
Application-driven automatic subgrammar extraction

R e n a t e H e n s c h e l
Cen t re for Cogni t ive Science

2 Buccleuch Place, Ed inburgh , UK
(henschel©cogsci. ed. ac. uk)

J o h n B a t e m a n
Language and C o m m u n i c a t i o n Research

Univers i ty of Stirl ing, Stir l ing, UK
(j . a. bat eman~st ir. ac. uk)

A b s t r a c t

The space and run-time requirements of
broad coverage grammars appear for many
applications unreasonably large in relation
to the relative simplicity of the task at
hand. On the other hand, handcrafted de-
velopment of application-dependent gram-
mars is in danger of duplicating work which
is then difficult to re-use in other contexts
of application. To overcome this problem,
we present in this paper a procedure for the
automatic extraction of application-tuned
consistent subgrammars from proved large-
scale generation grammars. The proce-
dure has been implemented for large-scale
systemic grammars and builds on the for-
mal equivalence between systemic gram-
mars and typed unification based gram-
mars. Its evaluation for the generation of
encyclopedia entries is described, and di-
rections of future development, applicabil-
ity, and extensions are discussed. 1

1 I n t r o d u c t i o n

Although we have reached a situation in computa-
tional linguistics where large coverage grammars are
well developed and available in several formal tra-
ditions, the use of these research results in actual
applications and for application to specific domains
is still unsatisfactory. One reason for this is that
large-scale grammar specifications incur a seemingly
unnecessarily large burden of space and processing
time that often does not stand in relation to the
simplicity of the particular task. The usual alterna-
tives for natural language generation to date have
been the handcrafted development of application or

1This work was partially supported by the DAAD
through grant D/96/17139.

sublanguage specific grammars or the use of tem-
plate based generation grammars. In (Busemann,
1996) both approaches are combined resulting in a
practical small generation grammar tool. But still
the grammars are handwritten or, if extracted from
large grammars, must be adapted by hand. In gen-
eral, both - the template and the handwritten ap-
plication grammar approach - compromise the idea
of a general NLP system architecture with reusable
bodies of general linguistic resources.

We argue that this customization bottleneck
can be overcome by the automatic extraction of
application-tuned consistent generation subgram-
mars from proved given large-scale grammars. In
this paper we present such an automatic subgram-
mar extraction tool. The underlying procedure is
valid for grammars written in typed unification for-
malisms; it is here carried out for systemic grammars
within the development environment for text gener-
ation KPML (Bateman, 1997). The input is a set of
semantic specifications covering the intended appli-
cation. This can either be provided by generating a
predefined test suite or be automatically produced
by running the particular application during a train-
ing phase.

The paper is structured as follows. First, an al-
gorithm for automatic subgrammar extraction for
arbitrary systemic grammars will be given, and sec-
ond the application of the algorithm for generation
in the domain of 'encyclopedia entries' will be illus-
trated. To conclude, we discuss several issues raised
by the work described, including its relevance for
typed unification based grammar descriptions and
the possibilities for further improvements in genera-
tion time.

2 G r a m m a r e x t r a c t i o n a l g o r i t h m

Systemic Functional Grammar (SFG) (Halliday,
1985) is based on the assumption that the differ-
entiation of syntactic phenomena is always deter-

46

mined by its function in the communicative context.
This functional orientation has lead to the creation
of detailed linguistic resources that are character-
ized by an integrated treatment of content-related,
textual and pragmatic aspects. Computational in-
stances of systemic grammar are successfully em-
ployed in some of the largest and most influen-
tial text generation projects--such as, for example,
PENMAN (Mann, 1983), COMMUNAL (Fawcett
and Tucker, 1990), TECHDOC (KSsner and Stede,
1994), Drafter (Paris and Vander Linden , 1996),
and Gist (Not and Stock, 1994).

For our present purposes, however, it is the for-
mal characteristics of systemic grammar and its im-
plementations that are more important. Systemic
grammar assumes multifunctional constituent struc-
turesrepresentable as feature structures with corefer-
ences. As shown in the following function structure
example for the sentence "The people that buy sil-
ver love it.", different functions can be filled by one
and the same constituent:

clause
Senser: [-~ nominal-group

Deictic: det [Spelling: "the"]
Thing: noun [Spelling: "people"]
Qualifier: dependent-clause

[Spelling:]
"that buy silver"

Process: /initeJ_ SpeUing: "love"]
Phenomenon: 2~] nominal-group

[SpeUing: "it"]
Subject: D

Theme: ["i']
Directcomplement: [7]

Given the notational equivalence of HPSG and
systemic grammar first mentioned by (Carpenter,
1992) and (Zajac, 1992), and further elaborated in
(Henschel, 1995), one can characterize a systemic
grammar as a large type hierarchy with multiple
(conjunctive and disjunctive) and multi-dimensional
inheritance with an open-world semantics. The
basic element of a systemic grammar- -a so-called
system--is a type axiom of the form (adopting the
notation of CUF (DSrre et al., 1996)):

e n t r y = t y p e _ l I t y p e _ 2 I . . . I t y p e _ n .

where type1 to typen are exhaustive and disjoint sub-
types of type entry, entry need not necessarily be a
single type; it can be a logical expression over types
formed with the connectors AND and oR. A sys-
temic grammar therefore resembles more a type lat-
tice than a type hierarchy in the HPSG tradition. In

systemic grammar, these basic type axioms, the sys-
tems, are named; we will use entry(s) to denote the
left-hand side of some named system s, and out(s) to
denote the set of subtypes {type1, type2, ..., type,}-
the output of the system. The following type ax-
ioms taken from the large systemic English grammar
NXGI~L (Matthiessen, 1983) shall illustrate the nature
of systems in a systemic grammar:
nominal_group = class_name [individual_name.
nominal_group = wh_nominal [nonwh_nominal.
(OR class_name wh_nominal) = singular [plural.

The meaning of these type axioms is fairly obvi-
ous: Nominal groups can be subcategorized in class-
names and individual-names on the one hand, they
can be subcategorized with respect to their WH-
containment into WH-containing nominal-groups
and nominal-groups without WH-element on the
other hand. The singular/plural opposition is valid
for class-names as well as for WH-containing nomi-
nal groups (be they class or individual names), but
not for individual-names without WH-element.

Systemic types inherit constraints with respect to
appropriate features, their filler types, coreferences
and order. Here are the constraints for some of the
types defined above:

nominal-group [Thing: noun]
class-name [Thing: common-noun,

Deictic: top]
individual-name [Thing: proper-noun]
wh-nominal [Wh: top]

Universal principles and rules are in systemic
grammar not factored out. The lexicon contains
stem forms and has a detailed word class type hi-
erarchy at its top. Morphology is also organized as
a monotonic type hierarchy. Currently used imple-
mentations of SFG are the PENMAN system (Pen-
man Project, 1989), the KPML system (Bateman,
1997) and WAG-KRL (O'Donnell, 1994).

Our subgrammar extraction has been applied and
tested in the context of the KPML environment.
KPML adopts the processing strategy of the PEN-
MAN system and so it is necessary to briefly de-
scribe this strategy. PENMAN performs a semantic
driven top-down traversal through the grammatical
type hierarchy for every constituent. Passed types
are collected and their feature constraints are unified
to build a resulting feature structure. Substructure
generation requires an additional grammar traversal
controlled by the feature values given in the super-
structure. In addition to the grammar in its orig-
inal sense, the PENMAN system provides a par-
ticular interface between grammar and semantics.
This interface is organized with the help of so-called

47

choosers--these are decision trees associated with
each system of the grammar which control the se-
lection of an appropriate subtype during traversal.
Choosers should be seen as a practical means of en-
abling applications (including text planners) to in-
teract with the grammar using purely semantic spec-
ifications even though a fully specified semantic the-
ory may not yet be available for certain important
areas necessary for coherent, fluent text generation.
They also serve to enforce deterministic choice an
important property for practical generation (cf. (Re-
iter, 1994)).

The basic form of a chooser node is as follows.

(ask query
(answer1 actions)
(answer2 actions)
...)

The nodes in a chooser are queries to the seman-
tics, the branches contain a set of actions including
embedded queries. Possible chooser actions are the
following:

(sk query (. .) . . . (. .))
(choose type)
(i den t i fy function concept)
(c o p y h u b functionl functionP)

A choose action of a chooser explicitly selects one of
the output types of its associated system. In general,
there can be several paths through a given chooser
that lead to the selection of a single grammatical
type: each such path corresponds to a particular
configuration of semantic properties sufficient to mo-
tivate the grammatical type selected. Besides this
(choose type), choosers serve to create a binding be-
tween given semantic objects and grammatical con-
stituents to be generated. This is performed by the
action (i de n t i f y function concept). Because of the
multifunctionality assumed for the constituent struc-
ture in systemic grammar, two grammatical func-
tions can be realized by one and the same constituent
with one and the same underlying semantics. The
action (e o p y h u b functionl function2) is responsible
for identifying the semantics of both grammatical
functions.

Within such a framework, the first stage of sub-
grammar extraction is to ascertain a representative
set of grammatical types covering the texts for the
intended application. This can be obtained by run-
ning the text generation system within the appli-
cation with the full unconstrained grammar. All
grammatical types used during this training stage
are collected to form the backbone for the subgram-
mar to be extracted. We call this cumulative type
set the goal-types.

The list of goal-types then gives the point of depar-
ture for the second stage, the automatic extraction of
a consistent subgrammar, goal-types is used as a fil-
ter against which systems (type axioms) are tested.
Types not in goal-types have to be excised from the
subgrammar being extracted. This is carried out
for the entries of the systems in a preparatory step.
We assume that the entries are given in disjunctive
normal form. First, every conjunction containing
a type which is not in goal-types is removed. Af-
ter this deletion of unsatisfiable conjunctions, ev-
ery type in an entry which is not in goal-types is
removed. The restriction of the outputs of every
system to the goal-types is done during a simulated
depth-first traversal through the entire grammati-
cal type lattice. The procedure works on the type
lattice with the revised entries. Starting with the
most general type start (and the most general sys-
tem called rank which is the system with start as en-
try), a hierarchy traversal looks for systems which al-
though restricted to the type set goal-types actually
branch, i.e. have more than one type in their out-
put. These systems constitute the new subgrammar.
In essence, each grammatical system s is examined
to see how many of its possible subtypes in out(s)
are used within the target grammar. Those types
which are not used are excised from the subgram-
mar being extracted. More specific types that are
dependent on any excised types are not considered
further during the traversal. Grammatical systems
where there is only a single remaining unexcised sub-
type collapse to form a degenerated pseudo-system
indicating that no grammatical variation is possible
in the considered application domain. For example,
in the application described in section 3 the system

indicative = declarative I interrogative.
collapses into

indicative = declarative.
because questions do not occur in the application
domain. Pseudo-systems of this kind are not kept in
the subgrammar. The types on their right-hand side
(pseudotypes) are excised accordingly, although they
are used for deeper traversal, thus defining a path
to more specific systems. Such a path can consist of
more than one pseudotype, if the repeated traver-
sal steps find further degenerated systems. Con-
straints defined for pseudo-types are raised, chooser
actions are percolated down--i .e. , more precisely,
constraints belonging to a pseudo-type are unified
with the constraints of the most general not pseudo
type at the beginning of the path. Chooser actions
from systems on the path are collected and extend
the chooser associated with the final (and first not
pseudo) system of the path. However, in the case

48

extract-subgrammar(goaltypes)
1 fo r all s E systems

do entry(s) := remove-unsatisfiable-features(entry(s))
2 .subgrammar. := 0
3 traverse-system(rank, start, start, O,goaltypes)

traverse-system(s, type, supertype, inheritedconstraints, goaltypes)
1 inter := out(s) A goaltypes
2 i f inter # 0

t h e n i f lentry(s)l = 1 a n d linterl = 1
t h e n do out := the single element in inter

constraints := unify(constraints(out), inheritedconstraints)
traverse-type(out, supertype, constraints, goaltypes)

else do entry(s) := dnf-substitute(supertype, type, entry(s))
out(s) := inter
push(s, *subgrammar*)
fo r al l out E inter

do traverse-type(out, out, 0, goaltypes)
constraints(supertype) :=

unify (constraint s(supert ype) ,in herit edr eal i z at ions)

traverse-type(type, supertype, inheritedconstraints, goaltypes) 1 who := who-has-in-entry(type)
2 i f who = 0 a n d inheritedconstraints # 0

t h e n do constraints(supertype) :=
unify(constraints(supertype), inheritedconstraints)

3 fo r all s E who
do traverse-system(s, type, supertype, inheritedconstraints, goaltypes)

Figure 1: Subgrammar extraction algorithm

that a maximal type is reached which is not in goal-
types, chooser actions have to be raised too. The
number of goal-types is then usually larger than the
number of the types in the extracted subgrammar
because all pseudotypes in goal-types are excised.

As the recursion criteria in the traversal, we first
simply look for a system which has the actual type
in its revised entry regardless of the fact if it occurs
in a conjunction or not. This on its own, however,
oversimplifies the real logical relations between the
types and would create an inconsistent subgrammar.
The problem is the conjunctive inheritance. If the
current type occurs in an entry of another system
where it is conjunctively bound, a deeper traversal
is in fact only licensed if the other types of the con-
junctions are chosen as well. In order to perform
such a traversal, a breadth traversal with compila-
tion of all crowns of the lattice (see (A~t-Kaci et al.,
1989)) would be necessary. In order to avoid this po-
tentially computat ional ly very expensive operation,
but not to give up the consistency of the subgram-
mar, the implemented subgrammar extraction pro-
cedure sketched in Figure 1 maintains all systems

with complex entries (be they conjunctive or disjunc-
tive) for the subgrammar even if they do not really
branch and collapse to a single-subtype system. 2 A
related approach can be found in (O'Donnell, 1992)
for the extraction of smaller systemic subgrammars
for analysis.

If the lexicon is organized as or under a com-
plex type hierarchy, the extraction of an application-
tuned lexicon is carried out similarly. This has the
effect that closed class words are removed from the
lexicon if they are not covered in the application do-
main. Open class words belonging to word classes
not covered by the subgrammar type set are re-
moved. Some applications do not need their own lex-
icon for open class words because they can be linked
to an externally provided domain-specific thesaurus
(as is the case for the examples discussed below). In
this case, a sublexicon extraction is not necessary.

2 Keeping the disjunctive systems is not necessary for
the consistency, but saves multiple raising of one and the
same constraint.

49

3 A p p l i c a t i o n f o r t e x t t y p e ' l e x i c o n

b i o g r a p h i e s '

The first trial application of the automatic subgram-
mar extraction tool has been carried out for an in-
formation system with an output component that
generates integrated text and graphics. This in-
formation system has been developed for the do-
main of art history and is capable of providing short
biography articles for around l0 000 artists. The
underlying knowledge base, comprising half a mil-
lion semantic concepts, includes automatically ex-
tracted information from 14 000 encyclopedia ar-
ticles from McMillans planned publication "Dictio-
nary of Art" combined with several additional infor-
mation sources such as the Get ty "Art and Archi-
tecture Thesaurus"; the application is described in
detail in (Kamps et al., 1996). As input the user
clicks on an artist name. The system then performs
content selection, text planning, text and diagram
generation and page layout automatically. Possible
output languages are English and German.

The grammar necessary for short biographical
articles is, however, naturally much more con-
strained than that supported by general b ro i l -
coverage grammars. There are two main reasons
for this: first, because of the relatively fixed text
type "encyclopedia biography" involved, and sec-
ond, particularly in the example information system,
because of the relatively simple nature of the knowl-
edge base-- this does not support more sophisticated
text generation as might appear in full encyclopedia
articles. Without extensive empirical analysis, one
can already state that such a gram:mar is restricted
to main clauses, only coordinative complex clauses,
and temporal and spatial prepositional phrases. It
would probably be possible to produce the generated
texts with relatively complex templates and aggre-
gation heuristics: but the full grammars for English
and German available in KPML already covered the
required linguistic phenomena.

The application of the automatic subgrammar ex-
traction tool to this scenario is as follows.

In the training phase, the information system runs
with the full generation grammar. All grammatical
types used during this stage are collected to yield
the cumulative type set goal-types. How many text
examples must be generated in this phase depends
on the relative increase of new infi)rmation (occur-
rence of new types) obtained with every additional
sentence generated. We show here the results for
two related text types: 'short artist biographies' and
'artist biography notes'.

Figure 2 shows the growth curve for the type set

0 ~0
260

250

240

230 x
220 <
210

200

190

180
170 x

160

150

140

130

1200x 30 60

Example texts:

60 90 120 150 1RO 210

260

50

~ 1 1 ~ 1 1 1 ~ ~ m m mllll~

90 120 150 180

Roger Hilton was an English painter. He was
born at Northwood on 23 March 1911, and he
died at BotaUack on 23 February 1975. He
studied at Slade School in 1929 - 1931. He cre-
ated "February - March 1954", "Grey figure",
"Oi yoi yoi" and "June 1953 (deep cadmium)".

Anni Albers is American, and she is a tex-
tile designer, a draughtsman and a print-
maker. She was born in Berlin on 12 June
1899. She studied art in 1916 - 1919 with
Brandenburg. Also, she studied art at the
Kunstgewerbeschule in Hamburg in 1919 -
1920 and the Bauhaus at Weimar and Dessan
in 1922 - 1925 and 1925 - 1929. In 1933 she
settled in the USA. In 1933 - 1949 she taught
at Black Mountain College in North Carolina.

230

220

210

200

190

180

170

160

150

140

130

20

Figure 2: Cumulative type use with sentences from
the short biography text type

(vertical axis) with each additional semantic specifi-
cation passed from the text planner to the sentence
generator (horizontal axis) for the first of these text
types. The graph shows the cumulative type usage
for the first 90 biographies generated, involving some
230 sentences. 3 The subgrammar extraction for the
"short artist biographies" text type can therefore be
performed with respect to the 246 types that are
required by the generated texts, applying the algo-
r i thm described above. The resulting extracted sub-
grammar is a type lattice with only 144 types. The
size of the extracted subgrammar is only 11% of that
of the original grammar. Run times for sentence gen-
eration with this extracted grammar typically range

3This represented the current extent of the knowledge
base when the test was performed. It is therefore possible
that with more texts, the size of the cumulative set would
increase slightly since the curve has not quite 'flattened
out'. Explicit procedures for handling this situation are
described below.

50

n

220

210

200

190

180

170

160

150 ×

140

130

120 0

"~N 60 QN l~n 1 Kn i an '~ln

= 220

" ~ 200

190

180

170

160

150

140

130

20
30 60 '90 120 150 180

Example text:

Nathan Drake was an English painter. He was
born at Lincoln in 1728, and he died at York
on 19 February 1778.

Figure 3: Cumulative type use with sentences from
the note biography text type

from 55%-75% of that of the full grammar (see Ta-
ble 1)--in most cases, therefore, less than one sec-
ond with the regular KPML generation environment
(i.e., unoptimized with full debugging facilities resi-
dent).

The generation times are indicative of the style
of generation implemented by KPML. Clause types
with more subtypes are likely to cause longer pro-
cessing times than those with fewer subtypes. When
there are in any case fewer subtypes available in
the full grammar (as in the existential shown in Ta-
ble 1), then there will be a less noticeable improve-
ment compared with the extracted grammar. In ad-
dition, the run times reflect the fact that the number
of queries being asked by choosers has not yet been
maximally reduced in the current evaluation. Noting
the cumulative set of inquiry responses during the
training phase would provide sufficient information
for more effective pruning of the extracted choosers.

The second example shows similar improvements.
The very short biography entry is appropriate more
for figure headings, margin notes, etc. The cumu-
lative type use graph is shown in Figure 3. With
this 'smaller' text type, the cumulative use stabilizes
very quickly (i.e., after 39 sentences) at 205 types.
This remained stable for a test set of 500 sentences.
Extracting the corresponding subgrammar yields a
grammar involving only 101 types, which is 7% of
the original grammar. Sentence generation time is
accordingly faster, ranging from 40%-60% of that of
the full grammar. In both cases, it is clear that the
size of the resulting subgrammar is dramatically re-
duced. The generation run-time is cut to 2/3. The
run-time space requirements are cut similarly. The

processing time for subgrammar extraction is less
than one minute, and is therefore not a significant
issue for improvement.

4 C o n c l u s i o n s a n d d i s c u s s i o n

In this paper, we have described how generation re-
sources for restricted applications can be developed
drawing on large-scale general generation grammars.
This enables both re-use of those resources and pro-
gressive growth as new applications are met. The
grammar extraction tool then makes it a simple task
to extract from the large-scale resources specially
tuned subgrammars for particular applications. Our
approach shows some similarities to that proposed
by (Rayner and Carter, 1996) for improving parsing
performance by grammar pruning and specialization
with respect to a training corpus. Rule components
are 'chunked' and pruned when they are unlikely to
contribute to a successful parse. Here we have shown
how improvements in generation performance can be
achieved for generation grammars by removing parts
of the grammar specification that are not used in
some particular sublanguage. The extracted gram-
mar is generally known to cover the target sublan-
guage and so there is no loss of required coverage.

Another motivation for this work is the need for
smaller, but not toy-sized, systemic grammars for
their experimental compilation into state-of-the-art
feature logics. The ready access to consistent sub-
grammars of arbitrary size given with the automatic
subgrammar extraction reported here allows us to
investigate further the size to which feature logic
representations of systemic grammar can grow while
remaining practically usable. The compilation of the
full grammar NIGEL has so far only proved possible
for CUF (see (Henschel, 1995)), and the resulting
type deduction runs too slowly for practical applica-
tions.

It is likely that further improvements in gener-
ation performance will be achieved when both the
grammatical structures and the extracted choosers
are pruned. The current results have focused pri-
marily on the improvements brought by reconfig-
uring the type lattice that defines the grammar.
The structures generated are still the 'full' gram-
matical structures that are produced by the cor-
responding full grammar: if, however, certain con-
stituent descriptions are always unified (conflated in
systemic terminology) then, analogously to (Rayner
and Carter, 1996), they are candidates for replace-
ment by a single constituent description in the
extracted subgrammar. Moreover, the extracted
choosers can also be pruned directly with respect
to the sublanguage. Currently the pruning carried

51

improvement sentence
worst case 80
best case 1430

average case

run time (in ms)
full grammar subgrammar
380 300
3250 1830

ca. 900 ca. 590 310

"There is Patti Delaroche."
"John Foster was born in Liverpool
on 1 January c 1787, and he died at
Birkenhead on 21 August 1846."
e.g., "Mary Moser was an English
painter." "George Richmond stud-
ied at Royal Academy in 1824."

(Under Allegro Common Lisp running on a Sparcl0.)

Table 1: Example run times for "short artist biographies"

out is only that entailed by the type lattice, It is
also possible however to maintain a record of the
classificatory inquiry responses that are used in a
subgrammar: responses that do not occur can then
motivate further reductions in the choosers that are
kept in the extracted grammar. Evaluation of the
improvements in performance that these strategies
bring are in progress.

One possible benefit of not pruning the chooser de-
cision trees completely is to provide a fall-back posi-
tion for when the input to the generation component
in fact strays outside of that expected by the target-
ted subgrammar. Paths in the chooser decision tree
that do not correspond to types in the subgrammar
can be maintained and marked explicitly as 'out of
bounds' for that subgrammar. This provides a se-
mantic check that the semantic inputs to the genera-
tor remain within the limits inherent in the extracted
subgrammar. If it sufficiently clear that these lim-
its will be adhered to, then further extraction will
be free of problems. However if the demands of an
application change over time, then it is also possible
to use the semantic checks to trigger regeneration
with the full grammar: this offers improved average
throughput while maintaining complete generation.
Noting exceptions can also be used to trigger new
subgrammar extractions to adapt to the new appli-
cations demands. A number of strategies therefore
present themselves for incorporatiug grammar ex-
traction into the application development cycle.

Although we have focused here on run-time im-
provements, it is clear that the grammar extraction
tool has other possible uses. For example, the ex-
istence of small grammars is one important contri-
bution to providing teaching materials. Also, the
ability to extract consistent subcomponents should
make it more straightforward to combine grammar
fragments as required for particular needs. Further
validation in both areas forms part of our ongoing re-
search. Moreover, a significantly larger reduction of

the type lattice can be expected by starting not from
the cumulative set of goal-types for the grammar re-
duction, but from a detailed protocol of jointly used
types for every generated sentence of the training
corpus. A clustering technique applied to such a
protocol is under development.

Finally, the proposed procedure is not bound to
systemic grammar and can also be used to extract
common typed unification subgrammars. Here,
however, the gain will probably not be as remark-
able as in systemic grammar. The universal prin-
ciples of, for example, an HPSG cannot be excised.
HPSG type hierarchies usually contain mainly gen-
eral types, so that they will not be affected sub-
stantially. In the end, the degree of improvement
achieved depends on the extent to which a grammar
explicitly includes in its type hierarchy distinctions
that are fine enough to vary depending on text type.

References
Hassan Ai't-Kaci, Robert Boyer, Patrick Lincoln, and

Roger Nasr. 1989. Efficient implementation of lat-
tice operations. A CM Transactions on Programming
Languages and Systems, 11(1):115 - 146.

John A. Bateman, 1997. KPML Development Envi-
ronment: multilinguai linguistic resource development
and sentence generation. German National Center
for Information Technology (GMD), Institute for in-
tegrated publication and information systems (IPSI),
Darmstadt, Germany, January. (Release 1.1).

Stephan Busemann. 1996. Best-first surface realization.
In Proceedings o] the 8th. International Workshop on
Natural Language Generation (INLG '96), pages 101-
110, Herstmonceux, England, June.

Bob Carpenter. 1992. The Logic of Typed Feature Struc-
tures. Cambridge University Press, Cambridge, Eng-
land.

Jochen D6rre, Michael Dorna, and J5rg Junger,
1996. The CUF User's Manual. Institut fiir

52

maschineile Sprachverarbeitung (IMS), Universitht
Stuttgart, Germany.

Robin P. Fawcett and Gordon H. Tucker. 1990. Demon-
stration of GENESYS: a very large, semantically based
systemic functional grammar. In 13th. International
Conference on Computational Linguistics (COLING-
90), volume I, pages 47 - 49, Helsinki, Finland.

Michael A.K. Halliday. 1985. An Introduction to Func-
tional Grammar. Edward Arnold, London.

Renate Henschel. 1995. Traversing the Labyrinth of Fea-
ture Logics for a Declarative Implementation of Large
Scale Systemic Grammars. In Suresh Manandhar, ed-
itor, Proceedings of the CLNLP 95. April 1995, South
Queens ferry.

Thomas Kamps, Christoph Hiiser, Wiebke M/Shr, and
Ingrid Schmidt. 1996. Knowledge-based information
acess for hypermedia reference works: exploring the
spread of the bauhaus movement. In Maristella Agosti
and Alan F. Smeaton, editors, Information retrieval
and hypertext, pages 225-255. Kluwer Academic Pub-
fishers, Boston/London/Dordrecht.

William C. Mann. 1983. An overview of the PENMAN
text generation system. Technical Report ISI/RR-83-
114, USC/Information Sciences Institute, Marina del
Rey, CA.

Christian M.I.M. Matthiessen. 1983. Systemic grammar
in computation: the Nigel case. In Proceedings of the
First Annual Conference of the European Chapter of
the Association for Computational Linguistics.

Elena Not and Oliviero Stock. 1994. Automatic gen-
eration of instructions for citizens in a multilingual
community. In Proceedings of the European Language
Engineering Convention, Paris, France, July.

Michael O'Donnell. 1992. Prototype Electronic Dis-
course Analyzer (EDA) Reference Guide, Computa-
tional Processes I: Parser. Technical report, Fujitsu
Limited, Tokyo, Japan. (Internal report of project
carried out at Fujitsu Australia Ltd., Sydney, Project
Leader: Guenter Plum, Document Engineering Cen-
tre).

Michael O'Donnell. 1994. Sentence analysis and genera-
tion: a systemic perspective. Ph.D. thesis, University
of Sydney, Department of Linguistics, Sydney, Aus-
tralia.

C~cile L. Paris and Keith Vander Linden. 1996.
DRAFTER: an interactive support tool for writing mul-
tifingual instructions. IEEE Computer.

Penman Project. 1989. PENMAN documentation: the
Primer, the User Guide, the Reference Manual, and
the Nigel manual. Technical report, USC/Information
Sciences Institute, Marina del Rey, California.

Manny Rayner and David Carter. 1996. Fast parsing
using pruning and grammar specialization. In Pro-
ceedings of A CL '96.

Ehud Reiter. 1994. Has a consensus NL generation ar-
chitecture appeared, and is it psychologically plausi-
ble? In Proceedings of the 7th. International Work-
shop on Natural Language generation (INLGW '9~),
pages 163-170, Kennebunkport, Maine.

Dietmar RSsner and Manfred Stede. 1994. Generat-
ing multifingual documents from a knowledge base:
the TECHDOC project. In Proceedings of the 15th.
International Conference on Computational Linguis-
tics (CoLING 94), volume I, pages 339 - 346, Kyoto,
Japan.

R~mi Zajac. 1992. Inheritance and constraint-based
grammar formalisms. Computational Linguistics,
18(2):159 - 182, June. (Special issue on inheritance:
1).

53

