distance' is a maximal  distance 
one could have between two paragraphs in a text,  
that  is, #Par(last_sentence. in_text)  - 1. 

<LocSen> defines the location of a sentence by: 

#s(x) 
# S ( Last_S en tence ) 

Here 'Last_Sentence'  is the last sentence of a text. 
LocSen takes values between 0 and 1. A discourse- 
initial sentence takes 0, and a discourse-final sen- 
tence 1. 

<LocPax> is defined similarly to DistPa.r .  It  gives 
information on the location of a paragraph in which 
a sentence X occurs. 

# P a r ( X )  

#Last ._Paragraph 

' #Las t_Parag raph '  is the position of the last para- 
graph in a text,  represented by its ordinal number. 

• <LocW£thinPar> gives information on the location 
of a sentence X within a paragraph in which it ap- 
pears. 

# S ( X )  - # S ( P a r _ l n i L . S e n )  
L e n g t h ( P a r ( X ) )  

'ParAnit_Sen' refers to the initial sentence of a para- 
graph in which X occurs, 'Length(Par (X)) '  denotes 
the number of sentences that  occur in that  para- 
graph. LocWith inPar  takes continuous values rang- 
ing from 0 to 1. A paragraph  initial sentence would 
have 0 and a paragraph final sentence 1. 

<LenText> the length of a text, measured in 
Japanese characters.  

<LenSenA> the length of A in Japanese characters. 

<LenSenB> the length of B in Japanese characters. 

<Sire> gives information on the lexical similarity 
between A and B, based on an information-retrieval 
measure known as t f  • idf.  4 One important  point 

4 For a word j E Si, its weight u'i2 is defined by: 

N 
wi.i = tf, j . log d~j 
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h e r e i s  that  we did not use words per se in mea- 
suring the similarity. Wha t  we did was to break 
up nominals from sentences into simple characters 
(grapheme) and use only them to measure the sim- 
ilarity. We did this to deal with abbreviat ions and 
rewordings, which we found quite frequent in the 
corpus we used. 

<Sire2> same as Sire feature,  except tha t  the sim- 
ilarity is measured between A and Par(B), a para- 
graph in which B occurs. We define Siva2 as 
'SIM(A,Concat(Par(B)))' (see footnote 4 for the 
definition of SIM), where 'Concat(Par(B))' is a 
concatenation of sentences in Par(B). 

<IsATit] .e> indicates whether  A is a title. We re- 
garded a title as a special sentence tha t  initiates a 
discourse. 

<Clues> differs from features above in tha t  it does 
not refer to any single feature but is a collective t e rm 
for a set of clue-related features, each of which is 
used to indicate the presence or absence of a rele- 
vant clue in A and B. We examined N most  frequent 
words found in a corpus and associated each with a 
different clue feature. We experimented with cases 
where N is 0, 100, 500 and 1000. A sentence can 
be marked for a multiple number  of clue expressions 
at the same time. For a clue c, an associated Clues  
feature d takes one of the four values, depending 
on the way c appears  in A and B. c' = 0 if c ap- 
pears in neither A or B; d = 1 if c appears  in both  
A and B; d = 2 if c appears  in A and not in B; 
and d = 3 if c appears  not in A but  in B. We con- 
sider clue expressions from the following grammat -  
ical classes: nominals, adjectives, demonstratives,  
adverbs, sentence connectives, verbs, sentence-final 
particles, topic-marking particles, and punctuat ion 
marks. 5 While we did not consider a complex clue 
expression, which can be made up of multiple ele- 
ments from various grammat ica l  classes 6 , it is pos- 

d/j is the  n u m b e r  of  s en t ences  in t he  tex t  which  have an oc- 
cur rence  of  a word j .  N is t he  to ta l  n u m b e r  of  sen tences  in 
the  text .  T h e  t f . i d f  metr ic  h a s  the  p rope r ty  of favoring high 
f requency words wi th  local d i s t r ibu t ion .  For a pair  of  sen- 
fences  X = {zl  . . . .  } and  ]" = {YI , - - .} ,  where  z and y are 
words,  we define the  lexical s imi la r i ty  be tween  X and  Y by: 

t 

S I M ( X ,  Y )  = i=1 

w(xi)2, w(yi)2 
i . ~ l  i = l  

They- are ex trac ted  f rom a corpus  by a J a p a n e s e  tokenizer  
p rog ram (Sakurai  and  H i sami t su ,  1997). 

6 Engl ish examples  would be f o r  example,  as a result, 
etc.,  which are t h o u g h t  of  as an  ind ica tor  of  a discourse 
re la t ionship .  

Table 2: Top 20 lexical clues. Suushi below is a 
g rammar  term of a class of numerals.  Since there 
are infinitely many of them, we decided not to t reat  
them individually, but to represent them collectively 
with a single feature .~uushi. 

l e m m a  e x p l a n a t i o n  

o 

suushi* 
w a  

s u r u  

J 
f 

m o  
( 

) 
nado 

nai 
a r u  

kara 
koto 
dewa 
nen  

hi 
no  

comma 
period 
numerals  
topic marker  
'do '  
right angular  parenthesis 
left angular  parenthesis 
topic marker  
left parenthesis  
right parenthesis 
'so forth '  
dash 
negative auxiliary 
' ex i s t ' , ' be '  
' f rom'  
nominalizer 
topic marker  
'year '  
' day '  
possessive particle 

sible to think of a complex clue in terms of its com- 
ponent clues for which a sentence is marked.  

C l a s s e s  For a sentence pair  A and B, the class is 
either yes or no, corresponding to the presence or 
absence of a dependency link from B to A. 

The features above are more or less plucked from 
the air. Some are motivated,  and some are less so. 
Our s trategy here, however, is to rely on the deci- 
sion tree mechanism to select 'good '  features and 
filter out features tha t  are not relevant to the class 
identification. 

2.2 .2  N o t e s  o n  D i s c o u r s e  E n c o d i n g  

Let us make further notes on how to encode a dis- 
course with the set of features we have described. 
We characterize a sentence in relation to its po- 
tential "modifyee" sentence, a sentence in a dis- 
course which it is likely to depend on. Thus en- 
coding is based on a pair  of sentences, ra ther  than 
on a single sentence. For example,  a discourse 
D = {St, $2, $3 } would give a set of possible de- 
pendency pairs "P(D) = {< S2,Si > , <  S3, Si > , <  
S, ,& > , <  S3,S~_ > ,<  S~,S3 > ,<  S2,Ss >}. We 
assume tha t  C F ( D )  = CF(P(D)). Furthermore,  we 
may want to constrain P by restricting the at tention 
to pairs of a part icular  type.  If we are interested 
only in backward dependencies,  then we will have 
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?(D) = {< Sl ,& > ,<  Sl,S3 >,<  S2, S3 >}. 
In experiments, we assumed a discourse as con- 

sisting of backward dependency pairs and encoded 
each pair with the set of features above. Assump- 
tions we made about the structure of a discourse are 
the following: 

1. Every sentence in a discourse has exactly one 
preceding "modifyee" to link to. 

2. A discourse may have crossing dependencies. 

3 Eva luat ion  
3.1 D a t a  

To evaluate our method,  we have done a set of ex- 
periments, using data  from a Japanese  economics 
daily (Nihon-Keizai-Shimbun-Sha, 1995). They con- 
sist of 645 articles of diverse text  types (prose, nar- 
rative, news report,  expository text ,  editorial, etc.), 
which are randomly drawn from the entire set of arti- 
cles published during the year. Sentences and para- 
graphs contained in the da ta  set totalled 12,770 and 
5,352, respectively. We had, on the average, 984.5 
characters, 19.2 sentences, and 8.2 paragraphs,  for 
one article in the data. Each sentence in an article 
was annotated with a link to its associated modi- 
fyee sentence. Annotations were given manually by 
the first author. Each sentence was associated with 
exactly one sentence. 

In assigning a link tag to a sentence, we did not 
follow any specific discourse theories such as Rhetor- 
ical Structure Theory (Mann and Thompson,  1987). 
This was because they often do not provide informa- 
tion on discourse relations detailed enough to serve 
as tagging guidelines. In the face of this, we fell 
back on our intuition to determine which sentence 
links with which. Nonetheless, we followed an in- 
formal rule, motivated by a linguistic theory of co- 
hesion by Halliday and Hasan (1990): which says 
that  we relate a sentence to one tha t  is contextually 
most relevant to it, or one tha t  has a cohesive link 
with it. This included not only rhetorical relation- 
ships such as ' reason' ,  'cause-result ' ,  'e laboration' ,  
' justification' or 'background'  (Mann and Thomp-  
son, 1987), but also communicat ive relationships 
such as 'question-answer' and those of the 'initiative- 
response' sort (Fox, 1987; Levinson, 1994; Carlet ta  
et al., 1997). 

Since the amount  of da ta  available at the t ime of 
the experiments was rather  modera te  (645 articles), 
we decided to resort to a test  procedure known as 
cross-validation. The following is a quote from Quin- 
lan (1993). 

"In this procedure, the available data  is di- 
vided into N blocks so as to make each 
block's number of cases and class distri- 
bution as uniform as possible. N differ- 
ent classification models are then built, in 

each of which one block is omit ted from the 
training data,  and the resulting model is 
tested on the cases in tha t  omit ted block." 

The average performance over the N tests is sup- 
posed to be a good predictor of the performance of 
a model built from all the data.  I t  is common to set 
N = I O .  

However, we are concerned here with the accuracy 
of dependency parses and not with that  of class de- 
cisions by decision tree models. This requires some 
modification to the way the validation procedure is 
applied to the data.  Wha t  we did was to apply the 
procedure not on the set of cases as in C4.5, but 
on the set of articles. We divided the set of articles 
into 10 blocks in such a way tha t  each block contains 
as uniform a number  of sentences as possible. The 
procedure would make each block contain a uniform 
number of correct dependencies. (Recall that  every 
sentence in an article is manually annotated with ex- 
actly one link. So the number  of correct links equals 
tha t  of sentences.) The number  of sentences in each 
block ranged from 1,256 to 1,306. 

The performance is rated for each article in the 
test set by using a metric: 

number of correct dependencies retrieved 
precision = 

total number of dependencies retrieved 

At each validation step, we took an average perfor- 
mance score for articles in the test  set as a precision 
of that  step's model. Results from 10 parsing models 
were then averaged to give a summary  figure. 

3.2 R e s u l t s  a n d  A n a l y s e s  

We list major results of the experiments  in Table 3, 
The results show tha t  clues are not of much help 
to improve performance. Indeed we get the best 
result of 0.642 when N = 0, i.e., the model does 
not use clues at all. We even find that  an overall 
performance tends to decline as models use more Of 
the words in the corpus as clues. It  is somewhat 
tempting to take the results as indicating that  clues 
have bad effects on the performance (more discus- 
sion on this later). This, however, appears  to run 
counter to what we expect from results reported in 
prior work on discourse(Kurohashi and Nagao, 1994; 
Litman and Passonneau, 1995; Grosz and Sidner, 
1986; Marcu, 1997), where the notion of clues or 
cue phrases forms an impor tan t  par t  of identifying 
a structure of discourse7 

Table 4 shows how the confidence value (CF) af- 
fects the performance of discourse models. The CF 

7 One problem with earlier work is that  evaluations are 
done on very small data; 9 sections from a scientific writing 
(approx. 300 sentences) (Kurohashi and Nagao, 1994): 15 
narrathes (I113 clauses) (Lhman and Passonneau. 1995): 3 
texts (Marcu, 1997). It is not clear how reliable estimates of 
performance obtained there would be. 
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Table 3: Effects of lexical clues on the performance of models. N is the number  of clues used. Figures in 
parentheses represent the ratio of improvements  against a model with N = 0. 

[ N = 0  N =  100 N = 5 0 0  N = I O 0 0  t 

[ 0.642 0.635 ( -1 .100%) 0.632 (-1.580%) 0.628 ( -2 .220%) I 

Table 4: Effects of pruning on performance.  CF refers to a confidence value. Small C F  values cause more 
prunings than large values. 

Clues C F = 5 %  C F = 1 0 %  C F = 2 5 %  C F = 5 0 %  C F = 7 5 %  C F = 9 5 %  

0 0.626 0.636 0.642 0.633 0.625 0.624 
100 0.629 0.627 0.635 0.626 0.614 0.609 
500 0.626 0.630 0.632 0.616 0.604 0.601 
1000 0.628 0.627 0.628 0.616 0.601 0.597 

represents the extent to which a decision tree is 
pruned; A small CF leads to a heavy pruning of 
a tree. The tree pruning is a technique by which 
to prevent a decision tree from fitting training data  
too closely. The problem of a model fitting da ta  too 
closely or overfitting usually causes an increase of 
errors on unseen data. Thus a heavier pruning of a 
tree would result in a more general tree. 

While Haruno (1997) reports tha t  a less pruning 
produces a bet ter  performance for Japanese  sentence 
parsing with a decision tree, results we got in Table 4 
show that  this is not true with discourse parsing. In 
Haruno (1997), the performance improves by 1.8% 
from 82.01% (CF = 25%) to 83.35% (CF = 95%). 
25% is the default value for CF in C4.5, which is 
generally known to be the best CF level in machine 
learning. Table 4 shows that  this is indeed the case: 
we get a best performance at around C F  = 25% for 
all the values of N.  

Let us turn to effects that  each feature might have 
on the model's performance. For each feature, we re- 
moved it from the model and trained and tested the 
model on the same set of da ta  as before the removal. 
Results are summarized in Table 5. I t  was found 
that ,  of the features considered, Dis tSen ,  which en- 
codes a distance between two sentences, contributes 
most to the performance; at N = 0, its removal 
caused as much as an 8.62% decline in performance. 
On the other hand, lexical features Sire and Sire2 
made little contribution to the overall performance; 
their removal even led to a small improvement in 
some cases, which seems consistent with the earlier 
observation that lexical features are a poor class pre- 
dictor. 

To further study effects of lexical clues, we have 
run another experiment where clues are limited to 
sentence connectives (as identified by a tokenizer 
program). Clues included any connective that  has 

an occurrence in the corpus, which is listed in Ta- 
ble 6. Since a sentence connective is relevant to es- 
tablishing inter-sententiaI relationships, it was ex- 
pected that  restr ict ing clues to connectives would 
improve performance.  As with earlier experiments,  
we have run a 10-fold cross validation experiment on 
the corpus, with 52 a t t r ibutes  for lexical clues. We 
found that  the accuracy was 0.642. So it turned out 
tha t  using connectives is no be t te r  than when we do 
not use clues at  all. 

Figure 5 gives a graphical summary  of the signif- 
icance of features in terms of the ratio of improve- 
ment  after their removal (given as parenthetical  fig- 
ures in Table 5). Curiously, while the absence of 
the Dis tSen  feature caused a largest decline, the 
significance of a feature tends to diminish with the 
growth of N.  The  reason, we suspect,  may have to 
do with the susceptibility of a decision tree model 
to irrelevant features, part icularly when their num- 
ber is large. But  some more work needs to be done 
before we can say anything abou t  how irrelevancy 
affects a parser 's  performance.  

One caveat before leaving the section; the experi- 
ments so far did not establish any correlation, either 
positive or negative, between the use of lexical infor- 
mation and the performance on discourse parsing. 
To say anything definite would probably require ex- 
periments on a corpus much larger than is currently 
available. However, it would be safe to say that  dis- 
tance and length features are more prominent  than 
lexical features when a corpus is relatively small. 

4 C o n c l u s i o n  

The  paper  demonst ra ted  how it is possible to build a 
discourse parser which performs reasonably well on 
diverse data. It  relies crucially on (a) feature selec- 
tion by a decision tree and (b) the way a discourse 
is encoded. While we have found that  distance and 
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Table 5: Measuring the significance of features. Figures below indicate how much the performance is affected 
by the removal of a feature. 'REF' refers to a model where no feature is removed. 'Clues' indicates the number 
of clues used for a model. A minus sign at a feature indicates the removal of that feature from a model. 

FEATURES/#CLUES 0 100 500 1000 

REF. 0.642 0.635 0.632 0.628 
DistSen- 0.591 
LenText- 0.626 
LocWithinPar- 0.631 
Sim- 0.643 

(-8.620%) 0.598 (-6.180%) 
(-2.550%) 0.626 (-1.430%) 
(--1.740%) 0.627 (-1.270%) 
(+0.160%) 0.640 (+0.790%) 

0.604 (-4.630%) 0.603 (-4.140%) 
0.620 (-1.930%) 0.623 (-0.800%) 
0.624 (-1.280%) 0.628 (±0.000%) 
0.632 (±0.000%) 0.630 (+0.320%) 
0.638 (+0.950%) 0.629 (+0.160%) 
0.632 (±0.000%) 0.632 (+0.640%) 
0.629 (-0A70%) 0.631 (+0.480%) 
0.631 (-0.150%) 0.627 (-0.150%) 
0.634 (+0.320%) 0.630 (+0.320%) 
0.628 (-0.630%) 0.628 (±0.000%) 
0.631 (-0.150%) 0.628 (±0.000%) 

Sim2- 
LenSenA- 
LenSenB- 
LocPar- 
LocSen- 
DistPa.r- 
I s A t i t l e -  

0.644 (+0.320%) 0.647 (+1.860%) 
0.641 (-0.150%) 0.638 (+0.480%) 
0.642 (±0.000%) 0.639 (+0.630%) 
0.640 (-0.310%) 0.637 (+0.320%) 
0.639 (-0.460%) 0.631 (-0.630%) 
0.636 (-0.940%) 0.631 (-0.630%) 
0.638 (-0.620%) 0.635 (~0.000%) 

2 

2 
'~ -2 

o 
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>o -S 

- 1 0  
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I 

Figure 5: The ratio of improvement after removal of feature. 
. ~ ,  .,.,~,1,,, . . . . . . . . . . .  ,4. . . . . . . . . . . .  I I I 

: :2 ::2 &% .",'7 -'. r ~"r:'='~---:---~'-T:~'~':-:2.Z-'~:'=': '=-~-:-~-~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -t~" --- ~ - ;-.--- : ---.-- - ~ ~'=~-.'..=.:'..=..:.~7~..~. _~.--: 7" -"  7 ;~]~(:.--'.3 
...~........z...=-~. ~ - ,  . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . .  ~-JT~:.=~-_-==:.~---=~.~.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 . . . . . . . . . . . . . . . . . . . . . .  o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

D i s t S e n  o 
L e n T e x t  - + - -  

L o c W i t h i n P  - O - -  
b4m -.x- .... 

S i r e 2  - a , - .  
L e n S e n A  --~-- 

, ~  L e n S e n B  -.o-- - 
L o c P a r  - + -- 

L o c S e n  -E3-- 
D i s t P a r  
l s A t i t l e  - ~ - -  

I I I 

2 0 0  4 0 0  6 0 0  8 0 0  100 
T h e  n u m b e r  o f  c l u e s  

Table 6: Connectives found in the corpus. Underlined items (also marked with an asterisk) are those that 
the tokenizer program erroneously identified as a connective. 

shikashi but, ippou whereas, daga but, soreo (.), shikamo moreover, tokoroga but, soshite 
and, soreni moreover, sokode incidentally, soredemo still, sore (.), tadashi provided that, 
soredakeni all the more because, tokini by the way, dakara so, demo but, sonoue moreover, 
sitagatte therefore, dewa now, nimokakawarazu despite, soredewa well, sorede and then, 
sorekara after that, towaie nevertheless, shitagatte therefore, tsuide while, katoitte but. 
dakarakoso consequently, matawa or, soretomo or else, soreto for another thing, nanishiro 
anyhow, omakeni in addition, sunawachi in other words, toiunowa because, naraba if. 
sonokawari instead, samunaktL.ba or else, sunawachi namely, naishiwa or. sate by the way, 
toshite ('.). toiunomo because, sorenimokakawarazu nonetheless, sorenishitemo yet, oyobi 
moreover, tokorode incidentally, nazenara because, tosureba if, nanishiro anyhow, otto 
(*), nanoni but 
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length features are more prominent than lexical fea- 
tures, we were not able to establish the usefulness 
of the latter features, which is expected from earlier 
works on discourse as well as on sentence parsing 
(Magerman, 1995; Collins, 1996). 

The following are some of the future research is- 
s u e s :  

Building a larger corpus Our discourse parser 
did not perform as well as a statistical sentence 
parser, which normally performs with over 80% pre- 
cision. We suspect that the reason may have ~to do 
with inconsistencies in tagging and the size of the 
corpus we used. 

Pars ing  wi th  the  rhe tor ica l  s t r u c t u r e  t heo ry  
Technically it is straightforward to turn the present 
parsing method into a full-fledged RST parser, which 
involves modifying the way classes are defined and 
redefining constraints on a structure of discourse. A 
problem, however, is that the task of assigning sen- 
tences to rhetorical relations with some consistency 
could turn out to be quite difficult for human coders. 

Ex tend ing  to other  Languages  The general 
framework in which our parser is built does not pre- 
suppose elements specific to a particular language. 
It should be possible to carry it over to other lan- 
guages with no significant modification to it: 
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