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A b s t r a c t .  Discourse planning systems developed to date  
apply local considerations in order to generate an initial pre- 
sentation that  achieves a given communicative goal. However, 
they lack a global criterion for selecting among alternative 
presentations. In this paper, we cast the problem of plan- 
ning discourse as an optimization problem, which allows the 
definition of a global optimization criterion. In particular,  
we consider two such criteria: (1) generating the most con- 
cise discourse, and (2) generating the 'shallowest'  discourse, 
i.e., discourse that  requires the least prerequisite information. 
These criteria are embodied in a discourse planning mecha- 
nism which considers the following factors: (1) the effect of a 
user's inferences from planned utterances on his/her beliefs, 
(2) the amount of prerequisite information a user requires 
to understand an utterance, and (3) the amount of infor- 
mation that  must be included in referring expressions which 
identify the concepts mentioned in an utterance. This mecha- 
nism is part  of a discourse planning system called WISHFUL- 
II which generates explanations about concepts in technical 
domains. 

1 I n t r o d u c t i o n  

Schema-based Natural  Language Generation (NLG) systems, 
e.g., [Weiner, 1980; McKeown, 1985; Paris, 1988], determine 
the information to be presented based on common patterns 
of discourse. Goal-based planners, e.g., [Moore and Swartout, 
1989; Cawsey, 1990], select a discourse operator if its pre- 
scribed effect matches a given communicative goal. If there 
is more than one such operator,  the operator whose prereq- 
uisite information is believed by the user is preferred. How- 
ever, if all the candidate operators require the generation 
of discourse that  conveys some prerequisite information, the 
selection process is either random or the system designer de- 
termines in advance which operators should be preferred. 

In this paper, we cast the problem of planning discourse 
that  achieves a given communicative goal as an application of 
an optimization algorithm. This approach supports the defi- 
nition of different optimization objectives, such as generating 
(1) the most concise discourse; (2) the 'shallowest' discourse, 
i.e., discourse that  requires the least amount of prerequisite 
information; or (3) the most concrete discourse, i.e., discourse 
with the most examples. The resulting mechanism is part of 
a discourse planning system called WISHFUL-II ,  which is a 
descendant of the WISHFUL system described in [gukerman 
and McConachy, 1993a]. 

Table 1 illustrates the discourse generated by our system 
using the concise and the shallow optimization objectives. 

Table  1. Sample Concise and Shallow 'Wallaby' Discourse 
i C o n c i s e  Discourse  Shal low Discourse  

W a l l a b i e s  have  a pouch ,  W a l l a b i e s  a r e  N a r s u p i a l s  and 
which  i s  l i k e  a pocket ,  they  come f rom L u s t r a l i a .  

T h e y  a r e  l i k e  k a n g a r o o s ,  They hop and t h e y  a r e  3 f t .  
bu t  t h e y  a r e  3 f t .  t a l l .  t a l l .  W a l l y  i s  a u a l l a b y .  

These texts  were generated in order to convey the at tr ibutes 
type, habitat, body parts, height and transportation mode 
of the concept Wallaby to a user who owns a toy wallaby 
calhd Wally, and knows something about kangaroos, but is 
not familiar with the term pouch. 

The concise discourse conveys most of the intended in- 
formation by means of a Simile between wallabies and kan- 
garoos. The  Simile also yields the erroneous inference that  
wallabies are the same height as kangaroos. To contradict 
this inference, the system asserts that  wallabies are 3 ft. tall. 
Since the user does not know that  kangaroos have a pouch, 
this is asserted, and since the user does not know what a 
pouch is, information which evokes this concept is presented. 
The shallow discourse, on the other hand, uses Wally (the 
toy wa.llaby) to convey the body parts  of a wallaby without 
naming them explicitly. This information is complemented 
by Assertions about a wallaby's type, habitat ,  height and 
t ransporta t ion mode. 

In the next section, we present an overview of WISHFUL- 
II. In Section 3, we describe the discourse plaaming mech- 
anism. We then discuss the results we have obtained, and 
present concluding remarks. 

2 O v e r v i e w  o f  t h e  S y s t e m  
WISHFUL-I I  receives as input  a conceptto be conveyed, e.g., 
Wallaby, a list of aspects tha t  must be conveyed about  this 
concept, e.g., habi ta t  and body parts,  and a desired level of 
expertise the user should at tain as a result of the presenta- 
tion. 

WISHFUL-I I  was used to generate descriptive discourse in 
various technical domains, such as chemistry, high-school al- 
gebra, animal taxonomy and Lisp. It produces multi-sentence 
paragraphs of connected English text. The discourse plan- 
ning mechanism, which is the focus of this paper,  generates 
a set of Rhetorical Devices (RDs), where each RD is a rhetor- 
ical action, such as Assert,  Negate or Instantiate,  applied to 
a proposition. This set of RDs is optimal with respect to a 
given optimization criterion, e.g., conciseness or depth.  

The following steps axe performed by WISHFUL-II .  
1. C o n t e n t  S e l e c t i o n  - WISHFUL-I I  consults a model of 

the user 's beliefs in order to determine which propositions 
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must be presented to convey the given aspects of a concept. 
This step selects propositions about which the user has 
misconceptions, propositions that  axe unknown to the user, 
and propositions that  are not believed by the user to the 
extent demanded by the desired level of expertise. 

2. G e n e r a t i o n  o f  t h e  O p t i r a a l  S e t  o f  R D s  - WISHFUL- 
II searches for a set of RDs that  conveys the propositions 
generated in the previous step while satisfying a given op- 
t imization objective. The process of generating candidate 
sets of RDs considers the following factors: (1) the effect of 
inferences from an RD on a user's beliefs; (2) the amount 
of prerequisite information required by the user to under- 
s tand the concepts in an RD; and (3) the amount of in- 
formation to be included in referring expressions which 
identify the concepts in an RD. 

3. D i s c o u r s e  S t r u c t u r i n g -  A discourse structuring mech- 
anism extracts  discourse rda t ions  and constraints from the 
set of RDs generated in Step 2. I t  then generates an or- 
dered sequence of the RDs in this set, where the strongest 
relations between the RDs are represented and no con- 
straints  are violated. Where necessary, the RDs in this 
sequence are interleaved with conjunctive expressions that  
signal the relationship between them [Zukerman and Mc- 
Conachy, 1993b]. 

4. G e n e r a t i o n  o f  A n a p h o r l c  R e f e r r i n g  E x p r e s s i o n s -  
Anaphoric referring expressions are generated for RDs that  
refer to a concept in focus. This process follows the or- 
ganization of the discourse, since the appropriate use of 
anaphora depends on the structure of the discourse. 

5. D i s c o u r s e  R e a l i z a t i o n  - The resulting sequence of RDs 
is realized in English by means of the Functional Unifica- 
tion Grammar  described in [Elhadad, 1992].  

3 Genera t ing  the  Opt imal  Set of RDs 
The main stage of the optimization procedure consists of 
generating alternative sets of RDs that  can convey a set of 
propositions. The first s tep in this stage consists of generating 
candidate RDs tha t  can convey each proposition separately. 
To this effect, WISHFUL-I I  reasons from the propositions de- 
termined in the content selection step to the RDs that  may 
be used to convey these propositions. This  reasoning mecha- 
nism has been widely used in NLG systems, e.g., [Moore and 
Swartout,  1989; Cawsey, 1990]. 

The process of generating a set of RDs tha t  can convey a 
set of propositions is not a straightforward extension of the 
process of generating candidate RDs tha t  can convey each 
proposition separately. This is due to the foUowing reasons: 
(1) an inference from an RD generated to convey a propo- 
sition pl may undermine the effect of an RD generated to 
convey a proposition pj; and (2) an RD generated to con- 
vey a proposition pl may be made obsolete by an RD which 
was generated to convey another proposition, but  from which 
the user can infer pi. Further,  it  is not sufficient to propose 
a single set of RDs that  can convey a set of propositions, 
because a set of RDs that  initially appears  to be promising 
may require a large number of RDs to convey its prerequi- 
site information or to identify the concepts mentioned in it. 
Thus, after generating the RDs that  can convey each of the 
intended propositions separately, the optimization procedure 

must  consider concurrently the following inter-related factors 
in order to generate candidate sets of RDs that  can convey 

the intended propositions: (1) the effect of the RDs in a 
set on a user's beliefs, (2) the prerequisite information that  
the user must know in order to understand these RDs, and 
(3) the referring expressions required to identify the concepts 
mentioned in these RDs. 

Owing to the interactions between the RDs in a set, the 
problems of generating the most concise set of RDs and gen- 
erating the shallowest set of RDs are NP-hard 1. Since this 
level of complexity is likely to be maintained for other  opti- 
mization objectives, we have chosen a weak search procedure 
for the implementation of the optimization process. 

In the following sections, we describe the optimization pro- 
cess as an application of the Graphsearch algorithm [Nilsson, 
1980], and discuss the implementation of the main steps of 
this algorithm. 

3.1 The Basic Opt imizat ion P rocedure  
Our optimization procedure, Optimize-RDs, receives as in- 
put  the set of propositions generated in the content selection 
step of WISHFUL-II .  I t  implements a simplitied version of 
the Graphsearch algorithm [Nilsson, 1980] to generate a set 
of RDs that  conveys these propositions and satisfies a given 
optimization criterion. The discourse planning considerations 
are incorporated during the expansion stage and the evalua- 
tion stage of Graphsearch. 

The  expansion stage of our procedure activates algorithm 
Ezpand-sets-of-RDs, which generates alternative minimally 
sufficient sets of RDs tha t  can convey a set of intended 
propositions (S tep  5 in procedure Optimize.RDs). A set of 
RDs is minimally sufficient if the removal of any RD causes 
the set to stop conveying the intended information. Note that  
a minimally sufficient set of RDs is not necessarily a min- 
imal set of RDs. For example, both of the alternatives in 
Table 1 are composed of minimally sufficient sets of RDs. 
In this stage, the procedure also determines which prerequi- 
site propositions must be known to the user to enable a set of 
RDs to convey the intended propositions, and which referring 
expressions are required to identify the concepts in a set of 
RDs. During the evaluation stage, the procedure ranks each 
set of RDs in relation to the other candidates,  and prunes 
redundant RDs (Step 7). Both the ranking process and the 
pruning process consider the extent to which a set of RDs is 
likely to satisfy a given optimization criterion. 

Algorithm Op t im l ze -RDs(  {propositions} ) 
1. Create a search graph G consisting solely of a s t a r t  node s 

which contains {propositions}. Put  s in a list called OPEN. 
2. LOOP: If OPEN is empty, exit with failure. 
3. Select the first node in OPEN, remove it from OPEN. Call 

this node n. 
4. If n does not require prerequisite information or referring 

expressions, then exit successfuUy (n is a goal node). 
5. E x p a n s i o n :  M *..- Ezpand-sets-oI-RDs(n). 

Install  the sets of RDs in M as successors of n in G. 

I Finding a concise set of RDs that conveys a set of propositions 
reduces to the Minimum Covering problem, and finding a shal- 
low set of "RDs that conveys a set of propositions reduces to 
Satisfiability [Gaxey and Johnson, 1979]. 
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6. Add the successors of node n to OPEN. 
7. E v a l u a t i o n :  Reorder the nodes in OPEN and prune re- 

dundant  nodes according to the given optimization crite- 
rion. 

8. Go LOOP. 

3.2 Expanding  Sets of  RDs 
Procedure Expand-sets-of-RDs receives as input a node to 
be expanded, and returns all the minimally sufficient sets 
of RDs that  convey the set of propositions in this node, ac- 
companied by their respective prerequisite propositions and 
referring expressions. We compute all the minimally suffi- 
cient sets of RDs, rather  than jus t  the minimal set of RDs, 
because a set of RDs tha t  initially appears to be promising 
may require a large number of RDs in order to convey its 
prerequisite information or to identify the concepts in it. 

Algorithm E x p a n d - s e t s - o f - R D s ( n )  

1. Determine RDs that  increase a user's belief in each propo- 
sition in node n. (Not all the RDs generated in this step 
axe capable of conveying an intended proposition by them- 
selves, but  they may be able to do so in combination with 
other RDs.) ( S e c t i o n  3.2.1) 

2. Use these RDs to construct  minimally sufficient sets of 
RDs tha t  convey all the propositions in n jointly. Put  these 
sets of I~Ds in {A47~D}. ( S e c t i o n  3.2.2) 

3. Determine the prerequisite propositions required by each 
set of RDs in {A4gD} so tha t  the user can understand it. 

( S e c t i o n  3.2.3) 
4. Determine referring expressions which evoke the concepts 

in each set of RDs in {.MT~D}. ( S e c t i o n  3.2.4) 

The output  of Ezpand.sets-of.RDs takes the form of a set 
of RD-Graphs. An RD-Graph is a directed graph tha t  con- 
tains the following components:  (1) the set of propositions to 
be conveyed (p l , . - - ,p ,~  in Figure 1); (2) a minimally suffi- 
cient set of RDs (RD~,.. . ,  RDm); (3) the effect of the infer- 
ences from the RDs in this set on the intended propositions, 
and possibly on other (unintended) propositions (labelled 
wid); (4) the prerequisite propositions that  enable these RDs 
to succeed (p~ . . . .  ,p~); (5) the relations between the pre- 
requisite propositions and the main RDs (in thick lines); 
(6) the sets of RDs tha t  evoke concepts in the main RDs 
({RD m+l } . . . .  , {RD m+t }); and (7) the relations between the 
evocative sets of RDs and the main RDs (labelled vm+id)- 
The main set of RDs and the relations between the RDs in 
this set and the propositions to be conveyed are generated 
in Step 2 above. The weight wid contains information about 
the effect of RDi on the user 's belief in proposition pj. The 
prerequisite propositions are generated in Step 3, and the 
evocative sets of RDs and their corresponding links are pro- 
duced in Step 4. 

3.L1 Determining RDs 
Given a list of propositions to be conveyed, {p}, in this 
step we propose RDs that  can increase a user's belief in 
each of these propositions. To this effect, for each propo- 
sition pi E {p} we first consider the following RDs: Asser- 
tion (A),  Negation (N) ,  Instantiat ion (I) and Simile (S), 

w l  a . ~, . ~ - - " ' P ~  v ~ + 1 , 1  
, { 

 {RD =+'} 

~ . . /  ~RD,~'r "- {RD ~+'1 

Figure  1. An RD-Graph 

where different Instantiations and Similes may be generated 
for each proposition. For example, the proposition [Bracket- 
Simplification step-1 + / - ]  may be instant ia ted with respect 
to Numbers, e.g., 2(3 + 5) -- 2 × 8, and to Like Terms, e.g., 
2(3z + 5z) = 2 × 8z. Those RDs that  increase a user 's  belief 
in pl are then put  in a list called RD.list(pl). Next, for each 
proposition pi,  we consider the RDs in RD-list(pi). If  an in- 
ference from any of these RDs increases a user's belief in a 
proposition pj  # pi, this RD is added to RD.list(pj). In aA- 
dition, if any of the generated RDs yields an incorrect belief 
with respect to a proposition that  is not  in {p}, this propo- 
sition is added to {p}, and the process of determining RDs 
is repeated for this proposition in conjunction with the other 
propositions in {p}. This is necessary because RDs tha t  axe 
used to convey this new proposition could affect other propo- 
sitions previously in {p} and vice versa. This process stops 
when no incorrect beliefs are inferred. 

This process is implemented in algorithm Determine-RDs, 
which receives three input parameters:  (1) the propositions 
for which RDs were generated in the previous recursive call 
to Determine-RDs, (2) the propositions to be considered in 
the current activation of Determine-RDs, and (3) the RD-list 
generated in the previous recursive calls. I ts  initial activation 
is Determine-RDs(nil,{p}, nil), and its output  is RD.list. 

A l g o r i t h m  Determine-RDs( {oldp},{newp},RD-list) 

1. B a c k w a r d  r e a s o n i n g :  
For each proposition p / G  {newp} do: 

(a) Consider the following RDs: Assert(pi) ,  Negate(~pi) ,  
Ins tant ia te(pi , I )  and Say-Simile(Oi,O), where the In- 
stantiation is performed with respect to an instance I ,  
and the Simile is performed between an object  Oi, which 
is the subject  of proposition pl, and another object  O ~. 
(Note tha t  several instances I and objects O may be 
used to generate different Instantiat ions and Similes, re- 
spectively.) 

(b) Assign to RD-list(pi) the RDs tha t  increase the user's 
belief in pl. 

2. F o r w a r d  r e a s o n i n g :  

(a) For each proposition pi E {newp} determine whether 
any RD in RD.list(pi) supports other propositions in 
{oldp} U{newp}. If so, add this RD to the RD-lists of 
these propositions. 

2 Other RDs that may be generated involve subclass or superclass 
concepts of the target concept in an intended proposition. How- 
ever, the generation of these RDs has not been incorporated into 
WISHFUL-II yet. 
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(b) For each proposition pi ~ {oldp} determine whether any 
RD in RD.list(pl) supports  propositions in {newp}. If 
so, add this RD to the RD-lists of these propositions. 

(c) Append the propositions in {newp} to {oldp}. 
(d) If any RD used to convey a proposition pi E {newp} 

yields incorrect beliefs, then 

i. Assign to {newp} the propositions which contradict  
these beliefs. 

if. Assign to RD-list the result returned by Determine- 
RDs({oldp},{newp},RD-list) 

3. Return( RD-list) 

To illustrate this process, let us consider a situation where 
we want to convey to the user the following propositions: 
[Wallaby hop] and [Kangaroo hop]. In the first stage, our pro- 
cedure generates two RDs tha t  can convey the proposition 
[Wallaby hop]: Asser t [Wal laby hop] and Ins t an t i a t e [Wal l aby  
hop], where the  Instantiat ion is performed with respect to a 
wallaby called Wally that  is known to the user. Our proce- 
dure  generates only the RD Asser t [Kangaroo hop] to convey 
the proposition [Kangaroo hop] (an Instantiat ion is not gen- 
era ted  since the  user is not familiar with any particular kan- 
garoos). In the forward reasoning stage, the inferences from 
these RDs axe considered. If the user knows that  wall£bies 
are similar to kangaroos, the RD generated to convey the 
proposition [Kangaroo hop] can increase the user's belief in 
the  proposition [Wallaby hop], and is therefore added to the 
RD-listof [Wallaby hop]. Similarly, the RDs generated to con- 
vey [Wallaby hop] are added to the RD.listof [Kangaroo hop]. 
From the above Assertions the user may also infer incorrectly 
tha t  wombats hop. In this case, a proposition which negates 
this  incorrect conclusion, i.e., [Wombat -~hop], is assigned to 
{newp}. The RDs  that  can convey this proposition in our ex- 
ample axe Nega t e [Womba t  hop] and I n s t a n t i a t e [ W o m b a t  
-~hop], where the  Instantiat ion is performed with respect to 
a wombat called Wimpy that  is known to the user. These 
RDs in turn may yield the incorrect inferences that  neither 
wallabies nor kangaroos hop, which contradict  the intended 
propositions. However, since the propositions that  contradict  
these inferences already exist in {oldp}, the process stops. 

3.2.2 Constructing Minimally Sufficient Sets of RDs 

In this step, we generate all the minimally sufficient sets of 
RDs that  can convey jointly all the intended propositions. 
For each proposition pi, we first determine whether RDs that  
were generated to convey other propositions can decrease a 
user 's  belief in pl.  Next, for each RD in RD.list(pl), we deter- 
mine whether it  can overcome the detr imental  effect of these 
'negative '  RDs. This step identifies combinations of RDs that  
cannot  succeed in conveying the intended propositions. I t  re- 
sults in the following labelling of the RDs in RD-list: RDs 
tha t  cart overcome all negative effects are labelled with the 
symbol  Jail] (the only RDs tha t  may be labelled in this man- 
ner axe Assertions and Negations); RDs tha t  cannot convey 
an intended proposition by themselves are labelled with the 
symbol [-]; RDs tha t  can convey an intended proposition, but  
cannot overcome any negative effects are labelled with [none]; 
and the remaining RDs are labelled with the negative RDs 
they can overcome. 

We then use a search procedure to generate all the sets 
of RDs which consist of one RD from each RD.list. The 
sets of RDs that  convey all the  intended propositions are 
then stored in a list called SUCCEED; and the sets of RDs 
that  fall to convey one or more propositions axe stored in 
a list called FAILED, together  with the proposition(s) that  
failed to be conveyed. Addi t ional  minimally sufficient sets of 
RDs axe then generated from FAILED as follows: we select 
a proposition pi that  was not  conveyed, and create pairs of 
RDs composed of the RD tha t  failed to convey pi and each 
of the other RDs in RD.list(pl) tha t  is not labelled Jail] (the 
RDs that  are labelled Jail] can convey pi by themselves, and 
therefore there is no need to combine them with other RDs). 
Each pair of RDs inherits the negative RDs that  can be over- 
come by its paxents, and may be able to overcome additional 
negative RDs which caused its parents  to fail separately. For 
each pair of RDs, a new set of RDs is created by replacing 
the RD which failed to convey pi with this pair of RDs. The 
search is then continued for each of these new sets of RDs 
until a minimally sufficient set of RDs is generated or fail- 
ure occurs again. In this case, the process of generating pairs 
of RDs is repeated,  and the seaxch is resumed. If a pair  of 
RDs fails, then it forms the basis for triplets, and so on. The 
search stops when the RD.list of a proposition which failed 
to be conveyed contains no RDs with which the failed RDs 
(or RD-tuples) can be combined. 

A l g o r i t h m  Construct.sets-of-RDs( {p}, RD-list) 
1. Initialize two lists, SUCCEED and FAILED, to empty. 
2. Determine- I~Ds( nil, {p } , nil). 
3. For each proposition p~ E {p} 

(a) Put  in NegRDs(pl) all the RDs in RD-list tha t  have a 
negative effect on pi.  

(b) Label each RD in RD-list(p~) according to the RDs in 
NegRDs(pi) whose effect it  can overcome. If there are 
several RDs in NegRDs(pi) then all the combinations of 
these RDs must be considered. 

4. Exhaustively generate all the combinations of RDs con- 
sisting of one RD from the RD-list of each proposition. 
Consider the combined effect of several RDs to determine 
whether a set of RDs conveys completely a set of proposi- 
tions. 

5. Append the successful combinations of RDs to SUCCEED, 
and remove any sets of RDs in SUCCEED tha t  subsume 
other sets of RDs. 

6. Append the failed combinations of RDs to FAILED to- 
gether with the reason for the failure, i.e., the RDs that  
failed and the propositions tha t  were not conveyed. 

7. If FAILED is empty, then exit.  
8. Assign to CURRD the first set of RDs in FAILED, and 

remove it from FAILED. 
9. Select from CURRD a proposit ion pi tha t  was not  con- 

veyed, and generate successors of CURRD as follows: 

(a) Generate children of the RD tha t  failed to convey pi by 
combining it with other RDs in RD-list(pi) tha t  axe not 
labelled Jail]. 

(b) If the failed RD has no children in pl, then remove from 
FAILED all the sets of RDs which failed when this RD 
tried to convey pi, and go to Step 7. 
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Table 2. Sample RDs (labelled) 

Proposition RDs and labels 
Pl: [Wallaby hop] A(pI) Jail] 

I(pl) [none] 
A(p2) [-] 

P2: [Kangaroo hop] A(p2) Jail] 
A(pl) [I(-p3)] 
x(p~) [-] 

"P3: [Wombat -~hop] i ]~]'(P3) [A(pl)+I(p1), A(p2)] 
I I('~p3) [I(pl), A(pI)] 

(c) Attach to each combination of RDs the list of negative 
RDs it can overcome. 

(d) Create sets of RDs such that  in each set the failed RD 
is replaced with one of its children. 

10. Go to Step 5. 

To il lustrate this process, let us reconsider the example 
discussed in Section 3.2.1. Table 2 contains the RD-lists for 
the propositions in this example, where each RD is labelled 
according to the RDs whose negative effect it  can overcome. 
For instance, Nega t e (p3 )  can overcome the combined nega- 
tive effect of Asse r t (p~)  and I n s t a n t i a t e ( p z ) ,  and also the 
effect of Asse r t (p2) .  However, it  cannot overcome the com- 
bined effect of Asse r t (p1 )  and Asse r t (p2) ,  or Asse r t (p2 )  
and I n s t a n t i a t e ( p 1 ) .  I n s t a n t i a t e ( p x )  can convey proposi- 
tion pl ,  but cannot overcome any negative effects. Asser t (p2)  
contributes to the belief in pl but cannot convey it alone. 

Figure 2 contains part  of the search tree generated in Step 
4 of algorithm Construct-sets-o/-RDs. Each path in this tree 
contains one RD from each row in Table 2. Successful paths 
axe drawn with thick lines and are marked S. Failed paths are 
marked F accompanied by the propositions which were not 
conveyed by the RDs in these paths. An RD that  increases 
a user's belief in more than one proposition may appear  in 
a path more than once. The repeated instances of such an 
RD appear in brackets, e.g., {Asser t (px)} ,  indicating that  
the RD will be mentioned only once. In the successful path 
to the left, Asse r t (p1 )  can overcome all negative effects to 
convey p~. In addition, it can overcome the negative effect of 
I n s t a n t i a t e ( - , p 3 )  to convey p2, and I n s t a n t i a t e ( - , p 3 )  can 
overcome the negative effect of Asser t (p1 ) to convey ",p3. 

A(pl) 

A(p~) {A(p,)) 

/ \  / \  
N(p~) I(-,p~) g(p~) I(--,p~) 

F F F S 

"nP3 "aP3 P2 

I(pa) 

/ \  
N(p3) I(-~p3) 

S F 

"~p3 

F igu re  2. Partial Sample Seaxdl Tree 

Table  3. Sets of RDs after the Initial Search 
1. Assert(p1) Instantiate(-~p3) 

SUCOZSSFUL 2. Assert(p1) Instantiate(pl) 
Negate(p3) 

FAILED 

3. Assert(pl) Assert(p2) "~P3 
Negate(ps) 

4. Assert(p1) Negate(p3) P2 
5. Instantiate(pl) Assert(p2) "P3 

Negate(p3) 
6. In s t an t i a t e (p l )  Assert(p2) "~P3 

Instantiate(-,p3) 
7. In s t an t i a t e (p l )  Negate(p3) {Pi,P2} 
8. Instantlate(pl) {Pl, P2 } 

Instantiate(-,p3) 
9. Assert(p2) Negate(p3) Pl 

10. Assert(p2) Instantlate(-~p3) {Pl,'~P3} 

In the successful path  to the right, Asse r t (p1)  together with 
I n s t a n t i a t e ( p l )  overcome the negative effect of Nega t e (p3 )  
to convey p2, even though neither could do so by itself; and 
N e ga t e (p3 )  can overcome the joint effect of Asser t (p1 ) and 
I n s t a n t l a t e ( p l  ). 

Table 3 contains the successful minimally sufficient sets 
of RDs generated by this search and the failed sets of RDs 
accompanied by the propositions that  were not conveyed. 
In Step 9 of Construct-sets-o/-RDs, the RDs that  failed to 
convey a proposition axe combined with other RDs that  can 
increase the user 's belief in this proposition. For instance, 
Nega t e (p3 )  is combined with Ins tan t la te ( -~p3)  for all the 
paths  where -~p3 failed to be conveyed, and the seaxch is 
continued. Our procedure does not generate children from 
repeated RDs tha t  failed to convey a proposition, since this 
would yield already existing combinations of RDs. Table 4 
contains the minimally sufficient sets of RDs returned by al- 
gori thm Gonstruet-sets-ofiRDs. Set 5-6 is obtained by com.- 
plementing Set 5 in Table 3 with the RD Ins tan t ia te ( -~p3) ,  
and also by complementing Set 6 with the RD Nega te (p3) .  
Addit ional  successful sets of RDs are generated by append- 
ing complen~entaxy RDs to the failed sets of RDs in Table 3. 
However, these sets subsume Set I, 2 and 5-6, and hence axe 
not minimally sufficient. For example, when Set 4 in Table 
3 is complemented with Instantiate(pl), it yields a set of 
RDs that is equal to Set 2. This set is removed in Step 5 of 
Gonstruct-sets-of-RDs. 

This process ensures that only minimally sufficient sets 
of RDs are generated, because it generates RD-tuples only 
from the unsuccessful RDs in the RD-list of a proposition, 
and it prunes sets of RDs that subsume other sets of RDs. In 
addition, this process ensures that all the minimally sufficient 
sets of RDs axe generated, because it considers all the RD- 
tuples resulting from the unsuccessful RDs in the RD.list of 
a proposition. 

Table 4. Minimally Sufficient Sets of aDs 

1. Assert(p1) Instantiate(-~p3) 
2. Asse r t (p l )  Ins t an t i a t e (p l )  Negate(p3) 

5-6. I n s t an t i a t e (p l )  Assert(p2) Negate(p3) 
Ins tant ia te(- ,p3)  
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3.2.3 Determining Prerequisite Propositions 
The prerequisite propositions to be conveyed depend on the 
user's expertise with respect to the concepts mentioned in 
a set of RDs, and on the context where these concepts are 
mentioned. The  context influences both the aspects of these 
concepts that  must  be understood by the user and the extent 
to which these aspects must be understood. 

The  process of determining the relevant aspects  of a con- 
cept and the required level of expertise is described in [Zuk- 
erman and McConachy, 1993a]. The relevant aspects of a 
concept are determined by considering the predicates of the 
propositions where a concept is mentioned, and the role of the 
concept in these propositions. For example, in order to un- 
derstand the RD Assert[Marsupial has-part pouch], the user 
must know the aspects type and structure of a pouch, i.e., 
what  i t  is and what  it  looks like. The extent to which a user 
must  know the selected aspects of a concept depends on the 
relevance of this concept to the original propositions to be 
conveyed, i.e., the  system demands a high level of expertise 
with respect to the more relevant concepts, and a lower level 
of expertise with respect to the less relevant ones. 

After  the relevant aspects and required level of expertise of 
each concept have been determined, WISHFUL- I I  applies the 
content selection step described in Section 2 to determine the 
prerequisite propositions of each concept. WISHFUL-I I  then 
merges into a single set the prerequisite propositions gen- 
erated for individual concepts. This merger is executed be- 
cause some prerequisite propositions of two or more concepts 
may be conveyed by a single RD. A special case of this hap- 
pens when two or more concepts have common prerequisite 
propositions. For example, consider the si tuation depicted in 
Figure 3, where prerequisite information for the set of RDs 
{RD1,RD2} is being conveyed. RD1 requires the prerequi- 
site propositions {pl,p2}, while RD2 requires the prerequi- 
site propositions {p2, p3, p4 }. If we considered separately the 
prerequisites of these RDs, we would generate RDs to con- 
vey {pl,p2}, and {RD4,RDs} to convey {p2,pa,p4}. This 
would result in a total  of three RDs. However, by consider- 
ing jointly all the  prerequisite propositions of {RDi, RD2}, 
we will require two RDs only, namely {RD3, RDs}. 

3.2.4 Evoking the Concepts in a Set of RDs 
RDs that  convey referring information differ from RDs that  
convey prerequisite propositions in tha t  the former identifies 
a concept by means of information known to the user, while 
the la t ter  conveys information that  the user does not know 
about a concept. Further,  the process of generating referring 
information has the flexibility of selecting the propositions 
tha t  can identify a concept uniquely, while the propositions 

F igure  3. 

l P1 ~ RDz 
RD1 P~ ~ 7  

RD2 pz RD4 
p4 RDs 

Prerequisite Propositions of a Set of RDs 

Table  5. Sample Referring Expressions 
Concept  Lexical  Complemen t ing  

I t e m  Informat ion  
Compl : Algebraic Terms 

with one variable Like-Terms "Like Terms" CO~Ttp2 : expressions such as 
2(3z + 4x) 

Comp3: both Like Terms 
Algebraic- "Algebraic and Unlike Terms 
Terms Terms" Comp4 : expressions such as 

2(3z-b 49) and 5(2z -1- 3z) 

tha t  convey prerequisite information are dictated by the con- 
text  and by the user 's expertise. 

In order to generate referring expressions for the concepts 
mentioned in a set of RDs, we propose for each concept a list 
of candidate lexical i tems tha t  can be used to refer to it. If 
there is a lexical i tem tha t  identifies each concept uniquely 
and is known to the user, the evocation process is finished. 
However, if there axe concepts tha t  are not identified uniquely 
by any of their candidate lexical items, then these lexical 
i tems axe complemented with additional RDs that  help them 
identify the intended concepts. This task is performed by 
iteratively selecting propositions that  identify an intended 
concept until this concept is singled out, and generating RDs 
tha t  convey these propositions. This algorithm differs from 
the procedure described in [Dale, 1990] in tha t  we generate 
several alternative sets of complementing RDs in order to 
avoid dead-end situations where the only identifying infor- 
mation that  is generated for a set of concepts is circular. The  
evocation process then selects the most concise non-circulax 
combination of referring expressions tha t  identifies all the 
concepts in a set of RDs. For example, Table 5 il lustrates 
candidate referring expressions generated for the concepts 
Like-Terms and Algebraic-Terms. Each referring expression is 
composed of a lexical i tem and a complement 3 . The non- 
circular alternatives in this example contain the complements 
{Co~p~,Comp,}, {co~p~,Co~p~} and {Co~p~,Co~p,} 

3.3 Two Optimization Criteria 

As indicated in Section 3.1, the optimization criterion deter-  
mines the manner in which the nodes in OPEN are ranked 
and pruned. In our implementation we have tried two opti-  
mization criteria: (1) conciseness and (2) depth.  

3.3.1 Optimizing the Depth of the Generated RDs 
When optimizing the depth of a set of RDs, the nodes in 
OPEN are pruned according to the following rule: 
IF  Depth(hi)  = Depth(n  j )  AND 

{ Prerequisites-of(n/) D Prerequisites-of(n j )  OR 
{ Prerequisites-of(n/) = Prerequisites-of(hi)  AND 

{ IReferring-exp-of(ni)l > IReferring-exp-of(nj)[ OR 
{ IReferring-exp-of(n~)l = IReferring-exp-of(n~)l AND 

Total-Weight(n/)  > Total-Weight(hi)  } } } } 
THEN remove hi. 

3 A referring expression may contain a null lexical item, i.e., com- 
plementing information only. However, at present this option is 
not generated by WISHFUL-II. 
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Table 6. Prerequisite Propositions and Total Weight of 
MinimaLly Sufficient Sets of RDs 

Set  of RDs Total  
Weight  

1. Assert(p1) Ins tant ia te( - ,ps)  2 
2. Assert(p1) Ins t an t i a t e (p l )  2.5 

Negate(ps)  
5-6. Ins tan t i a te (p l )  Assert(p2) 3.5  

Negate(ps)Instantiate(-~ps) 

P re requ i s i t e  
P ropos i t ions  
Pl l ,P I2 ,P13  
P l i , P l 2 , P l 3~  
PSl 

P21 

Psi 

The tveight of a node reflects the number of RDs in this node 
and their type. The total weight of a node is the sum of the 
weights of the nodes in the path  from the root of the search 
tree to this node. All the RDs have a weight of 1, except an 
Instantiation of a proposition p that  accompanies an Asser- 
tion of p or a Negation of ~p. Such an Instantiation has a 
weight of 1 ~, because it does not contain new information, 
rather  it is a continuation of the idea presented in the As- 
sertion or the Negation. For example, the Instantiat ion in 
Set 1 in Table 6 has a weight of 1, because the instantiated 
proposition is different from the asserted proposition. In con- 
trust,  in Set 2, the weight of the Instantiation is ½ because 
it instantiates the asserted proposition. 

The above rule is also applied after Step 4 of algorithm 
Expand-sets-afiRDs to prune the list of minimally sufficient 
sets of 1RDs (Section 3.2). I t  removes a node if its prerequi- 
sites subsume those of another node. It considers the number 
of referring expressions of a node only when the same pre- 
requisite propositions are required by two nodes, and con- 
siders the total  weight of a node only when two nodes have 
the same prerequisite propositions and the same number of 
referring expressions. This rule compares only nodes at  the 
same depth, because even if the prerequisites of a node at  
level i subsume the prerequisites of a node at level i -t- 1, the 
node at level i may lead to discourse that  has depth i q- 1, 
while the node at level i ÷ 1 can lead to discourse of depth 
i -t- 2 at best. 

To illustrate the pruning process let us reconsider the min- 
imally sufficient sets of RDs in Table 4, assuming tha t  the 
prerequisite propositions required by these sets are as shown 
in Table 64 . Here, the pruning rule removes Set 2, since its 
prerequisite propositions subsume those of Set 1. 

The nodes remaining in OPEN are ordered as follows: 

1. In increasing order of their depth, so that  we expand the 
more shallow nodes first during the optimization process. 

2. In increasing order of the number of prerequisite proposi- 
tions they require, so that  the nodes that  contain the sets 
of RDs with the fewest prerequisites are preferred among 
the nodes at the same level. 

3. In increasing order of the number of referring expressions 
they have, so tha t  the nodes with the fewest referring ex- 
pressions are preferred among the nodes with the same 
number of prerequisite propositions. 

4. In increasing order of their total  weight, so that  the most 
concise set of RDs is preferred when all else is equal. 

4 The first coefficient of each prerequisite proposition indicates 
the RD for which it is required, e.g., p i t  is a prerequisite of 
Asser t (pl ) .  

To il lustrate this process let us consider the minimally suf- 
ficient sets of RDs that  remain after pruning, namely Set 1 
and Set 5-6, and assign them to nodes nl and ns -e  respec- 
tively. Since Set 5-6 has the fewest prerequisite propositions, 
us-6  will precede nl in OPEN, and will be the next node 
to be expanded by algorithm Optimize.RDs (Section 3.1). If 
upon expansion of n s - s  we find tha t  there is a minimally 
sufficient set of RDs that  conveys propositions {p21 ,psi } and 
requires no prerequisite information, then the node which 
contains this set of RDs is a goal node, and the search is 
finished. 

3.3.2 Optimizing the Number of Generated RDs 

When optimizing the total  number of RDs to be presented, 
the following rule is used to prune the nodes in OPEN: 
IF  Total-Weight(hi)  > Tota l -Weight (h i )  AND 

Prerequisites-of(nl) D Prerequisites-of(n./) 
THEN remove ni. 

As in depth  optimization, this rule is also applied after 
Step 4 of algorithm Ea:pand-sets-of-RDs to prune the list of 
minimally sufficient sets of RDs. 

The  nodes remaining in OPEN are sorted in increasing 
order of their total  weight. 

To i l lustrate this process let  us consider once more the 
minimally sufficient sets of RDs in Table 6. Since the prereq- 
uisite propositions of Set 2 subsume those of Set 1, and the 
total  weight of Set 2 is higher than that  of Set 1, Set 2 is 
removed in the pruning stage. The  ordering of the remain- 
ing nodes in OPEN is different from the ordering obtained 
for the depth optimization, i.e., n l  precedes ns -e  in OPEN, 
since the total  weight of Set 1 is less than the total  weight of 
Set 5-6. 

4 R e s u l t s  

WISHFUL-I I  was implemented using Common Lisp on a 
SPARCstat ion 2 and on a PC-486. The system takes less 
than 4 seconds of CPU time to produce English output,  and 
the optimization process alone takes less than 2 seconds for 
discourse of up to 10 RDs. Table 1 in Section 1 and Table 
7 (adapted from an example in [Moore and Swartout, 1989]) 
il lustrate the output  generated by WISHFUL-I I  for the two 
optimization criteria we have implemented, viz conciseness 
and depth. Appendix A contains examples of the output  pro- 
duced by WISHFUL-I I  when the same discourse is generated 
for the concise and the shallow optimization criteria. 

Our mechanism can be used as a tool for evaluating differ- 
ent discourse optimization criteria, where the only require- 
ment for implementing a new criterion is the modification of 
the pruning and ranking rules described in Section 3.3. When 
WISHFUL-I I  was tried with the two optimization criteria de- 
scribed in this paper, it often generated the same discourse 
with both criteria, i.e., the most  concise discourse was also 
the shallowest. However, the two optimization criteria pro- 
duced different discourse when the most concise discourse 
mentioned one or more concepts tha t  were not known to the 
user and therefore had to be explained, while the shallowest 
discourse avoided these explanations by presenting a larger 
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Table  7. Sample Concise and Shallow 'Lisp' Discourse 
Concise Discourse  Shal low Discourse  

s e t q  i s  l i k e  s e r f .  

However ,  t h e  f i r s t  
a rgument  of  s e t q  i s  

no t  a g e n e r a l i z e d  
v a r i a b l e ,  which  i s  an 
e x p r e s s i o n  t h a t  
references a storage 

location. The first 

argument of setq is 

a simple variable. 

setq takes two arguments. 

The first argument of  
s e t q  i s  a s i m p l e  v a r i a b l e .  

The s econd  a rgument  of  
s e t q  i s  a v a l u e .  The 
o b j e c t i v e  o f  s e t q  i s  t o  
a s s i g n  t h e  v a l u e  t o  t h e  

v a r i a b l e .  For  e x a m p l e ,  
( s e t q  x ' ( a  b ) )  r e s u l t s  

in x - - > ' ( a  b) .  

number of RDs which mentioned different concepts. In par- 
ticular, the concise discourse was characterized by the pres- 
ence of Similes tha t  required some in-depth clarification of a 
non-source concept s, while the  shallow discourse was chaxac- 
terized by the presence of a Description composed of a list of 
Assertions possibly accompanied by Instantiations.  

5 Conclusion 
In this paper,  we have cast discourse planning as an opti- 
mization process which generates discourse tha t  satisfies a 
specific optimization criterion. We have described a weak 
search procedure tha t  implements this process while taking 
into consideration the following factors: (1) a user 's infer- 
ences from proposed RDs, (2) the prerequisite information 
required by the user to understand the concepts mentioned 
in a set of RDs, and (3) the referring expressions required 
to enable the user to identify these concepts. Two optimiza- 
tion criteria have been considered, viz conciseness and depth. 
The system which implements these ideas has been used to 
generate descriptive discourse in various technical domains. 
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Appendix A: Sample Output 

Table  8. 'Racing car' Discourse 
An i n d y c a r  i s  an Amer i can  r a c i n g  c a r .  I t  h a s  a 
v e r y  p o e e r f u l  e n g i n e ,  wide  t i r e s ,  huge  b r a k e s  
and b i g  w ings  t o  make l o t s  o f  d o w u f o r c e .  L o t s  
o f  downforce  h e l p s  i t  go a round  c o r n e r s  q u i c k l y ,  

however  l o t s  o f  d o g n f o r c e  d o e s  n o t  h e l p  i t  go 
straight quickly. A formula I car is like an 

indycar, however a formula I car is a European 

racin E car. 

Table  9. 'DOS and UNIX' Discourse 
DOS i s  an o p e r a t i n g  s y s t e m .  I t  h a s  a command 
l i n e  i n t e r f a c e ,  wh ich  i s  an i n t e r f a c e  where  you 

t y p e  commands a t  a t e x t  p romp t ,  e . g . ,  m k d i r ,  I s .  
I t  i s  a s i n g l e  u s e r  o p e r a t i n g  s y s t e m  and i t  does  
n o t  a l l o w  m u l t i t a s k i n g ,  which i s  d o i n g  more t h a n  
one j o b  a t  a t i m e .  UNIX i s  l i k e  DOS, however  i t  
i s  a m u l t i u s e r  o p e r a t i n g  s y s t e m  and does  a l l o w  
m u l t i t a s k i n g .  Some UNIX commands a r e  t h e  same 
a s  DOS, e . g . ,  m k d i r ,  however  some a r e  d i f f e r e n t ,  
e . g . ,  pwd. DOS r u n s  on PC c o m p a t i b l e s .  I n  a d d i t i o n  

t o  PC c o m p a t i b l e s  UNIX r u n s  on w o r k s t a t i o n s .  

Table  10. 'Document layout' Discourse 
TEX i s  a l a y o u t  l a n g u a g e  f o r  documen t s .  A l a y o u t  

l a n g u a g e  a l l o w s  you t o  c o n t r o l  t h e  a p p e a r a n c e  of  
o f  your  documen t ,  e . g . ,  t e x t  s i z e  and p l a c e m e n t .  I t  

u s e s  embedded commands, e h i c h  a r e  commands p l a c e d  
w i t h i n  t h e  documen t ,  e . g . ,  ~ a g e n o .  These  commands 
a r e  e x e c u t e d  a f t e r  y o u r  document  i s  e d i t e d .  T r o l l  

i s  l i k e  TF~, however  i t  h a s  d i f f e r e n t  commands, 
e . g . ,  .BP. A w o r d p r o c e s s o r  a l s o  a l l o w s  you t o  
c o n t r o l  t h e  a p p e a r a n c e  o f  your  documen t ,  however  

i t  i s  no t  a l a y o u t  l a n g u a g e .  M o r d p r o c e s s o r s  a l s o  
u se  embedded commands, however  t h e y  a r e  n o t  

e x e c u t e d  a f t e r  y o u r  document  i s  e d i t e d ,  t h e y  a r e  
e x e c u t e d  w h i l e  y o u r  document  i s  e d i t e d .  

WordPe r f ec t  i s  a v o r d p r o c e s s o r .  

44 


