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Abstract  
This paper proposes a novel method for learning probabilistic models of subcategorization 

preference of verbs. Especially, we propose to consider the issues of case dependencie~ and noun 
class generalization in a uniform way. We adopt the maximum entropy model learn~,g method 
and apply it to the task of model learning of subcategorization preference. Case dependencies 
and noun class generalization are represented as featura~ in the maximum entropy approach. 
The feature selection facility of the maximum entropy model learning makes it possible to find 
optimal case dependencies and optimal noun c ! ~  generalization levels. We describe the results 
of the experiment on learning probabilistic models of subcategorization preference f~om the EDR 
Japanese bracketed corpus. We also evaluated the performance of the selected features and their 
estimated parameters in the subcategorization preference task. 

1 I n t r o d u c t i o n  
In corpus-based NLP, extraction of linguistic knowledge such as lexical/semantic collocation is one 
of the most important  issues and has been intensively studied in recent years. In those research, 
extracted lexical/semantic collocation is especially useful in terms of ranking parses in syntactic 
analysis as well as automatic construction of lexicon for NLP. 

For example, in the context of syntactic disambiguation, Black (1993) and Magerman (1995) 
proposed statistical parsing models based-on decision-tree learning techniques, which incorporated 
not only syntactic but also lexical/semantic information in the decision-trees. As lexical/semantic 
information, Black (1993) used about 50 semantic categories, while Magerman (1995) used lexi- 
cal forms of words. Collins (1996) proposed a statistical parser which is based on probabilities of 
dependencies between head-words in the parse tree. In those works, lexical/semantic collocation 
are used for ranking parses in syntactic analysis. They put an assumption that  syntactic and lexi- 
cal/semantic features are dependent on each other. In their models, syntactic and lexical/semantic 
features are combined together, and this causes each parameter to depend on both syntactic and 
lexical/semantic features. 

On the other hand, in the context of automatic lexicon construction, the emphasis is mainly on 
the extraction of lexical/semantic collocational knowledge of specific words rather than its use in 
sentence parsing. For example, Haruno (1995) applied an information-theoretic data  compression 
technique to corpus-based case frame learning, and proposed a method of finding case frames of 
verbs as compressed representation of verb-noun collocational data  in corpus. The work concen- 
t rated on the extraction of declarative representation of case frames and did not consider their 
performance in sentence parsing. 

"The authors would like to thank Dr. Kentaro Inui and Mr. Kiyoaki Shirai of Tokyo Institute of Technology for 
valuable information on implementing maximum entropy model learning. This research was partially supported By 
the Ministry of Education, Science, Sports and Culture, Japan, Grant-in-Aid for Encouragement of Young Scientists, 
09780338, 1997. 
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As in the case of the models of Black (1993), Magerman (1995), and Collins (1996), this paper 
proposes a method of utilizing lexical/semantic features for the purpose of applying them to ranking 
parses in syntactic analysis. However, unlike the models of Black (1993), Magerman (1995), and 
Collins (1996), we put an assumption that  syntactic and lexical/semantie features are independent. 
Then, we focus on extracting lexical/semantic collocational knowledge of verbs which is useful in 
syntactic analysis. 

More specifically, we propose a novel method for learning a probabilistic model of subcatego- 
rization preference of verbs. In general, when learning lexical/semantic eollocational knowledge of 
verbs from corpus, it is necessary to consider the following two issues: 

1) Case dependencies 
2) Noun class generalization 

When considering 1), we have to decide which cases are dependent on each other and which cases 
are optional and independent of other cases. When considering 2), we have to decide which super- 
ordinate class generates each observed leaf class in the verb.noun collocation. 

So far, there exist several researches which worked on these two issues in learning eollocational 
knowledge of verbs and also evaluated the results in terms of syntactic disambiguation. Resnik 
(1993) and Li and Abe (1995) studied how to find an optimal abstraction level of an argnment 
noun in a tree-structured thesaurus. Although they evaluated the obtained abstraction level of 
the argument noun by its performance in syntactic disambiguation, their works are limited to only 
one argument. Li and Abe (1996) also studied a method for learning dependencies between case 
slots and evaluated the discovered dependencies in the syntactic disambiguation task. They first 
obtained optimal abstraction levels of the argument nouns by the method in Li and Abe (1995), 
and then tried to discover dependencies between the class-based case slots. They reported that 
dependencies were discovered only at the slot-level and not at the class-level. 

Compared with those previous works, this paper proposes to consider the above two issues 
in a uniform way. First, we introduce a model of generating a collocation of a verb and argu- 
ment /adjunct  nouns and then view the model as a probabilistic model. As a model learning 
method, we adopt the maximum entropy model learning method (Della Pietra, Della Pietra, and 
Lafferty, 1997; Berger, Della Pietra, and Della Pietra, 1996) and apply it to the task of model 
learning of subcategorization preference. Case dependencies and noun class generalization axe rep- 
resented as features in the maximum entropy approach. In the maximum entropy approach, features 
are allowed to have overlap and this is quite advantageous when we consider case dependencies and 
noun class generalization in parameter estimation. The feature selection facility of the maximum 
entropy model learning method also makes it possible to find optimal set of features, i.e, optimal 
case dependencies and optimal noun class generalization levels. We introduce several different mod- 
els according to the difference of case dependencies. We describe the results of the experiment on 
learning models of subcategorization preference from the EDR Japanese bracketed corpus (EDR, 
1995). We also evaluate the performance of the selected features and their estimated parameters 
in the subcategorization preference task. 

2 A M o d e l  of Generat ing  a Verb-Noun Col locat ion from Sub- 
categor izat ion  Frame(s)  

This section introduces a model of generating a verb-noun collocation from subcategorization 
frame(s). 
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2.1  D a t a  S t r u c t u r e  

2 .1 .1  V e r b - N o u n  Collocation 
Verb-noun collocation is a da t a  s t ructure for the collocation of a verb and all of its a r g u m e n t / a d j u n c t  
nouns. A verb-noun collocation e is represented by a feature s t ructure  which consists of  the  verb v 
and all the pairs of co-occurring case-markers p and thesaurus classes c of  case-marked nouns: 

Fred : v 
Pz :cz 

e = : (1 )  

Pk : ck 

We assume tha t  a thesaurus is a t ree-s t ructured type  hierarchy in which each node represents  a 
semant ic  class, and each thesaurus class c x , . . . ,  c~ in a verb-noun collocation is a leaf class. We also 
in t roduce ..~c as the  superorcUnate-subordinate relation of classes in a thesaurus:  cz ~c c2 means  
tha t  cz is subordinate  to c2. 1 

2 .1 .2  S u b c a t e g o r i z a t i o n  F r a m e  
A subcategorization frame s is represented by a feature s t ructure  which consists of a verb v and  the 
pairs of case-markers p and sense restrict ion c of case-marked a r g u m e n t / a d j u n c t  nouns: 

Fred:  
P l  : c l  

s = . (2) 

Pl :cl 

Sense restrict ion c 1 , . . . ,  cz of case-marked a rgumen t / ad junc t  nouns are represented by classes at 
a rb i t ra ry  levels of  the  thesaurus.  A subcategorization frame s can be divided into two parts:  one 
is the  verbal par t  s= conta i - lug  the verb v while the  o ther  is the  nominal  par t  sp containing all the 
pairs of case-markers p and sense restriction c of case-marked nouns. 

s = S, A s ,  = [ p r e d : v  ]A : (3) 

pz : ct 
2.1.3 Subsumption Relation 
We introduce subsumption relatiozL ~s I  of a verb-noun collocation e and a subcategorization.frame s: 

e --~sl s i.ft. for each case-marker pi in s and  its noun class c8/, there  exists the  same case- 
marker  Pi in e and its noun class cce/is subordinate  to c~/, i.e. cce/~c cs/ 

The subsnmption relation _~sf is applicable also as a subsumption relation of two subcategorization 

fraInes. 

2.2 Generating a Verb-Noun Collocation from Subcategorization Frame(s) 

Next, let us consider modeling the generation of a verb-noun collocation from a subcategorization 

frame. Especially, we describe the basic idea of incorporating case dependencies and noun class 

generalization into the model of generating a verb-noun collocation from a subcategorization frame. 
Suppose a verb-noun collocation e is given as: 

Fred: v 
Pl :cez 

e = 

Pk : c¢i¢ 

x Although we ignore sense ambiguities of case-marked nouns in the definitions of this section, in the cttrrent 
implementation, we deal with sense ambiguities of case-marked nouns by deciding that a class c is superordinate to 
an ambiguous leaf class Cz if c is superordinate to at least one of the possible unambiguous classes of Cl. 
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Then,  we consider a subcategorization frame s which can generate e and assume that  s subsumes e: 
e ~ f  s 

We denote the  generation of the verb-noun collocation e from the subcategorization frame s as: 
s , e ( 4 )  

2.2.1 C a s e  D e p e n d e n c i e s  
When considering a subcategorization frame which can generate a verb-noun collocation e, there 
are several possibilities of the case dependencies in the subcategorization frame. 

For example, consider the following example: 

Example  1 
Kodomo-ga kouen-de juusu-wo nomu. 
ehild-NOM park-at juice-A CC drirJc 
(A child drinks juice at the park.) 

The  verb-noun collocation is represented as a feature s tructure e below: 

pred : n~rmu 

e = g a  : c~ ( 5 )  
wo : c~ 

de :% 

In this feature structure e, cc, c~, and cj represent the leaf classes (in the thesau_us) of the  nouns 
~odomo(child) ", Rotten(park)", and "juus~(fldce) ". 

Next, we assume that  the concepts "human", "place", and "beverege" are superordinate to 
~odorao(ckild)", ~ot~en(park)", and "juusu(juice)", respectively, and introduce the corresponding 
classes ch=,n, c~c, and cb~. Then, the  following superordinate-subordinate relations hold: 

Allowing these superordinate classes as sense restriction in subcategorization frames, let us consider 
several pat terns of subcategorization frames each of which can generate the  verb-noun collocation 
e. Those pat terns  of subcategorization frames vary according to the dependencies of cases within 
them. 

If the three cases "ga(NOM)", "~vo(ACC)", and ade(at)" are dependent  on each other and it 
is not possible to find any division into several independent  subcategorization frames, e can be 
regarded as generated from a subcategorization frame contaiuing all of the three cases: 

pred : nomu 
ga : chum 

, e ( 6 )  
'WO : C..bev 

de :~== 

Otherwise, if only the two cases "ga(NOM)" and ~'wo(ACC)" are dependent on each other 
and the "de(at)" case is independent of those two cases, e can be regarded as generated from the 
following two subcategorization frames independently: 

Oa : c h ~  ~ , e ,  d e  : ~ l ~  , e ( 7 )  
It/)O : Cbe v 

Othe~'.se, i f  all the three cases "ga(NOM') ~, ~wo(ACC)", and "de(al,~)" are independent of 
each other, e can be regarded as generated from the following three subcategorization frames 
independently, each of which contains only one case: 

- - - ~  e ,  , e . . . .  • e ( 8 )  
L g a  : c h ~  L w o  : Cb~ ' d e  : %z~ 
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2.2 .2  N o u n  Class  G e n e r a l i z a t i o n  
In the similar way, when considering a subcategorization frame which can generate a verb-noun 
co]location e, there are several possibilities of the noun class generalization levels as the sense 
restrictions of the case-marked nouns. 

For example, let us again consider Example 1. We assume that  the concepts "animal" and ~liq- 
uid" are superordinate to ~uman" and "beverage", respectively, and introduce the corresponding 
classes ca,~i and ct~q. Then, the fonowing superordinate-subordinate relations hold: 

Chum .~c Cani, Cbev ~ e  Cliq 

H we additionally allow these superordinate classes as sense restriction in subcategorization frames, 
we can consider several additional patterns of subcategorization frames which can generate the 
verb-noun collocation e, along with those patterns described in the previous section. 

Suppose that  only the two cases "ga(NOM)" and Uwo(ACC)" are dependent on each other and 
the "de(at)" case is independent of those two cases as in the formula (7). Since the leaf class cc 
("child") can be generated from either chum or ~ni ,  and also the leaf class cj ("juice") can be 
generated from either Cbez, or ~iq, e can be regarded as generated according to either of the four 
formulas (the left-side formula of) (7) and (9): 

g a  : c6n i " ~ e ,  g a  : Chum " ') e ,  g a  : Can ~ > e 

~!30 : Cbe ~ ~130 : Qiq ~J10 : Cliq 

C9) 

2.3 C a s e  D e p e n d e n c i e s  a n d  t h e  D e s i g n  o f  t h e  G e n e r a t i o n  M o d e l s  
As we described in the previous section, there are several possibilities of the case dependencies in 
a verb-noun collocation, and this results in the differences of the subcategorization frames which 
can generate the given verb-noun collocation. According to the different assumptions on the case 
dependencies, we can design several different models of generating a verb-noun collocation from 
subcategorization frame(s). 

2.3.1 P a r t i a l - F r a m e  M o d e l  
First, we put no assumption on the case dependencies in the given verb-noun collocation e, and 
assume that any subcategorization frame s which subsumes e can generate e. 

e ~ . f  s 

0 

! 
t ,  

! 

EJ 
| 
\ 

1 
With this requirement, the subcategorization frame s does not have to have all the cases in e, but 

has to have only some part  of the cases in e. We call the model satisfying this requirement the 
partial-frame model. All the examples of the formulas (6) and (9) satisfy this requirement and can 
be regarded as examples of the partial-frame model. 

2 .3 .2  O n e - F r a m e  M o d e l  
Next, in addition to the requirement that  s subsumes e, we put another assumption that  all the 
cases in the given verb-noun collocation e are dependent on each other and that  a subcategorization 
frame s which can generate e should have exactly the same cases as e has: 

e 

Fred : v 

Px : cl 

Pk : ck 

pred : ~ 

Pl  : a l l  

p~ :dk 

(lo) 

We call the model satisfying this requirement as the one-frame model. For example, supposing that 
the verb-noun collocation e in the equation (5) is given, the example in the formula (6) satisfies 
this requirement. 
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2.3.3 Independent-Case Model 
In addition to the requirement that s subsumes e, we can also put an assumption that all the cases 
in the given verb-noun collocation e are independent of each other and that a subcategorization 
frame s which has only one case of e can generate e: 

[ pred:v ] (l<i<k) 8 ~ Ct - -  
Pi : i 

We call the model satisfying this requirement as the independent-cause model. For example, sup- 
posing that the verb-noun collocation e in the equation (5) is given, the examples in the formula 
(8) satisfy this requirement. 

2.3.4 Independent-Frame Model 

As can be seen in the definitions of the above three models, the basic idea of defining the model 
of generating a verb-noun collocation from subcategorization frame(s) lies in identifying the de- 
pendencies of the cases in the given verb-noun collocation and expressing the dependencies within 
a subcategorization frame. Here, we briefly show a method of statistically identifying the depen- 
dencies of the cases in verb-noun collocations from corpus. 2 Then, by incorporating the identified 
case dependencies into the generation model, we introduce a model of generating a verb-noun col- 
location from a tuple of independent partial subcategorization frames. We call this model as the 
independent-frame model. 
P a r t i a l  S u b c a t e g o r 2 a t i o n  F r a m e  

Suppose a verb-noun collocation e is given as in the  formula (10) and a subcategorization frame s 
satisfies the  requirement of the  one-frame model  in section 2.3.2, i.e., as in the formula (10), s has 
exact ly  the  same case-markers as e has, and s subsumes e. 

Then ,  we define a part~l subeate~orization frame si of s as a subcategorization frame which has 
the  same verb v as s as well as some of the  case-markers of s and their  semantic classes. Then,  we 
can find a division of s into a tuple (sl ,  . . . ,  s , )  of  partial  subcategorization frames of s, where any  
pair si and si, (i ~ i ') do not  have common case-markers and the  unification sl A - - .  Asn  of all the  
part ial  subcategorization frames equals to s: 

pred : v 

: vjvf p~# ~ pey (11) 
s = s i A - - - A S , ,  Si = Pij:~j ' ( i , i ' = l , . . . , n ~  i~ i ' )  

I n d e p e n d e n c e  o f  P a r t i a l  S u b c a t e g o r i z a t i o n  F r a m e s  
The  conditional joint probabili ty p(s l~ . . . ,  sn I v) is est imated by svmmlug up p(e I v) where e is 
subsumed by all of S l , . . . ,  sn (e -~sl S l , . . . ,  s , ) :  

rCsl,...,s~l~) ~ ~ p(~l~) (12) 
e.~o l al ,...,$, 

Then, we introduce a parameter c~ (0 < c~ < 1) for relaxing the constraint of independence. Partial 
subcategorization frames sl, ..., s, are judged as independent if, for every subset sil, ---, si# of j of 
these partial subcategorization frames ~ = 2,..., z~), the following inequalities hold: 

<_ pCs~, , . . . ,~ , l~ )  < _1 (13) 
p ( ~  I ~ ) ' " p ( ~  I~) - o~ 

This definition of independence judgment  means tha t  the condition on independence judgment  
becomes weaker as ce decreases, while it becomes more strict as cz increases. 

2Details of the method of statistically identifying the dependencies of the cases in verb.noun collocations are ~ven 
in Utsuro and Matsumoto (1997). 
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G e n e r a t i o n  f r o m  I n d e p e n d e n t  P a r t i a l  S u b c a t e g o r i z a t i o n  F r a m e s  
Now, we denote the generation of e from a tuple (Sl, . . . ,  sn) of independent partial subcategoriza- 
tion frames of s as below: 

( s l , . . . , s , )  e (14) 

E x a m p l e  
For example, suppose that a verb-noun collocation e is given as in the formula (5) in section 2.2.1. 
If  the three cases in e are dependent on each other as in the generation of e in the formula (6), the 
generation of e is denoted as below in the case of the independent-frame model: 

pred : nomu 
g a  : Chum 

"11.70 : Cbe v 

: cpz~ 

~ e (15) 

! 

i 
| 
i 
i 
*~'k, 

I 
the 
generation of e is denoted as below: 

Otherwise, if only the two cases "ga(NOM)" and "wo(ACG) ~ are dependent on each other and 
Ude(at)" case is independent of those two cases as in the generation of e in the formula (7), the ! 

( ----* e (16) 
~ 0  : Obey 

3 Maximum Entropy Modeling 
This section gives a formal description of maximum entropy modeling (Della Pietra, Dena Pietra, 
and Lafferty, 1997; Berger, Della Pietra, and Della Pietra, 1996). 

3.1 T h e  M a x i m u m  E n t r o p y  P r i n c i p l e  
We consider a random process that produces an output value y, a member of a finite set y .  In 
generating y, the process may be influenced by some conteztual information z, a member of a finite 
set t~'. Our task is to construct a stochastic model that  accurately represents the behavior of the 
random process. Such a model is a method of estimating the conditional probability that,  given a 
context x, the process will output y. We denote by p(y I z) the probability that  the model assigns 
to y in context x. We also denote by ~ the set of all conditional probability distributions. Thus a 
model p(y Ix) is an element of ~P. 

To study the process, we observe the behavior of the random process by collecting a large 
number of samples of the event (z, y). We can summarize the training sample in terms of its 
empirical probsbility distribution ~, defined by: 

(17) 

X,y 

where freq(z, y) is the number of time.s that the pair (x, y) occurs in the sample .  
Next, in order to express certain features of the whole event (z, y), a binary-valued indicator 

function is introduced and called a feature function. Usually, we suppose that  there exists a large 
collection .T of candidate features, and include in the model only a subset S of the full set of 
candidate features ~ .  We call S the set of active features. The choice of S must capture as much 
information about the random process as possible, yet only include features whose expected values 
can be reliably estimated. In this section and the next section, we assume that  the set 8 of active 
features can be found in some way. How to find 8 will be described in section 3.3. 
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Now, we assume that  S contains n feature functions. For each feature fi(E S), the sets V~ and 
Vyi will be given for indicating the sets of the values of z and y for that  feature. According to those 
sets, each feature function fi will be defined as follows: 

1 i f z • V z ,  a n d y • V ~ i  
fi(z,y) = 0 otherwise (18) 

When we discover a feature that we feel is useful, we can acknowledge its importance by requiring 
that  our model accord with the feature's empirical distribution. In ma~dmum entropy modeling 
approach, this is done by constraining that  the expected value of each fi with respect to the model 
p(y ] x) (left-hand side) be the same as that  of fi in the training sample (right-hand side): 

I = v f ,  • s (19) 

This requirement is called a constraint equation. This requirement means that  we would like p to 
lie in the subset of ~ .  

Then, among the possible models p, the philosophy of the maximum entropy modeling approach 
is that  we should select the most uniform distribution. A mathematical measure of the uniformity 
of a conditional distribution p(y I z) is provided by the conditional entropy: 

Hb,) :  fC )pCu I )logpCy Ix) (20) 

Now, we present the principle of maximum entropy: 
M a x i m u m  E n t r o p y  P r i n c i p l e  

To select a model from a set of allowed probability distributions, choose the model p .  
with ma~irmm~ entropy H(p): 

p. = argmaxH(p) (21) 
P 

3.2 P a r a m e t e r  E s t i m a t i o n  
It can be shown tha t  there always exists a unique model p. with maximum entropy in any con- 
strained set. According to Della Pietra, Della Pietra, and Lafferty (1997) and Berger, Della Pietra, 
and Della Pietra (1996), the solution can be found as the following px(y [ z) of the form of the 
exponential family: 

p~(y [ =) = ~ ( 2 2 )  

y i 

where a parameter Ai is introduced for each feature fi. 
Della Pietra, Della Pietra, and Lafferty (1997) and Berger, Della Pietra, and Della Pietra (1996) 

also presented an optimization method of estimating the parameter values ~*i that  max~rn~.e the 
entropy, which is called Improved Iterative Scaling (IIS.) algorithm. 

3.3 F e a t u r e  S e l e c t i o n  
Given the full set .T of candidate features, this section outlines how to select an appropriate subset 
S of active features. The feature selection process is an incremental procedure that builds up S by 
successively adding features. At each step, we select the candidate feature which, when adjoined to 
the set of active features S, produces the greatest increase in log-likelihood of the training sample: 3 

sit is shown in Della Pietra, Della Pietra, and La/ferty (1997) and Berger, Della Pietra~ and Della Pietra (1996) 
that the model p. with maximum entropy H(p) is the model in the parametric f~m~ly Px (Y I z) of the .formula (22) 
that maximizes the likelihood of the tr~inlug sample i~. 
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4 Maximum Entropy Model Learning of Subcategorization Prefo ! 
erence I l l  

This section describes how to apply the maximum entropy modeling approach to the task of model r ! 
learning of subcategorization preference• 

IIW 

4.1  E v e n t s  I 
In our task of model learning of subcategorization preference, each e v e n t  (x, y) in the training sample ~ 
is a verb-noun collocation e, which is defined as in the formula (1). As well as a subcategorization 
frame, a verb-noun collocation e can be divided into two parts: one is the verbal part ~ containing 
the verb v while the other is the nominal part ep containing all the pairs of case-markers p and 
thesaurus leaf classes c of case-marked nouns: 

e = e ,  A e p  = [ t r r e d : v  ]A 

"1 
Pl : Cl / 

J Pk :ck 

Then, we define the c o n t e z t  x of an event (z, y) as the verb v and the o u t p u t  9 a s  the nominal part 
ep of e, and each event in the training sample is denoted as (v, ep): 

! 
! 

i 
4 .2  F e a t u r e s  z ~_ v,  ~ -= % ' !  

i Each (partial) subcategorisation frame is represented as a f e a t u r e  in the maximum entropy modeling 
approach. In the case of the partial-frame/one-frame/independent-case models in the sections 2.3.1 
,,~ 2.3.3, a binary-valued feature function fs(v, ep) is defined for each subcategorization frame s. In 
the case of the independent-frame model in section 2.3.4, a binary-valued feature function fs~ (v, ~ )  
is defined for each partial subcategorization frames s i  in the tuple of the formula (14). Each feature ' B  
function f has its own parameter A, which is also the parameter of the corresponding (partial) 
subcategorization frame. According to the possible variations of case dependencies and noun class 
generalization, we consider every possible patterns of subcategorization frames which can generate 
a verb-noun collocation, and then construct the full set j r  of candidate features. 

In the following, we give formal definitions of the features in each of the partial-frame/one- 
frame/independent-case/independent-frame models which we introduced in section 2.3. I 

4.2.1 P a r t i a l - F r a m e  M o d e l  w 
Each feature function corresponds to a subcategorization frame s. For each subcategorization frame 
s, a binary-valued feature function fs(v, ep) is defined to be true if and only if the given verb-noun 
collocation e is subsumed by s: 'lg 

f3(v, ep) = 0 otherwise 

4.2.2 O n e - F r a m e  M o d e l  
Each feature function corresponds~to a subcategorization frame s which has exactly the same cases | as the given verb-noun collocation e has. For each subcategorization frame s, a binary-valued 
feature function fs(v, ep) is defined to be true if and only if the given verb-noun collocation e has 
exactly the same cases as s has and is also subsumed by s: ~l 

Pl :Cl Pl :Ctl 1 g e=([~rex~: ~]Aep) ~$f 8 
e = . , s = . , j,(v, ep) = 0 otherwise 

pk : c k  pk :dk 

! 
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4 . 2 . 3  I n d e p e n d e n t - C a s e  M o d e l  
Each  feature function corresponds to a subcategorization frame s which has only one case of the 
given verb-noun collocation e. For each subcategorizat ion frame s which has only one case, a 
binary-valued feature function fs(v, ~)  is defined to be t rue  if and only if the  given verb-noun 
collocation e has the  same case and is also subsumed by s: 

~,red : v 

[ ] { l  if e=(~red:v]Ae,)~__.$f$ Pa : ca pred : v (1 < i < k), fs(v, ep) = 
e = . , s = p~:c'i -- -- 0 otherwise 

p~ : ck 

4 . 2 . 4  I n d e p e n d e n t - F r a . m e  1V~odel 
Each feature function corresponds to a part ial  subcategorization frames s~ in the  tuple of indepen- 
dent  ,partial subcategorization frames which can generate  the  given verb-noun collocation. First, 
for the  given verb-noun collocation e, tuples of independent  partial subcategorization frames which 
can generate  e are collected into the set SF(e) as below: 4 s 

SF(e) 

Then,  for each part ial  subcategorization frame s, a binary-valued feature function fs(v, e~) is 
defined to be true if and only if at least one element of the set SF(e) is a tuple ( s l , . . . ,  s , . . . ,  s , )  
t ha t  contains s: 

{ z if 3(s~,...,s,...,s,~) • SF(~=C~ea: H Aep)) (2~) 
fs(v, ep) = 0 otherwise 

4 . 3  P a r a m e t e r  E s t i m a t i o n  
Let £ be the  training corpus consisting of traln~ng events of the form (v, ep). Let Jr be the  full 
set of  candidate features each element of which corresponds to a possible subcategorization frame. 
Then,  given the empirical distribution i~(v, e~) of the  training sample, the  set 5(C_ ~') of  active 
features is found according to the feature selection algori thm in section 3.3, and the  parameters  of 
subcategorization frames are est imated according to HS Algori thm(Della Pietra,  Della Pietra,  and 
Lafferty, 1997; Berger, Della Pietra,  and Della Pietra~ 1996). Finally, the  conditional probabili ty 
distr ibution p$(e~ Iv)  is estimated. 

ps(~  I~) = f,~s (25) 

ep Y, E8 

4 .4  S u b c a t e g o r i z a t i o n  P r e f e r e n c e  in  P a r s i n g  a S e n t e n c e  
Suppose that ,  after est imating parameters  of  subcategorization preference from the training corpus 
£ of verb-noun collocations, we obtain the  set ,5 of active features and the  model ps(ep ] v) 
incorporat ing these features. Now, we describe how to rank parse trees of a given input sentence 
according to the  es t imated parameters  of subcategorizat ion preference of verbs. 

4More precisely, for a tuple (sl,. . .  ,s .)  of independent partial subcategorization frames to be included in the 
set SF(e), the following requirement has to be satisfied: it is not possible to divide any of the partial frames 
s ; , . . . ,  s, into more than one frame and to construct a finer-grained tuple ' ' . . . ,  s,+~) of independent 
partial subcategorization frames. 

SWhen applying the learned probabilistic model to the he]d-out test event e ~', independence of the partial subcat- 
egorization frames are judged using the probabilities of partial subcategorization frames estimated from the truini~g 
da~ (as described in section 2.3.4), then the set SF(e is) is constructed. 
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4.4.1 Basic  M o d e l  
Let w be the given input sentence, T(w) be the set of parse trees of w, t be a parse tree in T(w), 
E(t) be the set of verb-noun collocations contained in t. Then, each parse tree is assigned the 
product of all the conditk,nal probabilities ps(e~ s I v) of verb-noun collocations (v, e~ s) within it, 
which is denoted by ¢(t): 

(,,,e~')eE(O 

A parse tree t (6 T(~u)) with the greatest value of ¢(t) is chosen as the best parse tree { of w. 

i = ~gmax~(O 
~er(~) 

4.4.2 Heur i s t i c s  o f  Case  Cover ing  
Along with the estimated conditional probabilities ps(e~ s I v) and the basic model above, we 
consider a heuristics concerning covering of the cases of verb-noun collocations as below and evaluate 
their effectiveness in the experiments of the next section. 

Let (v,e~) be a test event which is not included in the training corpus E (i.e., (v,e~) ~ £). 
Subcategorization preference of test events is determined according to whether each case p (and 
the leaf class marked by p) of e~ is covered by at least one feature in S. 

More formally, we introduce case cover/ng relation -<~ of a verb-noun collocation (v, e~) and a 
feature set S: 

(v, ~ )  -<_~ S iff. for each casep (and the leaf class ct marked byp) o f ~ ,  at least one 
subcategorization frame corresponding to a feature in S has the 
same case p and its sense restriction cs subsumes c~, i.e. cl _-de cs 

According to this factor, (vl, e~i) is preferred to (v2, %2) if and only if the following condition 
holds: 

R a n k i n g  Pa r se  T rees  
This heuristics can be also incorporated into ranking parse trees of a given input sentence. 

Let z~ be the given input sentence, T(zv) be the set of parse trees of zv, t be a parse tree in 
T(zv), E(t)  be the set of verb-noun collocations contained in t. Let ~-~(t) (C_ E(t))  be the set 
of verb-noun collocations (% e~) for which (% ~ )  ~co ,q holds, and Esnco(t) (C E(t)) be the set 
of verb-noun collocations (v, e~) for which (v, e~) ___co ,~ does not hold. Then, subcategorization 
preference of parse trees is determined as follows, tt is preferred to t2 if and only if one of the 
following condi t ions  (i) ,-, (iii) holds: 

(i) I~,,(',.)1 > IEf.,,(t2)l 

(a) IE~(' , . ) I  = IE~C':~)I, 

(~ )  I.~--~,(h)l = IE~C'~)I, 

5 
5.1 

I~ ps(ep Iv) > l-I ps(eplv) 

psCe,,l~) = I-[ psCe, I"'1, 

i~ ps(e, l~) > 

E x p e r i m e n t s  a n d  E v a l u a t i o n  
C o r p u s  ~*,d T h e s a u r u s  

I~ ps(ep I~) 
(~,,p)eE.so.~ 

As the training and test corpus, we used the EDR Japanese bracketed corpus (EDR, 1995), which 
contains about 210,000 sentences collected from newspaper and magazine articles. From the EDR 
corpus, we extracted 153,014 verb-noun collocations of 835 verbs which appear more than 50 times 
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Table 1: Examples of Selected Features for ukau(buy, incur)" (Independent-Frame Model(a = 0.9)) 

FOrder [[ Feature [ Noun Class/Ezample Nouns I' # of events 
1 Fh-st 10 Selected Features 

1 wo(ACC):1404 kippu(tickets), shouken(bills) 22 
2 wo(ACC):1524 tochi(land) 16 
3 " wo(ACC):1553 kabu(stoc.k) 23 
4 wo(ACC):14 Products 158 
5 wo(ACC):l196 Currency, Unit 32 

i 6 wo(ACC):1301 ikari(anger ) 9 
i 7 ~oo(ACC):n51 ha.p..~u(,.ep,~io.) ZZ 
I 8 wo(ACC):1462 Electronic Products 9 

9 wo(ACC):1451 Container 2 
i,' , 10 wo(ACC):1302 hankan(enrni tyJ 8 : 

] ~ , First 5 Selected Features with More Than One Cases 
30 ga(NOM):1259' wo(ACC):13 ga(NOM):Country, wo(ACC):kol~uaai(go~ernment loan) 2 
53 ni(for~.1200, wo(ACC):14 ni(for):watashi(I), wo(ACC):Products 1 
54 ni(for):121, wo(ACC):145 .~[~:~: t ~ .,~.~ .~. ,m ~ l ~  ~ . .  w'~ ~ 1 
el .i(for):12, w.o(ACC):1404 .i(for):.Human, ~oo_.'ACC_):~ppu(t~keS) 1 
62 hi(for):1205, wo(A.CC):140 ni(for):kodomo(child), wo(ACC):Products 1 

in the corpus. These verb-noun collocations contain about 270 case-markers. We constructed the 
training set ~ from these 153,014 verb-noun collocations. 

We used 'Bunrui Goi Hyou'(BGH) (NLRI, 1993) as the Japanese thesaurus. BGH has a s~x- 
layered abstraction hierarchy and more than 60,000 words are assigned at the leaves and its nominal 
part contains about 45,000 words. Five classes are allocated at the next level from the root node. 

5.2 F e a t u r e  S e l e c t i o n  a n d  P a r a m e t e r  E s t i m a t i o n  
We conduct the feature selection procedure in section 3.3 and the parameter estimation procedure 
in section 3.2 under the following conditions: i) we limit the noun class generalization level of each 
feature to those which are above the level 5 from the root node in the thesaurus, ii) since verbs are 
independent of each other in our model learning framework, we collect verb-noun collocations of 
one verb into a training data set and conduct the model learning procedure for each verb separately. 

For each verb, the size of the training data set is about 200 --, 500. The size of the set of 
candidate features varies according to the models: 200 ~ 400 for independent-case model, 500 
-,, 1,300 for one-frame/independent-frame(independence parameter a = 0.5/0.9) models, and 650 
,~ 1,550 for partial-frame model. In the independent-case model, each feature corresponds to a 
subcategorization frame with only one case, while in the one-frame/independent/frame/partial-  
frame models, each feature corresponds to a subcategorization frame with any number of cases. 
This is why the size of the set of candidate features is much smaller in the independent-case model 
than in other models. In the one-frame/independent-frame models, more restrictions are put on 
the definition of features than in the partial-frame model, and t h e  sizes of the sets of candidate 
features are relatively smaller. 

E x a m p l e s  of  Se l ec t ed  F e a t u r e s  
For a Japanese verb ~au(buy, incur)", Table 1 shows examples of the selected features for 

the independent-frame model (independence parameter ~ = 0.9). In the table, first 10 selected 
features, as well as first 5 selected features corresponding to (partial) subcategorization frames with 
more than one cases, are shown. In the tables, each feature is represented as the corresponding 
(partial) subcategorization frame which consists of pairs of a case-marking particle and the noun 
class restriction of the case. Each noun class restriction is represented as a Japanese noun class of 
BGH thesaurus. Noun classes of BGH thesaurus are represented as numerical codes, in which each 
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, . , ,  

digit denotes the choice of the branch in the thesaurus. The classes starting with '11', '12', '13', 
'14', and '15' are subordin~,te to abstract-relations, agents-of-human-activities, human-activities,  
products and natural-objects-and-natural-phenomena, respectively. Each table consists of the order 
of the feature, the feature itself (which is represented as a (partial) subcategorization frame), noun 
class descriptions or example no-n~ in the (partial) subcategorization frames, and the number of 
the training verb-noun collocations for which the feature function returns true. 

Since about 75% of the verb-noun collocations in the training set have only one case-n~rked 
noun, all of the first 10 selected features have only one cases in both of the independent-frame/partial- 
frame models. However, the two models are different in the orders of the first 5 selected features 
with more than one cases. In the partial-frame model, those 5 features have much superior orders 
than in the independent-frame model. In the partial-frame model, less restrictions axe put on the 
definitions of features than in the independent-frame model. Therefore, in the partial-frame model, 
the feature functions corresponding to (pextial) subcategorization frames with more than  one cases 
tend to return true for more verb-noun collocations than in the independent-frame model. 

5.3 Evaluation of Subcategorization Preference 
5.3.1 E v a l u a t i o n  M e t h o d  
We evaluate the performance of the selected features and their estimated parameters in the following 
subcategorization preference task. Suppose that  the following word sequence represents a verb-final 
Japanese sentence with a subordinate clause, where N = , . . . ,  N2k are nouns, Pz , . . .  ,P2~ are case- 
marking post-positional particles, and vl, v2 are verbs, and the first verb vi is the head verb of the 
subordinate clause. 

N f  -p=- NI I-pi l . . . . .  N1z-~ z-r1- Nm-~1 . . . .  N~.k-1~k-z~ 

We consider the subcategorization ambiguity of the post-positional phrase Nf-p=: i.e, whether 
Nz-pz  is subcategorized for by vl or v2. 

We use held-out verb-noun collocations of the verbs vl and v2 which are not used in the training. 
They are like those verb-noun collocations in the left side below. Next, we generate erroneous verb- 
noun collocations of vl and v2 as those in the right side below, by choosing a case element Px: N= 
at random and moving it from vl to v2. 

[Co~ 
im'e~ : vl 
~1 :NlI  

Pal : Nil 

I pred : v2 
/~1 : N21 

/~l : N2k 

L i 

pred : r~ 
pred : vl 
I~1 : Nix P21 : N21 

plz : Nat t~k : N2~ 
pf:N= 

Then, we compare the products ¢(t) (in the equation (26)) of the conditional probabilities of the 
constituent verb-noun collocations between the correct and the erroneous pairs, and calculate the 
rate of selecting the correct pair. We measure the following three types of precisions: i) the precision 
rb of the basic model in  section 4.4.1, ii) the precision rh when incorporating the heuristics in section 
4.4.2, iii) the precision rc of those verb-noun collocations which satisfy the ease covering relation 
___~ with the set S of active features, i.e., this means that  we collect verb-noun collocations (vl, epl) 
and (v2, ep2) of the verbs vl and v2 which satisfy the case corering relation (vl ,  ep1), (v2, e~2) _~c~ S, 
and calculate the precision re. 

5.3.2 Resu l t s  
Figure I (a)-~(c) compares the precisions re and rh among the one-frame/independent-fr~me/partial- 

frame/independent-case models. We also compare the changes of the rate of the verb-noun collo- 
cations in the test set which satisfy the case covering relation ~_co with the set ,q of active features. 
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(d) Independent-Frame Model (a = 0.9) 
Figure 1: Changes in Case-Coverage of Test  Da t a  and Precisions of  Subcategorizat ion Preference 

For the  independent-f rame model, we examined two different values of  the  independence parameter  
a ,  i.e., c~ - 0.5 as a weak condition on independence judgment  and ~ - 0.9 as a strict  condition 
on independence judgment .  Figure 1 (d) shows the changes of  the  precisions r~, rh, and re as 
well as the  case-coverage of  the test  da ta  during the training for the  independent-frame model 
(the independence parameter  ~ - 0.9). Both  of the precisions re and rh of the independent-frame 
model  are higher than  those of any other  models. On the  other  hand,  the case-coverage of  the 
independent-f rame model  (as well as the  tha t  of  one-frame model) is much lower than  that  of 
the par t ia l - f rame/ independent-case models. The decrease of  the case-coverage in the  independent-  
f rame/one-frame models  is caused by  the overfitting to the training data .  s 

In the  case of  the  independent-frame model, precisions decrease in the order of re, rh, and 
r~. This means  that  the  independent-frame model performs well in the  task of  subcategorizat ion 
preference when the verb-noun collocations satisfy the  case covering relation "<cr with the  set S of 
active features. W h e n  the verb-noun collocations do not satisfy the  case covering relation, we have 
to use the heuristics of  case covering in section 4.4.2 and then the precision of  subcategorizat ion 
preference decreases. If  we do not care whether  the verb-noun collocations satisfy the  case covering 
relation and do not  use the  heuristics of case covering, this means tha t  we use the  basic model  in 

6The reason why the overfitting to the training data occurs in the independent-frame/one-frame models can be 
explained by comparing the effects of the two values of the independence parameter ~ in the independent model. 
When c~ equals to 0.9, both rc and rh are slightly h/gher than when a equals to 0.5. Especially, when the number of 
selected features are less than 300, rc is much higher when ~ equals to 0.9 than when ~ equals to 0.5, although the 
case-coverage of the test data is much lower. When the condition on independence judgment becomes more strict, 
the cases in the t r i g  data are judged as dependent on each other more often and then this causes the estimated 
model to overfit to the training data. In the case of the independent-frame model, overfit to the training data seems 
to result in higher performance in subcategor/zation preference task, although the ease-coverage of the test data is 
caused to become lower. 
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section 4.4.1 and it p e r f o r ~  worst  as indicated by  the precision rb. 

6 C o n c l u s i o n  
This paper  proposed  a novel me thod  for learning probabilistic models  of  subcategorizat ion prefer- 
ence of verbs. We proposed to consider the  issues of  case dependencies and noun class generalization 
in a uniform way. We adopted  the max lmum entropy model  learning method  and applied it to  the  
task  of model  learning of subcategorizat ion preference. 7 We described the results o f  the  exper-  
iment  on learning the  models of  subcategorizat ion preference from the E D R  Japanese  bracketed  
corpus. We evaluated the performance of  the  selected features and their es t imated pa ramete r s  in 
the subcategorizat ion preference task. In  this evaluation task, the  independent-f rame model  wi th  
the  independence parameter  c~ = 0.9 performed bes t  in the  precision when incorporat ing the  heuris- 
tics of case-covering, as well as in the  precision of  case-covered test  events. As for fur ther  issues, 
it i s  impor tant  to  improve the  case-coverage of  the  independent-frame model  wi thout  decreasing 
the precision of subcategorizat ion preference. For this purpose,  we have already invented a new 
feature selection algori thm which meets  the  above requirement on preserving high case-coverage 
wi th  a relatively small  number  of active features, s We will repor t  the  details of applying this new 
algori thm to the t ask  of model  learning of  subcategorizat ion preference in the near future.  
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paper, one of the underlying motivations of the work in this paper is that, by applying general probabi]istic model 
learning techniques such as the maximum entropy model learning method, it becomes easier to incorporate various 
kinds of linguistic information into the model of subcategorization preference. For example, as such linguistic informa- 
tion, we are pJ~-nlng to incorporate syntactic features concerning idiomatic expression as well as voice of the verb. 

SThe basic idea of the new algorithm is as follows: first, it starts from the independent-case model with relatively 
general sense restrictions which correspond to higher classes in the thesaurus. This starting model satisfies the 
requirement on high case-coverage. Then, the algorithm gradually ex~rnlues the case dependencies as well as more 
specific sense restrictions which correspond to lower classes in the thesaurus. The model search process is controlled 
according to some information-theoretic model evaluation criteria such as the MDL principle (l~sanen, 1989). 
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