
Bidirectional Incremental Generation and Analysis with Categorial Grammar and Indexed
Quasi-Logical Form.

Torbj/3m Lager William 3 Black
Department of Linguistics Centre for Computational Linguistics

University of GOteborg UMIST, Manchester
E-mail: lager@ling.gu.se E-mail: bill@ccl.umist.ac.uk

Abstract
We describe an approach to surface generation designed for
a "pragmatics-based" dialogue system. The implementation
has been extended to deal with certain well-known
difficulties with the underlying linguistic formalism
(Categorial Grammar) at the same time yielding a system
capable of supporting incremental generation as well as
interpretation. Aspects of the formalism used for the initial
description that constitutes the interface with the planning
component are also discussed.

1. Introduction
In a monolingual dialogue system, strong arguments are
needed for generation not to reversibly use the same
linguistic resources as parsing. We examine several charac-
teristics of an implemented surface generation component
deriving from the needs of this application. The generator
uses as its linguistic resource a lexicon encoded in a version
of Categorial Grammar (CG), the extension of which with
rules of function composition gives rise to a problem of
spurious overgeneration. As in analysis, these extensions
permit incremental processing, and the amelioration of
spurious overgeneration is demonstrated to follow identical
lines to that in analysis. Interpretation in the PLUS ~ system
(supporting dialogues about Yellow Pages information) was
carried out abductively (cf. Guessoum et al 1993) starting
l¥om an underspecified quasi-logical form. Reversibility
required the same formalism to be used for surface
generation, the feasibility of which was demonstrated by
Phillips (1993). We improve on his earlier version, solving
nontermination with modifiers, interfacing to a structured
morphological lexicon with efficient lookup, eliminating
spurious overgeneration arising from CG's rules of function
composition, and enabling incremental generation.

2 Generation:from indexed QLF
A working hypothesis of the PLUS project was that strict
compositionality provides too man3: meanings lbr efficient
interpretation. The alternative is to rely on defeasible
reasoning over an underspecified (w.r.t lexical, referential,
quantificational and attachment ambiguities) representation.
On the generation', side, we adopt a 3-way split between
content (i.e. application dictated) planning with output
expressed in terms of standard logical forms (LF), linguistic
planning (i.e. "how to say it"), with output expressed in
QLF, and realisation. Here, we only discuss the last
(Jokinen, 1993 describes the second). The two planning

components between them need to be able to exercise full
control of the linguistic choices, and do so through the QLF,
which includes linguistic features as well as predicate-
argument structures derived from the LF via the lexical
choice process.

We might conclude from this reasoning that what we
really need as surface generator input is the level of
description found in a typical feature structure analysis
assigned by a formalism like LFG/HPSG/FUG. Many
systems in the NLG literature have adopted this kind of
initial description language in preference to logical
languages. Our QLF contains the same kind of information
as this, encoded in a "flat" representation comprising a set of
first order Prolog terms. The flat QLF notation means that
the planner need not 'know' about the syntactic form of
feature structures as defined by a particular grammar, but
simply decide which grammatical constraints hold of each
logical element's realisation. That QLF is a quasi logical
form can be seen from two properties:

(a) It is less expressive in that it lacks scope constructs.

(b) It contains "non-semantic" information, such as
grammatical or pragmatic properties of linguistic
elements corresl:xmding to logical individuals and
variables.

The latter distinguishes our QLF from the bettcr known one
of Alshawi. The non-semantic predicates comprise a closed
class and are filtered from the QLF during lexicon lookup.
In the example below, p a s t t i m e (94) and nun~sing (96)
are examples of non-semantic annotations.

[def (95) ,name(95 ,bill) ,book(96), numsing (96),

long(s (96), 96) ,very(s (96)) ,indef (96),

past time(94),write(94), sub~(94,95),ob~(94,96)]
The generator is also constrained by a syntactic description
of the target phrase, but only at the top level.

The only properties of QLF relevant to the generation
algorithm are that it should be a conjunction of literals, with
instantiated arguments, and that each word in the lexicon has
at least one QLF term associated with it. 2 From the
perspective of the inferential comlxments in the dialogue
system, this is a proto-logical form and the relationship
between it and LF is beyond the scope of this paper. A
benefit of this formalism in relation to our generation
algorithm is the simplicity of its manipulation. Since QLF
statements are unordered sets, set theoretic operators (e.g.
membership, union) suffice for information extraction.
Fedder (1991) used a similar algorithm to generate from

IpI.I 'S: A Pragmatics-based Language Understanding System. Part-funded by the
(k~mmission of the European Commu,itics. Project N ° 528.4. See l~lack et a l (ITS)3)
for an overview.

2 This is a defect of the notation, rexluiring that particles have a "semantics'. This can
be remedied prapqmaticallv bv either a procedural attachment to the lexical ent~' of the
subcategorising~itcm (w[aich sacrifices bidircctionality) or by a dummy semantics
which can be inserted at the what to ~ y stage.

225

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

scoped logical forms, flattening them to a notation like the
one used here.
2.1 Lexicon lookup
Lexical lookup from QLF begins by filtering out the
predicates that do not correspond to lexemes.

(I) sleep(l) & past time(l) & name(2,john) &
def(2) & arg0(l,2)

In (1), the non-lexical elements a r g O (1 , 2) and
p a s t _ t i m e (1) , are ignored in accessing the lexicon, but
after retrieval of the relevant lexical entries, play their part in
filtering out inappropriate forms. The functors of the
remaining predications are used to index into the lexicon:
s l e e p (1) 's functor s l e e p corresponds to the lexeme or
citation form for the lexical entD', and the non-logical
annotation p a s t t i m e (1) will after lookup select the correct
form s l e p t . The indexes (1,2 in the example) are co-
instantiated between the semantics and the syntax in the
individual lexical and phrasal categories, so as to produce a
string corresponding to the correct argument bindings. (This
does not happen correctly if the indexes are uninstantiated
variables, as in a parse result.)
2.2 Categorial Grammar
The generation algorithm discussed in the next section is not
tied to a particular linguistic formalism, but favours a
lexicalist formalism with as few rules as possible. This is
especially true of CG in which most constituent structure is
captured by the two rules of function application. The CG
rules of forward and backward function application can be
stated as lbllows in the parsing grammar:

%%%% Forward application

f : : Root/Arg:FunSem + Arg:ArgSem =>
Root :MotherSem :-

append (ArgSem, FunSem, MotherSem).

%%%% Backward application

b : : Arg:ArgSem + RootkArg:FunSem =>
Root :MotherSem : -

append (Ar~Sem, FunSem, MotherSem).

(Their statement in the generation grammar is slightly
longer). In either case, the rules are matched by categories
recursively defined over the basic categories s,np and n and
the directional slash operators / and \. Briefly, an expression
of category A/B combines with an expression of category B
to form a phrase of category A. An instance is a determiner,
category n p / n combining with a common noun, category n,
to its right, forming a noun phrase, category rip. All expr-
essions in the lexicon belong to either basic or derived
categories. To take a complex example, the verb "bet"
requires a subject, two object nps and a further sentential
object~ and hence has catego~' s \ n p / s / n p / n p .

3 The surface generation algorithm
Initial edges are asserted into a chart, for each word in the
lexicon whose semantics is subsumed by the target
expression's semantics.. As each edge is added to the chart,
combinations are made with existing edges, as licensed by
the rulcs, and new spanning edges added. •

While this description may make the algorithm to
appear something of a blind search, it is in fact strongly
directed by the elements present in the QLF, supported by
an inversion of the indexing used in parsing.

The lexicon match is not based on direct unification of
the target phrase 's semantics with that of its head, a
fundamental requirement of the bottom-up head-driven
algorithm of Shieber et al (1989) and Van Noord (1990).
Relaxing this requirement enables semantically equivalent
QLFs (arising from commutativity of &) to be handled
directly without any special mechanism. The top-level
procedure is stated as follows in Prolog:

generate (--Syntax: Semantics, Text) : -

abolish(edge, i),

generate lex lookup(Semantics,Word,Syn,Sem),

acceptable (Sem, Semantics, Compl),

add_edge (Syn: [Word I R] : R: Sem: Compl, Word).

generate (Syntax :-semantics, Text) :-

ed~e(S~ntax:Text: [] :_: []).

The lookup procedure retrieves a word whose semantics is a
subset of that in S e m a n t i c s , returning the wordand ts
syntactic and semantic description, a c c e p t a b l e / 3 ensures
that the semantics of the word is a subset of the target
semantics, and also returns the "unused" part of the
semantics in Compl . Subsequent recursive calls work on
Compl , ensuring that constituents are not generated more
times (perhaps infinitely) than specified in the target
semantics. The second g e n e r a t e / 2 clause requires that all
elements in the target semantics are consumed. Add edge is
a recursiveprocedure that does the main work.

addEdge(Categoryl) :~

\+ (edge (Categoryl)),

assert (edge (Category i)),

foreaoh ((edge (Category2),

addEd~e (Mother)).

addedge/l operates just as it would in a parser: alier adding
edges to the chart, any combinations permitted with it are
applied recursively, x a p p l y / 3 applies the grammatical
rules, in this case the rules of categorial function application.

4 Type raising and Composition
A forward composition rule and a type raising rule have

been added to those of function application, both to the
parser and to the generator. Also, topicalization has been
added to the parser. In the parsing grammar (Ibr brevity)
these rules are stated as follows:

%%%% Functional Composition

fc :: A/B:FunSeml + B/C:FunSem2 => A/C:MotherSem
:- append(FunSeml,FunSem2,MotherSem).

%%%% Type Raising

ft :: np(Agr)#L:Sem =>
s(Form)#S/(s(Form)#S\np(Agr)#L):Sem.
%%%% Topic Type Raising

tt :: C#L:Sem => s(top)#S/(s(fin)#S/C#L):Sem :-

member(C,[np(A~r)]).

226

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

There have been two motivations for adding these rules to a
CG. Firstly, without them, certain co-ordinate and gapping
constructs cannot be described neatly. Secondly, they
permit incremental interpretation, said to be motivated on
psychological grounds. Examples in Section 4.1 illustrate
the co-ordinate and gapping constructions that can be
treated. With respect to generation, we also find incremental
processing well-motivated for interactive systems. Firstly,
in the context Of the PLUS project, corpus studies
(particularly in French) revealed a great deal of overlap
between the turns of the two parties in human-simulated
machine dialogues~ and hence the generator needs to be able
to begin realisation before the content is fully planned.
Secondly, this enables the generator to be incorporated into a
distributed or multi-agent architecture, since partial results
are available to external evaluation. Thirdly, interleaving
interpretation and planning with generation may create in the
user a more l:avourable impression of response time.

However, the benefits of incrementality are not without
their costs. In using rules of function composition, we

• I

encounter a spurzoza" ambiguity problem. This refers to the
multiplicity of derivation paths that are semantically
equivalent (and therefore spurious), for the same string, and
was first discussed by Wittenburg (1987). This causes
multiple generation of identical strings with the same
analysis, and an exponential increase in the search space.
Fortunately, this problem is already known in the domain of
parsing and what we have discovered is that its solution
carries over to generation more or less unaltered.

The method of Hepple and Morrill (1989) has been
used, in both parser and generator, to cope with spurious
ambiguity. The main idea is to enforce normal form proofs
by cutting the current branch in the search space when a
sequence of rule invocations known to lead to non-normal
lbrm derivations is about to be made.
4.1 Coverage of'the Grammar
We begin this section with some illustrative constructs and
their representation in the lexicon and in QLF, concluding
with an illustration of the non-constituent co-ordination and
gapping constructs that specifically motivate the rules of
function composition. Intensifier adverbs such as very,
quite, really enable sentences like (2) to be parsed or
generated. The QLF corresponding to adjectives is a two-
place predicate where the first argument is a state-variable.
The connection between a state and an object X in that state
is denoted using a skolem function s applied to X. Thus,
long(X) in a classical logic translation becomes Iong(s(X),X)
in the new representation. The full lexical entry for
adjectives is given as (3), and (4) is the lexical entD' for
intensifier adverbs. (5) shows one of the definitions for
"and" which enables sentences like (6) and (7) to be parsed
and generated.

(2) Bill wrote a very long book.

(3) non_infl_lex(Word,n(Agr)#X/n(Agr)#X,[QLF])
:- adj(Word), QLF=.. [Word, s(X),X].

(4) non_infl_lex(Word,(n(Agr)#X/n(Agr)#X)/

(n(Agr)#X/n(Agr)#X),[QLF]) :-

adverb(Word, grad), QLF =.. [Word,s(X)].

(5) non_infl_lex (and, C#Res \ C#Le ft/C#Right,

[conj (Res,Left,Right)]).

(6) Bill and Kristiina wrote a very short

book and a long letter today.

(7) Bill saw and heard Kristiina.

(8) Bill heard and Nancy saw Kristiina.

(9) Bill walks and Nancy runs today.

(10) Bill saw the man who John heard.

(ii) Bill saw the man who heard John.

Forward composition and type raising rules cover non-
constituent co-ordination as shown in (8) and (9). They also
permit analysis of WH-movement as shown in (10) and (11).

5. Incremental Generation
Incremental generation has been introduced (Kempen and
Hoenkamp 1982) on psychological grounds, and several
reports of surface generators have emphasised this property
(e.g. Reithinger, 1991, de Smedt and Kempen, 1991, van de
Veen forthcoming). In practical terms, the idea is that we
should be able to throw logical statements at the generator,
one at the time, as soon as they become available (as a
product of a reasoning process in a background application,
perhaps), and that the generator should be able to start
generating right away, without having to wait for the stream
of semantic representations to end.

Here we argue: 1) QLF is suitable for specifying the
content of the target to be generated incrementally, 2) a
chart-based generation algorithm is suitable for incremental
generation, and 3) CG rules used can determine the level of
'talkativeness' of an incremental generation system.

QLF is a suitable formalism for this kind of job since it
is designed especially with the representation of partial
information in mind. QLFs can, while still being well-
formed in a syntactic sense, codify such things as a
predicate-argument structure where one argument is not yet
specified, or a lack of knowledge concerning the properties
of another argument, and afterwards, at another time, when
it becomes available, the missing information can be given.

The main strengths of the chart-based algorithm used
are that QLF terms are not required in a particular order, or
all at once.

The only addition to the original CKY generation
algorithm is that when no more edges can be added to the
chart, the string(s) corresponding to all the QLF given so far
is printed; more QLF is requested from the background
process; It is then added as 'still to be consumed', and the
generation process is called recursivcly from there.

To see the role of the CG rules for regulating the
talkativeness of the generator, note that edges that have
consumed all semantic input at a given point in time, and
therefore deserve to be printed, must always correspond to
constituents given the grammar. Now, while a CG with only
forward and backward application (FA and BA), implies a
standard notion of constituency, rules like type raising (TR)
and functional composition (FC) give rise to a more
generous notion of constituency (this is what makes 'non-

227

7th International Generation Workshop • Kennebunkport, Maine • June 21-24, 1994

constituent co-ordination' possible). This means that an
incremental generation system of the kind sketched above,
employing FA, BA, TR and FC, will be 'chattier' than the
very same system employing only FA and BA.

For example, assuming only FA and BA, and QLF =
{indef(x), black(s(x),x)}, no string would be generated,
since np/n and n/n do not form a constituent. Assuming FA,
BA, FC and TR, and the same QLF, the string a b lack would
be generated, since np/n and n/n can be composed into the
constituent np/n. The string the b lack cat would be generated
under both circumstances, if cat(x) was added to the above
set.

As another example, consider how the incremental
version of the generator, which uses FA, BA, FC and TR,
interacts with a user (where the user - input in boldface -
plays the role of the QLF prcxlucing background process):

?- generate.
QLF term: def(x).
[the l
QLF term: man(x).
[the,man]
QLF term: write(e).
OLF term: subj (e , x) .

QLF term: obj (e,y).
QLF term: pres(e).
[the,n~n,writes]
QLF term: long(s(x) ,x).
[the, long, man, writes]
QLF term: indef(y).
[the, long,man,writes, a]
QLF term: short(s(y),y).
[the, long, man, writes, a, short]
QLF term: letter(y).
[the, long, man, writes, a, short, letter]

In the same circumstances, but given only FA and BA,
neither [the,man,writes] nor [the,long,man,writes,al, or
[the,long,man,writes,a,short] would be generated.

6. Conehlsion
A system for parsing and generation based on combinatory
categorial grammar and quasi-logical form has been
presented. The system seems to score high on at least the
following points:
• bi-directionality
• (potential) capability of handling a large repertoire of

grammatical phenomena
• incrementality

The system is bi-directional in the sense that given a
quasi-logical form, that the parser would have produced had
it been given the same string, the generator will produce the
same string. Of course, this is the case only if we choose to
usc exactly the same rules (and lexicon) for both parsing and
generation.

The large repertoire of grammatical phenomena that can
(potentially) be handled in the system is due to the fact that
it was possible, without much performance penalty (due to
the use of the Hepple-Morrill method of eliminating
spurious ambiguity), to implement, on top of forward and
backward application, rules such as type raising and

functional composition. This enables many forms of
discontinuity phenomena to be treated.

The framework used also seems to offer some
interesting possibilities for incremental generation, which is
particularly pertinent for surface generation within the
context of dialogue systems.

References
Black, William J, Nancy Underwood, Hamish Cunningham

and Kristiina Jokinen, "Dialogue Management in a
Pragmatics-Based Language Understanding System" In
Eds. McEnery, T and Paice, C. Proc 14th Information
Retrieval Colloquium, Lancaster 1992, 79-88, Springer-
Verlag, 1993.

Guessoum, A, Black, W J, Gallagher, J and Wachtel, T J.
"Abduction for Pronoun Resolution", Proc ICLP
Workshop on Abduction, Budapest, 1993.

Hepple, Mark and Morrill, Glyn. "Parsing and Derix, ational
Equivalence". Proc. 4th European ACL, 10-18, 1989.

Jokinen, K. "Reasoning about Coherent and Co-operative
System Responses", Proc. 5th European Workshop on
Natural Language Generation, Pisa, April 1993.

Kempen, Gerard and Edward Hoenkamp. "Incremental
sentence generation: implications for the structure of a
syntactic processor.'" In COLING-82, 151-156, 1982.

Phillips, J. D. "Generation of text from I_.ogical Formulae"
Machine Translation 8(4), 209-9_36, 1993.

Reithinger, Norbert. "POPEL: A Parallel and Incremental
Natural Language Generation System" In Eds. Paris,
Swartout and Mann Natural Language Generation in
Artificial Intelligence and Computational Linguistics
Kluwer, 179-200, 1991.

Shieber, Stuart M, Gertjan van Noord, Robert C Moore and
Fernando C N Pereira, "A Semantic Head-Driven
Generation Algorithm for Unification Grammars", Proc.
ACL, 27th Annual Meeting, 7-17, 1989.

de Smedt, Koenraad and Gerard Kempen, "Segment
Grammar. A Formalism for Incremental Sentence
Generation" In Eds. Paris, Swartout and Mann Natural
Language Generation in Artificial Intelligence and
Computational Linguistics Kluwer, 329-350, 1991.

van de Veen, Evelyn. "Incremental generation for highly
interactive dialogues" Proc. Workshop on Pragmatics in
Dialogue Management, XIV Scandinavian Conference of
Linguistics, 16-21 August, 1993, (forthcoming).

van Noord, Gertjan. "An Overview of Head-Driven
Bottom-Up Generation" In Eds. Dale, Mellish and Zock,
Current Research in Natural Language Generation.
Academic Press, 141-166, 1990.

Wittenburg, Kent. "Predictive combinators: a method for
efficient processing of combinatory categorial grammars."
In ACL Proceedings. 25th Annual Meeting, 73-80, 1987.

228

