
Department of Artificial Intelligence 
Centre for Cognitive Science 

University of Edinburgh

A cknow ledgem ents

The work described in this paper was made possible in part by the use of equipment made available by 
the Rank Xerox University Grants Programme, BBN Labs Inc.. Artificial Intelligence Ltd.. Xerox Palo Alto 
Research Center and Intel Scientific Corp. —to all of them my thanks. None of them are in any way 

responsible for the opinions expressed here.

0. Introduction

Of the parallel systems currently available, far and away the most common are loosely coupled 
collections of conventional processors, and this is likely to remain true for some time. By loosely 
coupled I mean that the processors do not share memory, so that some form of stream or 
message-passing protocol is required for processor-processor communication. It follows that in most 
cases the programmer must make explicit appeal to communication primitives in the construction of 
software which exploits the available parallelism. Even in shared-memory systems, the absence of 
parallel constructs from available programming languages may mean that appeal to a similar 
communication model may be necessary, at least in the short term.

Although not ideally suited to loosely coupled systems, the general problem of parsing for speech and 
natural language is of sufficient importance to merit investigation in the parallel world. -This paper 
reports on explorations of the computation.communication trade-off in parallel parsing, together with the 
development of an portable parallel parser which will enable the comparison of a variety of parallel 
systems.

1. Parsing for Loosely Coupled Systems

Given the prevalence of loosely coupled systems, although one might suppose that shared-memory 
parallelism offers greater scope for the construction of parallel parsing systems, and parallel chart 
parsers in particular, none-the-less it is a good idea to look at what can be done in the loosely coupled 

case.

Loosely coupled parallel systems can be expected to do best, that is, show a nearly linear (inverse) 
relationship between solution time and number of processors, when the problem at hand is (isomorphic 
to a) tree-search problem with large initial fan-out and compact specifications of sub-problems and 
results. In such problems, the ratio of communication to computation is low, so the loose coupling does 

not significantly impede linear speed-up. Large problems can be broken down into as many pieces as 
there are processors, cheaply distributed to them, and the results cheaply returned.

Parsing of single sentences is not obviously suited to loosely coupled parallel systems. Whether one 
attacks single-sentence parsing by some form of left-to-nght breadth-first parse, or by some form of 
all-at-once bottom-up breadth-first parse, very high communication costs would seem to be involved. 
The only hope would seem to be to pursue the latter route nevertheless, and see whether the 
communication costs can be brought down to an acceptable level. There are a number of different 
dimensions along which one might try to parallelise the parsing process, but insofar as they involve the

Chart Parsing for Loosely Coupled Parallel Systems
Henry S. Thompson

-320- Intemational Parsing Workshop '89



2 Chart Parsing for Loosely Coupled Parallel Systems —Henry S. Thompson

distribution of sub-problems, they are highly likely to require the representation of partial solutions. 
Since this is a primary characteristic of the active chart parsing methodology, my investigations have 
focussed on parallel implementations of active chart parsers.

II. Parallelism and the Chart

We start with the observation that chart parsing seems a natural technique to base a parallel parser on. 
Its hallmarks are the reification of partial hypotheses as active edges, and the flexibility it allows in terms 
of search strategy, and it would seem straight-forward to adapt a chart parser doing pseudo-parallel 
breadth-first bottom-up parsing into a genuinely parallel parser. Indeed with a shared-memory parallel 
system, the BBN Butterfly'", I have done just that, and the result exhibits the expected linear speed-up. 
The approach used was simply to allow multiple processors to remove entries from the queue of 
hypothesised edges and add them to the chart in parallel, performing the associated parsing tasks and 
thereby in some cases hypothesising further edges onto the queue. Locks were of course required to 
prevent race conditions m updating the chart and edge queue, but instrumentation suggested that there 
was rarely contention for these locks and they had little adverse impact on performance.

Clearly this approach would not be appropriate in the loosely coupled case. One could of course use 
some system which supports virtual shared memory to implement a shared chart and edge queue. But 
this would defeat the whole purpose, as the parser would be serialised by the processor responsible for 
maintaining the shared structures. What I have explored instead is retaining the same granularity of 
parallelism, namely the edge, but accepting that at least some of the chart itself will have to be 
distributed among the processors.

III. Distributing the Chart

I have explored the approach of distributing the chart among the processors in several implementations 
of a chart parser for the Intel Hypercube™, a loosely coupled system, and for a network of Lisp 
workstations. A memory-independent representation of the chart is used, allowing edges to be easily 
encoded for transmission between processors. The chart is distributed among the processors on a 
vertex by vertex basis. Vertices are numbered and assigned to processors in round-robin fashion. 
Edges 'reside' on the processor which holds their 'hot' vertex, that is, their right-hand vertex if active, 
left-hand if inactive. From this it can be seen that once a new edge is delivered to its 'home' 
processor, that processor has all the edges required to execute the fundamental rule with respect to 
that new edge. Each processor also has a copy of the grammar, so it can perform rule invocation as 

necessary, and a copy of the dictionary, so that once the input sentence is distributed, pre-terminal 
edge creation can proceed in parallel.

The following three figures illustrate the distribution of vertices and edges for a simple example 
sentence and grammar, assuming a three processor system.

-321- Intemational Parsing Workshop ’89



Chart Parsing for Loosely Coupled Parallel Systems —Henry S. Thompson 3

4: S - >  NP VP

2: V P - >  V

Vertices are numbered circlos. Edges are thin if active, thick if inactive, and their contents are noted. 
They are numbered on a per processor basis. Those with superscripts, e.g. 40, are ones which

-322- International Parsing Workshop '89



4 Chart Parsing for Loosely Coupled Parallel Systems —Henry S. Thompson

originated on another processor, whose number is given by the superscript. Of the eleven edges, four 
had to be transmitted from where they were created by the action of the fundamental rule to where they 

belonged.

Transmission of edges, as noted above, requires a memory-independent representation. This is 
accomplished by flattening the structure of the edges, by making all their contents indirect references. 
Thus where m the single processor or shared memory parallel processor versions edges con ta in ed  their 
endpoint vertices and label elements (category, dotted rules, daughters), in the loosely coupled version 
edges n am e  their endpoint vertices, and index their label elements relative to appropriate baselines.

Note that this means that when parsing is completed, a complete parse is not available on any single 
processor. If it is required, then it will have to be assembled by requesting sub-parses from appropriate 

processors, recursively.

IV. Communication vs. Computation —Results for the Hypercube

Testing to date has been confined to a two processor system. The edge distribution scheme described 
above was installed into an existing serial chart parser. Considerable care has been taken within the 
limits imposed by the host system communications primitives to keep communication bandwidth to a 
minimum (approx. 100 bits/edge in a single packet). Even with a relatively trivial grammar and lexicon 
and simple sentences of limited ambiguity, two processors are faster than one under some 
circumstances. In order to explore the computation/communication trade-off, and to simulate the 
operation of the system with more complex grammatical formalisms which would require substantially 
greater per-edge computation, a parameterised wait-loop was added to the function implementing the 
fundamental rule. As the duration of that loop increased, the parse-time increased less rapidly for the 
two processor case than for the single-processor case, so that although in the initial, un-stowed, 
condition, a single processor parsed faster than two, when the fundamental rule was slowed by a factor 
of around four, two processors were faster than one. Figure 2 below illustrates this for the sentence 
The oran g e  sa w  sa w  the o ran g e  sa w  with the o ran g e s a w  with a standard grammar which allows for 
PP attachment ambiguity and a lexicon in which oran g e  is ambiguous between N and A and saw is 
ambiguous between N and V. The times plotted are to the discovery of the second parse, as the 
termination detection algorithm described below had not yet been implemented.

-323- Intemational Parsing Workshop '89



Chart Parsing for Loosely Coupled Parallel S ystem s-H enry  S. Thompson 5

1 2 3 4 5

Task weight

Figure 2. Graph of results of 2 processor H yp e rcu b e ex p erim en t

It is hoped that further experimentation with larger cubes will shortly be possible.

V. Towards Wider Comparability —The Abstract Parallel Agenda

With an eye to allowing an easy extension of this work to other systems, and more principled 
comparison between systems, I have gone back to the original serial chart parser (Thompson 1983) 
from which the Hypercuber" system was constructed, and produced an abstract parallel version. The 
original parser was based on a quite general agenda mechanism, and the abstraction was largely 
performed at this level. A multi-processor agenda system, allowing the programmer to schedule the 
evaluation of any memory-independent form on any processor at a specified priority level is provided, 
together with a novel means of synchronisation and termination. Implemented in Common Lisp, all this 
agenda system requires for porting to a new system is the provision of a simple 'remote funcall’ 
primitive.

VI. Termination and Synchronisation

Termination detection in distributed systems is a well-known problem. It arises obtrusively in any 
parallel approach to chart parsing, since this depends on an absence of activity to detect the completion 
of parsing. The abstract parallel agenda mechanism which underlies the portable parallel parser uses a 
new (we think —see Thompson, Crowe and Roberts forthcoming for discussion) algorithm for effective 
synchronisation of task execution (of which termination is a special case). It is thus possible to 

reconstruct not only the prioritisation function of an agenda (run this in preference to this), but also the 
ordering function (run this only if that is finished). Unlike some existing termination algorithms, this one

-324- International Parsing Workshop '89



6 Chart Parsing for Loosely Coupled Parallel Systems —Henry S. Thompson

is particular appropriate where no constraints can be placed on processor connectivity (any processor 
may, and usually does, send messages to any other processor). It requires only a modest increase in 
the number of primitive operations which must be supported to port the agenda system —all that is 
required is a simple channel for FIFO queueing of control messages between a designated boss’ 
processor and the rest. The overhead imposed by the scheme on normal operation is effectively 
zero—communication remains asynchronous until near to a synchronisation point. Essentially the 
scheme operates by each processor keeping track of the number of tasks created vs. the number of 
tasks run locally. When a processor is idle waiting for synchronisation, it sends its counts to the boss. 
When the boss has a complete set of counts which tally, it requests them again. If they haven't 
changed, synchrony is signalled. Thus in the best case 4'n fixed length messages are required to 
synchronise n processors.

VII. Testing the Portable System —Results of network experiment

For this experiment four Xerox 1186 processors running lnterlisp-0 and connected by a 10MB Ethernet 
were used, running the parallel system on top of the abstract parallel agenda. Communication for the 
implementation of the agenda was via the Courierr“ remote procedure call mechanism, whose hallmark 
is reliability, not speed. Results were obtained during a period of low network loading, and three trials 
were performed. The times used in the figures below are the fastest times obtained over the trials, 
which were quite consistent from one to the next. Figure 3 shows processing time versus number of 
processors for each of three sentences, using the same grammar and lexicon as in the previous 
experiment, and for a fourth sentence, using a much larger and more realistic grammar with 70 rules 
and an appropriate lexicon (the failure to find any parses was caused by a typing error in the grammar, 
detected too late for correction). Table 1 gives the sentences, the number of active and inactive edges 

involved and the number of parses found.

Sentence active inactive parses
edges edges

a: The orange saw saw the orange saw. 46 22 1

b: The orange saw saw the orange saw with
the orange saw. 88 43 2

c: The orange saw saw the orange saw with
the orange saw with the orange saw. 166 82 5

d: The front-end consists of those phases that
depend primarily on the source-language. 285 58 0

Table 1. Sentences used in the network experiments

325- International Parsing Workshop '89



Chart Parsing for Loosely Coupled Parallel S ystem s-H enry  S. Thompson 7

Parse Time vs. Number of Processors

Number of processors
Figure 3. Graph of results of network experiment

Clearly not much encouragement can be taken from this experiment. Although there is some speed-up 
from two to three processors in some cases, overall the pattern is one where communication costs 
clearly dominate, so no advantage is gained. With slower processors and/or faster networks, we might 
hope to see better results, especially given the results in section IV, but the appropriateness of this 
approach to networked systems must remain in doubt in the absence of better evidence.

VIII. Alternative Patterns of Edge Distribution

One possible alternative decomposition of the task, which might offer some hope of improving the 
computation/communication trade-off. would be to transmit only inactive edges, but to send them to all 
processors. Then every processor would have the complete inactive chart, and could run active edges 
from start to finish without ever sending them anywhere. In order to distribute the computational load, 
rule invocation would be distributed on a per vertex basis. That is, each processor would only do 

bottom up rule invocation for those inactive edges which began at a vertex owned by that processor. 
The plus side of this route is that it sends only inactive edges around, which are simpler to encode, that 
the final result is available on a single processor, indeed on all processors, without having to be 
assembled, and that active edge processing is more efficient. The minus side is that the inactive edges 
have to be sent to all processors. In the simple example given in Figure 1, this actually balances 
out—four edges in the original implementation, two edges twice in the alternative one. A further 
experiment with the network system was conducted to explore this approach. The same sentences as

-326- Intemational Parsing Workshop '89



8 Chart Parsing for Loosely Coupled Parallel Systems —Henry S. Thompson

before were used, but this time with the new edge distribution pattern. Table 2 below compares 
sentence b from Table 1, The o ran g e sa w  saw the o ran g e  saw with the o ran g e  saw . in terms of the 
number of edges of each type processed locally and transmitted under the two patterns for different 
numbers of processors. In each case, the figures are given as a|b, where a is the number for the 
original pattern, and b is the number in the inactive-edge-only pattern.

# of processors Active Inactive Total
local xmitted local xmitted local xmitted

2 59|88 29|0 26|36 17|25 85|124 46|25
3 57|88 3110 29)54 14.(50 86|142 45|50
4 47|88 4110 23|72 20)75 70|160 61175

Table 2. Edges processed locally versus transmitted for two edge distribution patterns

The increase in local edges is somewhat artifactual, coming in part from the replication of lexical edge 
construction across all processors. Clearly only for small numbers of processors is there a net gain in 
number of edges transmitted. The effect this has on processing time is pretty much as one would 
expect. Figure 4 shows the times for sentence b for both patterns. The curve with points labelled "o" 
is for the original pattern, that with points labelled "i" is for the alternative, mactive-edge-only pattern.

Two Distribution Strategies

Number of processors
Figure 4. Graph of alternative distributions strategies for parsing sentence b

-327- International Parsing Workshop '89



Chart Parsing for Loosely Coupled Parallel Systems —Henry S. Thompson g

As expected, only in the two processor case do we see an advantage to the alternative approach. In 
general it is clear that the principle determinate of processing time is number of edges transmitted —the 
overhead in the network communication dominates all other factors. The obvious conclusion is that, 
particularly as processors speeds increase, it will take very high bandwidth mter-processor 
communication, perhaps only achievable with special purpose architectures, to make at least this 
edge-distribution approach to parallel parsing worthwhile.

References

Thompson. Henry S. 1983. "MCHART -- A Flexible, Modular. Chart Parsing System", in P ro ceed in g s  
o f  the National C on feren ce  on Artificial In telligence, AAAI, Menlo Park. Ca.

Thompson, Henry S., Crowe. Alan and Roberts. Gary forthcoming. "Termination and Synchronisation 
m Distributed Event Systems".

MCHART is available via electronic mail in both serial and parallel versions, implemented in a relatively 
installation-independent Common Lisp. Requests to hthompson@uk.ac.edinburgh (JANET), 
hthompson%edinburgh.ac.uk@nsfnet-relay.ac.uk (ARPANet).

-328- Intemational Parsing Workshop '89

mailto:edinburgh.ac.uk@nsfnet-relay.ac.uk

