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ABSTRACT 

This paper deals with two important ambiguities of natural language: prepositional phrase 
attachment and word sense ambiguity. We propose a new supervised learning method for PP- 
attachment based on a semantically tagged corpus. Because any sufficiently big sense-tagged 
corpus does not exist, we also propose a new unsupervised context based word sense 
disambiguation algorithm which amends the training corpus for the PP attachment by word 
sense tags. We present the results of our approach and evaluate the achieved PP attachment 
accuracy in comparison with other methods. 

1. INTRODUCTION 

The problem with successful resolution of ambiguous prepositional phrase attachment is that we 
need to employ various types of knowledge. Consider, for example, the following sentence: 

1. Buy books for children. 

The PPfor children can be either adjectival and attach to the object noun books or adverbial and 
attach to the verb buy, leaving us with the ambiguity of two possible syntactic structures: 

adj) VP(VB=buy, NP(NNSffibooks, PP(IN=for, NP(NNfchildren)))) 
adv) VPfVB=buy, NP(NNS=books), PP(IN=for,NP(NN=children))). 

It is obvious that without some contextual information we cannot disambiguate such a sentence 
correctly. Consider, however, the next sentence: 

2. Buy boolks for money. 

In this case, we can almost certainly state that the PP is adverbial, i.e. attached to the verb. This 
resolution is based on our life time experience in which we much more often encounter the 
activity which can be described as "buying things for money" than entities described as "books for 
money "1. 

At the moment, we do not have a computer database containing life time experiences, and 
therefore we have to find another way of how to decide the correct PP attachment. One of the 
solutions lies in the exploration of huge textual corpora, which can partially substitute world 
knowledge. Partially, beeanse we do not know how wide a context, what type of general 
knowledge or how deep an inference has to be applied for a successful disambiguation. 

If we limit the context around the prepositional phrase to include only the verb, its object and the 
PP itself, the human perfonnancce on PP attachment is approximately 88.2% accurate decisions 

IThis, of  course, does not provide us with a hundred percent cenaimy. 

66 ! 



[RRR94]. Because people are capable of utilising their world knowledge, the remaining 
inaccuracy must be attributed to the lack of a wider context 2. Statistically, each preposition has a 
certain percentage of occurrences for each attachment, relying on which would provide us with 
approximately 72.7% of correct attachments [C&B95]. If we manage to partially substitute the 
world knowledge, the resulting accuracy would lie in the range between 72.7 and 88.2%. These 
are the boundaries we expect an automatic system to score within. 

1.1. PP-ATTACHMENT 

Altman and Steedman [A&S88] have shown that in many cases PP can be attached correctly only 
if the context of the current discourse is used. Using the discourse context is, however, extremely 
difficult because we do not have enough theoretical background to decide which bits of context 
are needed to correctly disarnbiguate and which are irrelevant. 

There have been numerous attempts to substitute context by superficial knowledge extracted from 
a large corpus. Pioneering research on corpus-based statistical PP attachment ambiguity resolution 
has been done by Hindie and Rooth in [H&R93]. They extracted over 200,000 verb-noun- 
preposition triples with unknown attaehrnent decisions. An iterative, unsupervised method was 
then used to decide between adjectival and adverbial attachment in which the decision was based 
on comparing the co-oeeurenee probabilities of the given preposition with the verb and with the 
noun in each quadruple. 

Another promising approach is the transformation-based role derivation presented by Brill and 
Resnik in [B&R94], which is a simple learning algorithm that derives a set of transformation rules. 
These rules are then used for PP attachment and therefore, unlike the statistical methods, it is 
urmecessary to store huge frequency tables. Brill and Resnlk had reported 81.8% success of this 
method on 500 randomly-selected sentences. 

The current statistical state-of-the art method is the backed-off model proposed by Collins and 
Brooks in [C&B95] which performs with 84.5% accuracy on stand-alone quadruples. Most of the 
methods, however, suffer from a sparse data problem. All are based on matching the words from 
the analysed sentence against the words in the training set. The problem is that only exact matches 
are allowed. The back-off model showed an overall accuracy of 84.5%, but the accuracy of full 
quadruple rnatehes was 92.6%! Due to the sparse data problem, however, the full quadruple 
matches were quite rare, and contributed to the result in only 4.8% of eases. The accuracy for a 
match on three words was also still relatively high (90.1%), while for doubles and singles it 
dropped substantially [C&B95]. 

This originated our assurnpfion that if the number of matches on four and three words was raised, 
the overall accuracy would increase as well. Because Collins and Brooks' backing-off model is 
very profound, we could not find a way of improving its accuracy unless we increased the 
percentage of full quadruple and triple matches by employing the semantic distance measure 
instead of word-string matching. We feel that the sentence Buy books for chiMren should be 
matched with Buy magazines for children due to the small conceptual distance between books arid 
magazines. What is unknown, however, is the limit distance for two concepts to be matched. 
Many nouns in the WordNet hierarchy share the same root (entity) and there is a danger of over- 
generalisation. We will try to overcome this problem through the supervised learning algorithm 
described herein. Another problem is that most of the words are semantically ambiguous and 
unless disambiguated, it is difficult to establish distances between them. The PP attachment also 
depends on the selection of word senses and vice versa, as will be shown in the result section. 

A number of other researchers have explored corpus-based approaches to PP attachment that make 

2Human performance on the same data but with a full senttmtial context is 93.2% [RRR94]. 
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use of word classes. For examples, Weischedel [W91] and Basili [B91] both describe the use of 
manually constructed, domain specific word classes together with corpus-based statistics ha order 
to resolve PP attachment ambiguity. Because these papers describe results obtained on different 
corpora, however, it is difficult to make a performance comparison. 

1.2 WORD SENSE AMBIGUITY 

We will now discuss the issues connected with matching two different words based on their 
sernantie distance. Employing the notion of semantic similarity, it is necessary to address a 
number of problems. At first, we have to specify the semantic hierarchy. Second, we need to 
determine how to calculate the distance between two different concepts in the hierarchy. Finally 
we must determine how to select a sense of a word based on a context in which it appears. 

SEMANTIC HIERARCHY 

The hierarchy we chose for semantic matching is the semantic network of WordNet [IVHg0], 
[MI93]. WordNet is a network of meanings connected by a variety of relations. WordNet 
presently contains approximately 95.000 different word forms organised into 70.100 word 
meanings, or sets of synonyms. It is divided into four categories (nouns, verbs, adjectives and 
adverbs), out of which we will be using only verbs and nouns. Nouns are organised as 11 topical 
hierarchies, where each root represents the most general concept for each topic. Verbs, which tend 
to be more polysemons and can change their meanings depending on the kind of the object they 
take, are formed into 15 groups and have altogether 337 possible roots. Verb hierarchies are more 
shallow than those of nouns, as nouns tend to be more easily organised by the is-a relation, while 
this is not always possible for verbs. 

SEMANTIC DISTANCE 

The traditional method of evaluating semantic distance between two meanings based merely on 
the length of the path between the nodes representing them, does not work well in WordNet, 
because the distance also depends on the depth at which the concepts appear in the hierarchy. For 
example, the root ent/ty is directly followed by the concept of life form, while a sedan, a type of a 
car, is in terms of path more distant from the concept of express_train, although they are both 
vehicles and therefore closer concepts. In the ease of verbs, the situation is even more complex, 
because many verbs do not share the same hierarchy, and therefore there is no direct path between 
the concepts they represent. There have been numerous attempts to define a measure for semantic 
distance of WordNet contained concepts [P, E95],[K&E96], [SU95], [SU96], etc. 

For our proposes, we have based the semantic distance calculation on a combination of the path 
distance between two nodes and their depth. Having ascertained the nearest common ancestor in 
the hierarchy, we calculate the distance as an average of the distance of the two concepts to their 
nearest common ancestor divided by the depth in the WordNet Hierarchy: 

where L 1, L 2 are the lengths of paths between the concepts and the nearest common ancestor, and 
D 1, D 2 are the depths of each concept in the hierarchy (the distance to the root). The more abstract 
the concepts are (the higher in hierarchy), the bigger the distance. The same concepts have a 
distance equal to 0; concepts with no common ancestor have a distance equal to 1. Because the 
verb hierarchy is rather shallow and wide, the distance between many verbal concepts is often 
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equal to 1. 

Figure 1: Distance calculation example 
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1.2.3 SEMANTIC AMBIGUITY 

In order to determine the position of a word in the semantic hierarchy, we have to determine the 
meaning of the word from the context in which it appears. For example, the noun bank can take 
any of the nine meanings defined in WordNet (financial institution, building, ridge, container, 
slope, etc.). It is not a trivial problem and has been approached by many researchers [GCY92], 
[YA93], [B&W94], IRE95], [YA95], [K&E96], [LI96], etc. We believe that the word sense 
disambiguation can be accompanied by PP attachment resolution, and that they complement each 
other. At the same time we would like to note, that PP attachment and sense disambiguation are 
heavily contextually dependent problems. Therefore, we know in advance that without 
incorporation of wide context, the full disambiguation will be never reached. 

2. W O R D  S E N S E  D I S A M B I G U A T I O N  

The supervised learning algorithm which we have devised for the PP attachment resolution, and 
which is discussed in Chapter 3, is based on the induction of a decision tree from a large set of 
training examples which contain verb-noun-preposition-noun quadruples with disambiguated 
senses. Unfortunately, at the time of writing this work, a sufficiently big corpus which was both 
syntactically analysed and semantically tagged did not exist. Therefore, we used the syntactically 
analysed corpus [MA93] and assigned the word senses ourselves. Manual assignment, however, in 
the case of a huge corpus would be beyond our capacity and therefore we devised an automatic 
method for an approximate word sense disambiguation based on the following notions: 

Determining the correct sense of an ambiguous word is highly dependent on the context in which 
the word occurs. Even without any sentential context, the human brain is capable of 
disambiguating word senses based on circumstances or experience 3. In natural language 

3Also a kind o f  context .  
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processing, however, we rely mostly on the sentential contexts, i.e. on the surrounding concepts 
and relations between them. These two problems arise: 1. The surrounding concepts are very often 
expressed by ambiguous words and a correct sense for these words also has to be determined. 2. 
What relations and how deep an inference is needed for correct disambiguation is unknown. 

We based our word-sense disambiguating mechanism on the premise that two ambiguous words 
usually tend to stand for their most similar sense if they appear in the same context. In this chapter 
we present a similarity-based disambiguadon method aimed at disarnbiguating sentences for 
subsequent PP-attachment resolution. Similar contextual situations (these include information on 
the PP-attachment) are found in the training corpora and are used for the sense disarnbiguation. If, 
for example, the verb buy (4 senses) appears in the sentence: 

The investor bought the company for 5 million dollars 

arid somewhere else in the training corpus there is a sentence4: 

The investor purchased the company for 5 million dollars, 

we can take advantage of  this similarity and disambiguate the verb "buy" to its sense that is 
nearest to the sense of the verb purchase, which is not ambiguous. 

The situation, however, might not bc as simplistic as that, because such obvious matches are 
extremely rare even in a huge corpus. The first problem is that the sample verb in the training 
corpus may be also ambiguous. Which sense do we therefore choose? The second problem is that 
there may, in fact, be no exact match in the training corpus for the context surrounding words and 
their relations. To overcome both of these problems we have applied the concept of semantic 
distance discussed above. Every possible sense of all the related context words is evaluated and 
the best match'chosen 5. 

The proposed unsupervised similarity-based iterafive algorithm for the word sense 
disambiguafion of the training corpus looks as follows: 

1. From the training corpus, extract all the sentences which contain a prepositional 
phrase with a verb.object-preposition-description quadruple. Mark each quadruple with 
the corresponding PP attachment (explicitly present in the parsed corpus). 

2. Set the Similarity Distance Threshold SDT = 0 

3. Repeat 
* for each quadruple Q in the training set: 

* for each ambiguous word in the quadruple: 
* among the remaining quadruples find a set S of similar quadruples 

(those with quadruple distance < SDT) 
* for each non-empty set S: 

* choose the nearest similar quadruple from the set S 
* disambiguate the ambiguous word to the nearest sense of the 

corresponding word of the chosen nearest quadruple 
* increase the Similarity Distance Threshold SDT = SDT + 0.1 

Until all the quadruples are disambiguated or SDT = 3. 

4Both sentences have adverbial PP attachment. 
5Because our primary goal is PP attachment disambiguadon, the related context words are those appearing in the verb-noun- 
PrelX~Sition-noun quadruple. 
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The above algorithm can be described as iterafive clustering, because at first, the nearest 
quadruples are matched and disambiguated. Then, the similarity distance threshold is raised, and 
the process repeats itself in the next iteration. If a word is not successfully disambignated, it is 
assigned its first, i.e. the most frequent sense. The reason for starting with the best matches is that 
these tend to provide better disambignations. Consider, for example, the following set of 
quadruples: 

QI. shut plant for week 
Q2. buy company for million 
Q3. acquire business for million 
Q4. purchase company for million 
QS. shut facility for inspection 
Q6. acquire subsidiary for million 

At first, the algorithm tries to disambiguate quadruple Q1. Starting with the verb, the algorithm 
searches for other quadruples which have the quadruple distance (see below) smaller than the 
current similarity distance threshold. For SDTffi0 this means only for quadruples with all the 
words with semantic distance ffi 0, i.e. synonyms. There are no matches found for Q1 and the 
algorithm moves to Q2, finding quadruple Q4 as the only one matching such criteria. The verb 
buy in Q2 is disambiguated to the sense which is nearest to the sense of purchase in Q4, i.e. 
min(dist(buy,purchase))ffidist(BUY-1,PUROHASE-1)-.-O.O. The noun company cannot be 
disambiguated, because the matched nearest quadruple Q4 contains the same noun and such a 
disambignation is not allowed; the description million is monosemous. Same process is called for 
all the remaining quadruples but further disambigauuon with SDT=0 is not possible (the verb 
purchase in Q4 has only one sense in WordNet and therefore there is no need for disarnbiguation; 
the noun company cannot be disambiguated against the same word). The iteration threshold is 
increased by 0.1 and the algorithm starts again with the first quadruple. No match is found for Q 1 
for any word and we have to move to quadruple Q2. Its verb is already disambiguated, therefore 
the algorithm looks for all the quadruples which have the quadruple distance for nouns below the 
SDT of 0.1 and which contain similar nouns (see definition of similar below). The quadruple Q3 
satisfies this criteria. Distances of all the combinations of senses of the noun company and 
business are calculated and the nearest match chosen to disambiguate the noun company in Q2: 

min( dist( company, business) )ffidist( OOMP ANY-1, BUSINESS-1)~0.083 

The algorithm then proceeds to the next quadruple, i.e. Q3. There are two quadruples which 
satisfy the similarity threshold for verbs: Q2 and Q4 (Q6 is not considered, because its verb is 
identical and therefore not similar). The verb buy in Q2 is already disambiguated and the distance 
to both Q2 and Q4 is the same, i.e.: 

dqv(Q3,Q2)ffidqv(Q3,Q4)ffi(0.2Yz+0.083+0)/3ffi0.0485 
where the minimum semantic distance between the nearest senses of the verb acquire and buy is: 

min( dist( acquire, buy)ffidist( AOOUIRE-1,BUY-1)ffiO.25 

The verb acquire is disambiguated to the sense nearest to the sense of the verb buy and the 
algorithm proceeds to the noun business in Q3. The same two quadruples fall below the SDT for 
nouns ,  as 

dqn(Q3,Q2)=dqv(Q3,Q4)ffi(0.25+0.007+0)/3=0.0857 

and the noun business of Q3 is disarnbiguated to its sense nearest to the disambiguated sense of 
company in Q2. The verb in Q4 is monosemous, therefore the algorithm finds a set of similar 
quadruples for nouns (Q2 qualifies in spite if having the same noun (company), because it has 
already been disambiguated in the previous steps): Q2, Q3 and Q6. The nearest quadruple in this 
set is Q2 (dqn(Q4,Q2)ffi0) and the noun company in Q4 is disambiguated to the sense of the noun 
in Q2. The quadruple Q5 has no similar quadruples for the current SDT and therefore the next 
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quadruple is Q6. Similarly to the above disarnbiguations, both its verb and noun are 
disarnbiguated. There is no further match for any quadruple and therefore SDT is increased to 0.2 
and the algonthm starts with QI again (the quadruples Q2, Q3, Q4 and Q6 are already fully 
disambiguated). No matches are found for SDT=0.2 for neither Ql or QS. The algorithm iterates 
until SDT=0.6 which enables the disambiguation of the noun p/am in Q1 to its sense nearest to 
the noun facility in Q5: 

dqn(Q1,Q5)=(0+0.3752+l/)2=0.57 

as rnin(dist(plantJaci!ity)-~.dist(PLANT-1,FACIClTY-1)=0.375. Similarly, the noun facility in Q6 is 
disambiguated, whereas the descriptions in both QI and Q5 cannot be successfully disarnbiguated 
because only a very small set of quadruples was used in this example. In this case, both the 
description week and inspection would be assigned their most frequent senses, i.e. the first senses 
of WordNet. In case of a bigger training set, most of the quadruples get disambiguated, however, 
wlth increasing SDT the disambiguation quality decreases. The above example shows the 
importance of iteration, because starting with lower SDT guarantees better results. If, for 
example, there was no iteration cycle and the algorithm tried to disambiguate the quadruples in 
the order in which they appear, the quadruple Q1 would be matched with Q6 and all its words 
would be disambiguated to inappropriate senses. Such a wrong disambiguation would further 
force wrong disambiguations in other quadruples and the overall result would be substantially 
less accurate. Another advantage of this disambiguation mechanism is that the proper nouns, 
which usually refer to people or companies, can be also disambiguated. For example, an unknown 
name ARBY in quadruple: 

acquire ARBY for million 

is matched with disambiguated noun in Q6 and also disambiguated to the COMPANY-1 sense, 
rather than to,PERSON (note, that even if Q6 was not disarnbiguated, the COMPANY-1 sense of 
subsidiary is semantically closer to the sense company of ARBY and therefore, although possible, 
the disambiguation of ARBY to the first sense of subsidiary (PERSON) would be dismissed). 

Similarity Distance Threshold defines the limit matching distance between two quadruples. The 
matching distance between two quadruples Ql=Vl-nl-P-dl and Q2=v2-n2-p-d2 is defined as 
follows (v=verb, n=noun, p=preposition, d=description noun): 

Dqv(Q1,Q2)= (D(vl,v2)2)+D(nl,n~)+D(dl,d2))/P, when disambiguating verb 
Don(Q1,Q2 = (D(vl,v2)+D(nlrn2)Z+D(dl,d2))/P, when disambiguating noun 

Dqd(~l,Q2)= (D(Vl,V2)+D(nl,n2)+D(dl,d2)2)/P, when disambiguating description 

where P is the number of pairs of words in the quadruples which have a common semantic 
ancestor, i.e. P = 1, 2 or 3 (if there is no such a pair, Dq = .o) and its purpose is to give higher 
priority to matches on more words. The distance of the currently disambiguated word is squared in 
order to have a bigger weight in the distance Do( the  currently disambiguated word must be 
different from the corresponding word in the matched quadruple 6 unless it has been previously 
disambiguated). The distance between two words D(wl,w 2) is defined as the minimum semantic 
distance between all the possible senses of the words w 1 and w 2. Two quadruples are similar, if 
their distance is less or equal to the current Similarity Distance Threshold, and if the currently 
disambiguated word is similar to the corresponding word in the matched quadruple. Two words 
are similar if their semantic distance is less than 1.0 and if either their character strings are 
different or if one of the words has been previously disambiguated. 

6The same words have lh¢ same sets of  senses and therefore would not allow for disamblguation. 
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3. PP-ATTACHMENT 

For the attachment of the prepositional phrases in unseen sentences, we have modified Quinlan's 
ID3 algorithm [Q86], [BR91] which belongs to the the family of inductive learning algorithms. 
Using a huge training set of classified examples, it uncovers the importance of  the individual 
words (attributes) and creates a decision tree that is later used for classification of  unseen 
examples 7. The algorithm uses the concepts of the WordNet hierarchy as attribute values and 
creates the decision tree in the following way: 

3.1 DECISION TREE INDUCTION 

Let T be a training set of classified quadruples. 

1. If all the examples in T are of the same PP attachment type (or satisfy the 
homogeneity termination condition, see below) then the result is a leaf labelled with this 
type, 

else 
2. Select the most informative attribute A among verb, noun and description among 
the attributes not selected so far (the attributes can be selected repeatedly after all 
of them were already used in the current subtree) 
3. For each possible value Aw of the selected attribute A construct recursively a 
subtree S w calling the same algorithm on a set of quadruples for which A belongs to 
the same WordNet class as A w. 
4. Return a tree whose root is A and whose subtrees are S w and links 
between,A and S w are labelled A w. 

Let us briefly explain each step of the algorithm. 

1. If the examples belong to the same class (set T is homogenous), the tree expansion terminates. 
However, such situation is very unlikely due to the non-perfect training data. Therefore, we 
relaxed the complete homogeneity condition by terminating the expansion when more than 77% 
of the examples in the set belonged to the same class (the value of 77% was set experimentally as 
it provided the best classification results). If the set T is still heterogeneous and there are no more 
attribute values to divide with, the tree is terminated and the leaf is marked by the majority class of 
the node. 

2. We consider the most informative attribute to be the one which splits the set T into the most 
homogenous subsets, i.e. subsets with either a high percentage of samples with adjectival 
attachments and a low percentage of adverbial ones, or vice-versa. The optimal split would be 
such that all the subsets would contain only samples of one attachment type. For each attribute A, 
we split the set into subsets, each associated with attribute value A w and containing samples 
which were unifiable with value A w (belong to the same WordNet class). Then, we calculate the 
overall heterogeneity (OH) of all these subsets as a weighted sum of their expected information: 

OH = -~ p(A = A.)[p(PP~vl A = A.) log 2p(PP~vl A = A.) + p(PP~IA = A.) log 2p(PP~AA = A.)], 
wa 

where p(PPADvIA=Aw) and p(PADjIA=Aw) represent the conditional probabilities of the 
adverbial and adjectival attachments, respectively. The attribute with the lowest overall 
heterogeneity is selected for the decision tree expansion. In the following example (Figure 2) we 

7Classification in this case means deciding whether the PP is adjectival or averbi~. 
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have to choose an attribute to split the node with 50 adjectival and 50 adverbial quadruples: 

Figure 2: Choosing an attribute for the decision tree expansion 

1)A=verb 2)A=noun 3)A=desc 
H = 1.0 

O H 2  = 0 .99  

H = 1.0  

01"11 = 0.56 

• H = 1.0  

@ @ 
O H 3  = 0 .88  

m i n ( O H 1 , O H 2 , O H 3 )  = OH1 ~ A = v e r b  

Verbs of all the node quadruples belong to the WordNet class V, nouns to the class N and 
descriptions tq.the class D. We assume, in this example, that the WordNet hierarchy class V has 
three subclasses (V1, V2, V3), class N has two subclasses (N1, N2) and class D has also two 
subclasses (191, D2) 8. We use the values V1, V2 and V3, N1 and N2, and D1 and D2 as potential 
values of the attribute A. Splitting by verb results in three subnodes with an overall heterogeneity 
0.56, splitting by noun in two subnodes with OH~0.99 and by description with OH=0.88. 
Therefore, in this case we would choose the verb as an attribute for the tree expansion. 

3. The attribute is either a verb, noun, or a description noun 9. Its values correspond to the concept 
identificators (synsets) of WordNet. At the beginning of the tree induction, the top roots of the 
WordNet hierarchy are taken as attribute values for splitting the set of training examples. At first, 
all the training examples (separately for each preposition) are split into subsets which correspond 
to the topmost concepts of WordNet, which contains 11 topical roots for nouns and description 
nouns, and 337 for verbs (both nouns and verbs have hierarchical structure, although the hierarchy 
for verbs is shallower and wider). The training examples are grouped into subnodes according to 
the disambiguated senses of  their content words. This means that quadruples with words that 
belong to the same top classes start at the same node. Each group is further split by the attribute, 
which provides less heterogeneous splitting (all verb, noun and description attributes are tried for 
each group and the one by which the current node can be split into the least heterogeneous set of 
subnodes is selected). Branches that lead to empty subnodes (as a result of not having a matching 
training example for the given attribute value) are pruned. This process repeats in all the emerging 
subnodes, using the attribute values which correspond to the WordNet hierarchy, moving from its 
top to its leaves. When splitting the set of training examples by the attribute A according to its 
values A w, the emerging subsets contain those quadruples whose attribute A value is lower.in the 
WordNet hierarchy, i.e. belongs to the same class. If some quadruples had the attribute value equal 

8At the top of the tree we use all the roots of  the WordNet hierarchy as initial subnodes. 
9W¢ induce the decision tree separately for each preposition. 
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to the values of A, an additional subset is added but its further splitting by the same attribute is 
prohibited. 

3.2 CLASSIFICATION 

As soon as the decision tree is induced, classifying an unseen quadruple is a relatively simple 
procedure. At first, the word senses of the quadruple are disambiguated by the algorithm described 
in Chapter 2, which is modified to exclude the SDT iteration cycles. Then a path is traversed in the 
decision tree, starting at its root and ending at a leaf. At each internal node, we follow the branch 
labelled by the attribute value which is the semantic ancestor of the attribute value of the 
quadruple (i.e. the branch attribute value is a semantic ancestor 10 of  the value of the quadruple 
attribute). The quadruple is assigned the attachment type associated with the leaf, i.e. adjectival or 
adverbial. If no match is found for the attribute value of the quadruple at any given node, the 
quadruple is assigned the majority type of the current node. 

4 TRAINING AND TESTING DATA 

The training and testing data, extracted from the Penn Tree Bank [MA93], are identical to that 
used by [RRR94], [C&B95] for comparison purposes II. The data contained 20801 training and 
3097 testing quadruples with 51 prepositions and ensured that there was no implicit training of  the 
method on the test set itself. We have processed the training data in the following way: 

converted all the verbs into lower cases 
~- converted all the words into base forms 

replaced four digit numbers by 'year' 
~- replaced all other numbers by 'definitequantity' 
~" replaced nouns ending by - ing and not in WordNet by 'action' 

eliminated examples with verbs that are not in WordNet 
~," eliminated examples with lower-case nouns that are not in WordNet, except for 

pronouns, whose senses were substituted by universal pronoun synsets 
,~" the upper-case nouns were assigned their lower case equivalent senses plus the 

senses of 'company' and 'person' 
~- the upper case nouns not contained in WordNet were assigned the senses of 

'company' and 'person' 
~," disabled all the intransitive senses of verbs 

assigned all the words (yet ambiguous) the sets of WordNet senses (synsets) 

The above processing together with the elimination of double occurrences and contradicting 
examples, reduced the training set to 17577 quadruples, with an average quadruple ambiguity of 
86, as of  the ambiguity definition in section 1.2. 

5. EVALUATION AND EXPERIMENTAL RESULTS 

5.1 WORD SENSE DISAMBIGUATION 

Because the induction of the decision tree for the PP attachment is based on a supervised learning 
from sense-tagged examples, it was necessary to sense-disambiguate the entire training set. This 
was done by the iterative algorithm described in Chapter 2. 

10In the WordNet hierarchy. 
I lWe would like to thank Michael Collins for supplying the data. 
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To form an approximate evaluation of the quality of this disambiguation, we have randomly 
selected 500 words, manually 12 assigned sets of possible senses to them (sets, because without a 
full sentential context a full disambiguation is not always possible), and compared these with the 
automatic disarnbiguafion. If the automatically chosen sense was present in the manually assigned 
set, the disarnbiguation was considered correct. Out of these 500 words 362 could be considered 
correctly disarnbiguated, which represents slightly over 72%. 

We can argue that the insufficient disambiguation context, sparse data problem and empirically set 
iteration step in the disambiguating algorithm lead to an unreliable disarnbiguation. However, it is 
necessary to maintain the understanding that it is the PP attachment rather than the sense 
disambiguation that is our primary goal. Additionally, because the words of the input sentences 
for the PP attachment are to be assigned senses in the same manner, the sense disambiguation 
error is concealed. Alhouhg the disambiguation of the training set is eomputationally the most 
expensive part of the system, it is done only once. The disambiguation of unseen (testing) 
examples is done by the same algorithm which is modified to exclude the SDT iteration cycles. It 
is therefore reasonably fast even for real-life applications. 

5.2 PP-ATTACHMENT 

The PP attachment using the decision tree is extremely efficient and reliable. We have induced 
the decision tree separately for each preposition in the training corpus, covering the 51 most 
common prepositions. The induced decision trees are relatively shallow and the classification of  
unseen sentences is rapid. As shown in the following table, our algorithm appears to have 
surpassed many existing methods and is very close to human performance on the same testing 
data ]3. 

TABLE 1: PP Attachment Accuracy a~..comparison with other methods 
Method Percent  Correct  
Always Adjectival . 59.0 ..... 

72.2 Most likely for each preposition 
_[RRR94] 
[BR94] (different data) 
[C&B95] 
Induced decision tree 
Average human (q.uadruple context onl~:) 
,J.nduced decision tree (WordNet)14 
Average human (whole sentence context) 

81.6 
81.8 
84.5 
88.1 
88.2 
90.8 
93.2 

The fact that many words in both the training and the testing sets were not found in WordNet 
caused a reduction in the accuracy. This is because training examples with an error or with a word 
not found in WordNet could not fully participate on the decision tree induction. This reduced the 
original training set of  20801 quadruples to 17577. In the case of the testing set, many of the 3097 
testing quadruples were also handicapped by having no entry in WordNet. Attachment of these 
had to be based on a partial quadruple and was usually assigned at a higher level of the decision 
tree, which reduced the overall accuracy. In order to conduct a fair comparison, however, we used 
the same testing set as the methods shown in the above table. If just the examples with full 
WordNet entries were used, the accuracy rose to 90.8%. 

12For the manual assignment we have used only the context of each quadruple plus the PP attachment information. 
13We used different data preprocessing as described in Chapter 4, 
14When tested only on the quadruples whose all words are found in WordNeL 
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Although the algorithm does not provide high enough accuracy from the point of  view of word 
sense disambiguation, it is more important to bear in mind that our main goal is the PP attachment 
ambiguity resolution. The relatively low accuracy of the word sense disambiguation is 
compensated by the fact that the same sense disambiguation error is present in both the training 
set and the classified quadruple. The use of the same training set for both the PP attachment and 
the sense disambiguation provides a positive bias in favour of correct attachment. 

Until we have a sufficiently big enough word sense tagged corpus, we can only hypothesise on the 
importance of the correct sense disambiguation for the PP attachment. Experiments, however, 
show that if the positive bias between thc word senses of the training set and the testing 
quadruples is removed, the accuracy of the PP attachment falls substantially. We have conducted 
an experiment, in which the disambiguated senses of the testing set were replaced by the most 
frequent senses, i.e. the fast senses as defined in WordNet. This caused a substantial reduction of  
a~uracy to 76.5%. The fact that our approximate disambiguation (algorithm in Chapter 2) leads to 
88.1% correct PP attachment is partly to be attributed to the positive bias of disambiguation of the 
testing examples against the same training set which is also used for the decision tree induction. 
The disambiguation errors are thus hidden by their replication in both the training and the testing 
sets. 

As we have already mentioned, Collins and Brooks [C,gB95] based their method on matching the 
testing quadruples against the set of training examples. The decision on the attachment was made 
according to which attachment type had a higher count in the training corpus. If no match for the 
given quadruple was found, the algorithm backed-off to a combined frequency count of the 
occurences of matches on three words only, i.e. on the verb-noun-preposition, verb-preposition- 
description and noun-preposition-description. If no match was found on any of the three words 
combination, the algorithm backed-off to a combined match on two words, i.e. one of the content 
words with a preposition. If there was further no match found on two words, the attachment type 
was assigned according to the prepositional statistics, or, if the preposition was not present in the 
training corpus, the quadruple was assigned the adjectival default. There was a substantial 
decrease of accuracy between the triples and doubles stage. Our algorithm, on the other hand, has 
substantially reduced the number of classifications based on fewer words. This is because at the 
top of the decision tree all of the semantic tops of all of the content words of the given quadruple 
are compared with the semantic generalisations of the training examples represented through the 
nodes of the decision tree. Only if the homogeneity termination condition is satisfied before all 
three content words are compared, the decision is based on less than a full quadruple. The decision 
tree therefore represents a very useful mechanism for determining the semantic level at which the 
decision on the PP attachment is made. 

Collins and Brooks' have also demonstrated the importance of low count events in training data by 
an experiment where all counts less than 5 were put to zero. This effectively made their algorithm 
ignore low count events which resulted in the decrease of accuracy from 84.1 to 81.6%. This 
important feature is maintained in our approach by small homogenous leaves at higher levels of  
the decision tree, which usually accommodate the low count training examples. 

Figure 3 shows an interesting aspect of learning the prepositional phrase attachment from a huge 
corpus. We have selected five most common prepositions and compared their learning curves. It 
turned out that for the size of a training set smaller than 1000 examples, learning is rather 
unreliable and dependent on the quality of the chosen quadruples. For a bigger training set, the 
accuracy grows with its size until a certain maximum accuracy level is reached. This level is 
different for different prepositions and we hypothesise that it can be broken only when a wider 
sentential or discourse context is used. 
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Figure 3: Accuracy/Corpus Size dependency curve 
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Our algorithm also provides a qualification certainty based on the heterogeneity of the decision 
tree leaves. The tree leaves are heterogeneous for two reasons: 1) the tree expansion is terminated 
when a node contains more than 77% of examples belonging to the same class, or, 2) when there 
are examples in the node that cannot be further divided because the tree has reached the bottom of 
the WordNet hierarchy. The Table 2 shows that the incorrect attachments usually occur with a 
lower certainty than the correct ones, i.e. most of the incorrect attachments are marked as less 
certain. 

TABLE 2: Certainty evaluation 
Certainty N u m b e r  

1.0 1424 ,i6.0 
"'0.8- 1~0 1261 40.7 
0.5 - 0.8 233 7.5 
Prepositional statistics 176 
Adjectival default 3 
TOTALS 3097 

Pe~'cent 

5.7 

Number  
Correct  

1226 

Accuracy 
[~o] 
86.1 

1219 96.7 
143 61.4 
137 77.8 

0.1 3 100.0 
100.0 2728 88.1 

The prepositional statistics indicates that there were no matches found for the given quadruple and 
the attachment was decided based on  the statistical frequency of the given preposition. Adjectival 
default was used in three cases when the preposition was not found in the training set. The 
certainty between 0.5 and 0.8 accounts mostly for the examples whose attachment was made 
through the decision tree, but there was either a small number of examples that participated on the 
creation of the tree branch or the examples were not sufficiently representative (e.g. contradictory 
examples). Most of the examples in this category possibly require a wider sentential context for 
further improvement of accuracy. The certainty bigger than 0.8 and smaller than 1.0 accounts for 
the situations when the decision was based on a leaf whose further expansion was terminated by 
the homogeneity termination condition or simply some noisy or incorrectly disambiguated 
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examples were involved in its creation 15. Examples, which did not reach the bottom of the 
decision tree and were assigned the majority class of the node from which there was no 
appropriate branch to follow, were all classified with certainty between 0.5 and 1.0. The decision 
with certainty 1.0 is always based on a homogenous leaf. It does not exhibit the highest accuracy 
because many of the homogenous leaves are formed from only very few examples and many of  
these are erroneous. 

As Figure 3 shows, each preposition has a different saturation accuracy which cannot be 
suttpassed unless a wider sentential context is used. We believe, however, that a bigger corpus 
would provide better word-sense disarnbiguation which in turn would allow to increase the 
homogeneity limit for the termination of the tree expansion. Heterogeneous nodes, which force 
the expansion of the decision tree to unnecessary extent, are caused by 1) examples with an error 
in the word sense disambiguafion, or by 2) examples, that can be both adjectival and adverbial if 
taken out of context. The second ease cannot be eliminated by a bigger training corpus, however, 
the reduction of noisy examples would contribute to an increase in accuracy mainly in the case o f  
small nodes which can now contain more noisy examples than correct ones and thus force a 
wrong attachment. We feel that a bigger corpus, would provide us with an increase of accuracy of 
"certainty 1" attachments, which partly includes attachments based on the small leaves. Also, we 
believe that a bigger training corpus would increase performance in the case of  less frequent 
prepositions which do not have enough training examples to allow for induction of a reliable 
decision tree. 

6. CONCLUSION AND FURTHER WORK 

The most cor0putationally expensive part of the system is the word sense disambiguation of the 
training corpus. This, however, is done only once and the disarnbiguated corpus is stored for 
future classifications of  unseen quadruples. The above experiments confirmed the expectations 
that using the semantic information in combination with even a very limited context leads to a 
substantial improvement of NLP techniques. Although our method exhibits an accuracy close to 
the human performance, we feel that there is still a space for improvement, particularly in using a 
wider sentential context (human performance on full sentential context is over 93%), more 
training data and/or more accurate sense disambiguation technique. We believe that there is 
further space for elaboration of our method, in particular, it would be interesting to know the exact 
relations between the accuracy and the termination condition, and between the corpus size and the 
optimum termination condition separately for each preposition. At the moment, we are working on 
an implementation of the algorithm to work on with a wider sentential context and on its 
incorporation within a more complex NLP system. 
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