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Abstract

An efficient algorithm  that enum erates parses of ambiguous context-free languages is described, and its time 
and space complexities are discussed.

W hen context-free parsers are used for natural language parsing, pa ttern  recognition, and so forth, there 
may be a great num ber of parses for a sentence. One common strategy for efficient enum eration of parses is 
to assign an appropriate  weight to each production, and to enum erate parses in the order of the to tal weight 
of all applied production. However, the existing algorithm s taking this strategy can be applied only to the 
problems of lim ited areas such as regular languages; in the other areas only inefficient exhaustive searches 
are known.

In this paper, we first introduce a hierarchical graph suitable for enum eration. Using this graph, enu
meration of parses in the order of acceptablity is equivalent to finding paths of this graph in the order 
of length. Then, we present an efficient enum eration algorithm  with this graph, which can be applied to 
arbitrary context-free gram m ars. For enum eration of k parses in the order of the to tal weight of all applied 
productions, the time and space complexities of our algorithm  are 0 ( n 3 + k n 2) and 0 ( nz +  fcn), respectively.

1 Introduction

Context-free parsers are commonly used for na tu ra l language parsing, pa tte rn  recognition, and so forth. 
In these applications, there may be a great num ber of parses (or derivations) for a sentence, only a few 
of which would be needed in later processes. Therefore, we look up only a few promising parses and do 
not make an inefficient exhaustive search of parses. In order to find a few promising parses efficiently, we 
often take a stra tegy  th a t an appropriate  weight is assigned to each production and parses are looked up in 
the order of the to ta l weight of all applied productions. If the assigned weight is selected carefully to have 
strong correlation to w hether a parse is accepted or not, looking up parses in the order of the to ta l weight is 
equivalent to enum eration of parses in the order of acceptability. For example, in the punctuation  problem  
of Japanese sentences, the num ber of the phrases of the sentence is known to be an excellent candidate  for 
the weight of parses. However, the algorithm s proposed so far th a t took this stra tegy  are applied only to 
the problems of the lim ited areas such as regular languages, and they are not applied to general context-free 
languages.

In this paper, we present an efficient enum eration algorithm  based on this strategy, which can be applied 
to general context-free gram m ars. We introduce a d a ta  s truc tu re  suitable for enum eration of parses named

-286- International Parsing Workshop '89



a parse graph, and present how to construct a parse graph in section 3. W ith a parse graph, a path between 
two special vertex, some of whose arcs are replaced iteratively by the path denoted by their labels, represents 
a right parse of the parsed sentence. Because the length of paths represents the to ta l weight of all applied 
productions for parses, enum eration of parses in the order of the total weight of all applied productions is 
equivalent to finding paths on the parse graph in the order of length. In section -4. we show the outline of 
how to enum erate the parses of the ambiguous sentence in the order of their weight, using the parse graph. 
We also discuss the time and space complexities of the algorithm  in tha t section.

2 Context-Free Parsing Algorithm

Several general context-free parsing algorithm s have been proposed so far, namely Cocke-Y ounger-K asam i 
algorithm [2, 3], Earley’s algorithm[4], V aliant’s algorithm[5j, G raham -H arrison-R uzzo  algorithm [6, 8], and 
so forth. The features of these algorithm s are the following. Cocke-Y ounger-K asam i algorithm  (CYK 
algorithm  for short) is a kind of the bottom  up parsing algorithm s, and has 0 ( n 3 ) time complexity, w h e r e  n 

is the length of the sentence. In this algorithm , the gram m ar is required to be w ritten in Chomsky normal 
form. E arley’s algorithm  is a kind of the top down parsing algorithm s, and has 0 ( n 3) time complexity. 
By con trast with CYK algorithm , no special production form is required in Earley’s algorithm . V aliant’s 
algorithm  and G raham -H arrison-R uzzo  algorithm  (GHR algorithm  for short) are the modified versions of 
CYK algorithm  and Earley’s algorithm , respectively. Both of them use the technique of m atrix  m ultiplication 
in order to reduce the time complexity, The time complexity of V aliant’s algorithm  is 0 ( n 2 81) and th a t of 
GHR algorithm  is 0 ( n 3/ lo g  n). However, in both algorithm s, the overhead for m atrix  m ultiplication is so 
large th a t these algorithm s don’t seem suitable for the practical use.

In this paper, we adopt E arley’s algorithm  as the base of our algorithm  because of the following two 
reasons:

(1) No special production form is required.

(2) E arley’s algorithm  seems more suitable than  V aliant’s algorithm  and GHR algorithm  because the 
overhead of these two algorithm s is quite large.

Let G = (V^v, Vt , P , S )  be a gram m ar, where Vy  is the set of nonterm inal symbols, Vj  is the set of 
term inal symbols, P  is the set of productions, and 5  € Vy  is the s ta r t symbol. In Earley’s algorithm , the 
item  lists /q, A , . . . ,  I n+i are created, where n is the length of the parsed sentence. Each item list consists 
of several i tems [A — a ■ /3 (p ), / ] ,  where A  — a ft G P, p is the index num ber of the production, is the 
m eta symbol th a t shows how much of the right side of the production has been recognized so far, and /  is 
an integer which denotes the position in the input string at which we began to look for th a t instance of the
production. The set of item  lists {/o, A , . . . , / n , / n+i} is called the parse list.

As for the tim e and space complexities for Earley’s algorithm , the following are known[l].

( e - 1 )  The time and space complexities for parsing a sentence by E arley’s algorithm  are 0 ( n 3) and 0 ( n 2),
respectively, where n is the length of the parsed sentence.

( e - 2 )  T he tim e com plexity for deriving a parse from the parse list is 0 ( n 2), where n is the length of the 
parsed sentence.
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3 Parse Graphs

3.1 T h e  fe a tu res  o f  p arse  grap h s

The parse graph is a directed graph which consists of several connected com ponents. Each connected 
com ponent is called a layer of the parse graph. Each layer is an acyclic graph that has only one source, 
and it corresponds to either a nonterm inal symbol or an integer. An layer corresponding to a nonterm inal 
symbol has only one sink. W ith this graph, we can extract parses more efficiently than with a parse list of 
Earley’s algorithm . As shown in the next section, a path between two special vertex, some of whose arcs 
are replaced iteratively by the path denoted by their labels, represents a right parse of the parsed sentence. 

In the rem ainder of this paper, we use the following notations.

L ( f )  The layer corresponding to an integer / .

L{A)  The layer corresponding to a nonterm inal symbol .4.
L(v)  The layer containing a • tex v.
L(e)  The layer containing an .̂rc e.
Uj(A') The source of the layer L( X ) ,  where X  is either an integer, a nonterm inal 

symbol, a vertex, or an arc. 
vt(A)  The sink of the layer L{A),  where .4 is a nonterm inal symbol. Note th a t the 

layer corresponding to a nonterm inal symbol has only one sink.

In the parse graph, each arc has one of the following labels.

(1) An index num ber of the production p, which denotes the derivation by .4 — a (p).

(2) A nonterm inal symbol A, which denotes the derivation A ^  e.

(3 ) The index of a vertex v , which denotes the path  from u,(y) to v.

W hen we describe the arc e =  (m, v) with its label of each kind, we use the notations e(p), e(A),  e[u], or
the alternative notations (u,t> ;(p)), ( u , v \ ( A) ) ,  (« ,u ;[v j), respectively.

Instead of an item of the form [A — ot-fi (j>), / ]  in Earley’s algorithm , we use the trip let [.4 — or-/? (p), / ,  y]
as an item of our algorithm  for constructing a parse graph, where v is the index of a vertex.

For exam ple, we parse the sentence xx of the gram m ar shown in Figure 1. The parse list and the parse 
graph generated from this sentence are shown in Figure 2 and Figure 3, respectively.

In Figure 3, the label “(2)” of the arc from vertex # 8  to vertex # 9  indicates the derivation by 5  — 5 /  (2), 
the label “ (5 )” of the arc from vertex # 0  to vertex # 1  indicates the derivation 5 ^ 6 ,  and the label “[7]” 
of the arc from vertex # 2  to vertex # 8  indicates the paths from vertex # 0  to vertex # 7 .
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Our algorithm  for constructing a parse graph is based on Earley’s algorithm . In Earley’s algorithm , one of 
three operations is performed on each item, depending on its form, to add more items to the item lists. In 
our algorithm , these operations not only add more items to item lists but also add new vertices and arcs to 
the parse graph, shown as follows.

3.2 A n  a lg o r ith m  for c o n s tr u c tin g  a p arse  graph

S  -  € (1)
S  — S J (2)
J  -  F (3)
J  -* / (4)
F  —* x (5)
I  —► X (6)

Figure 1: An ambiguous context-free gram m ar
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S' — •5$ (0), 0, 0
s — (1), 0, 0
s — ■S J (0), 0, 0

' S' — S - $ (0), 0, 1
s — 5 • .7 (2), o, 2
J — ■F (3), 0, 0
J — ■I (4), 0, 0
F — ■i (5), 0, 0
I —- ■i (6), 0, 0

F — x • (5), 0, 0
I — x- (6), 0, Q
J — F- (3), 0, 4
J — I- (4), 0, 6
s — SJ- (2), 0, 8
S' — S - $ (0), o, 10
s — 5 • J (2), 0, 11
J — ■F (3), 1, 12
J — ■I (4), 1, 12
F — ■x (5), 1, 12
I —* ■I (6), 1, 12

F — X" (5), 1, 12
I — I- (6), 1, 12
J — F- (3), 1, 14
J — I- (4), 1, 16
S — SJ- (2), 0, 18
S' — s  ■ $ (0), 0, 20
s — 5  • J (2), 0, 21
J — ■F (3), 2, 22
J — ■I (4), 2, 22
F — ■x (5), 2, 22
I — ■X (6), 2, 22

S' — 5$. (0), o, 20

Layer 0:

.i ?**0 j z u 0 j .2lK 3
2 8 g

|- (- -K D

\ ( 3 )

h'-^KD >
5 ,/ *  7

[51 / < 4>

6

[9] K D
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11 18 19
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20

[19]
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21

Layer 1:

r — K D
13

\ ( 3 )  

^  >  15 /▼ 17

[151 / < 4>

12 18

Layer 2:

o
22

Layer S:

y-
V»<S) vi(S)

(p) : a label "production p" 

[v] : a label “vertex v“

<S> : a label "nonterminal S'

Figure 3: A parse graph for the sentence xx of the 
gram m ar in Figure 1

h  :

re 2: A parse list for the sentence xx of the 
gram m ar in Figure 1
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The scanner  is performed when an item in Ij is of the form [.4 — a ■ aJ + l 3 (p) , f , v] .  It puts the item
[*4 — a a j +1 • 3 {p), / ,  v] to Ij + l .

O p e r a t io n  2 ( p r e d ic to r )

The predictor is performed when an item in Ij is of the form [.4 — a • B 3  [p) , f ,  v]. It adds items [B — 
•7 k (Pk) * j  i i>iO)] for B-productions B  — ~{k (pk) to Ij, except in the case where these items have already 
been added to Ij. If the vertex v, ( j )  have not been created yet, the predictor creates v,{j )  to the layer 
L( j ) .  Especially, in the case where B => C LC2 • • • Cm e and C LC V --C m G Vy,  the predictor adds the
vertices vs{B) ,  v u  u2, . . . ,  ym_ !, vm , vt{B),  and the arcs ( t>,( B),  v{\ (C L)), ( ,  i'2;(C 2)), ( e?2, vy, (C3)),
( t'm — 2 1 ym — I i (C m— L ) ) t ( ^m — 1 ? L'm ; (Cm)), ( um, (p)) to 1 ( 5 )  if they are not in L{B) ,  and performs one
of the following:

(a )  If an item  of the form [.4 — q B  • 3 (p ) , f , w ] is already in Ij, then add the arc (v , w \ ( B )) to the parse
graph.

(b )  O therwise, add the vertex w and the arc ( v ,w' , (B) )  to the parse graph, and add the item  [.4 —
q B  • 0 [ p) , f , w]  to Ij.

O p e r a t io n  3 ( c o m p le te r )

The completer is performed when an item in Ij is of the form [.4 — a • (p) , f , v] .  It performs one of the 
following:

(a )  If /  =  j ,  then the item would be processed by the predictor. Therefore, the com pleter does nothing.

(b )  If /  ^  and there exists an item of the form [A — ,3 • (9-),/, u] ( p ^  q, u ^  v ) in /j, and the arc
( u, w ; (<7)) in the parse graph, then add the arc ( v , w\ (/>)) to the parse graph.

(c) Otherw ise, add a new vertex 1  and a new arc {v , x; (p) )  to the parse graph. Furtherm ore, for all items
of the form [Bk — Ik ■ Abk ipk),  f k , ^k]  in / / ,  perform  one of the following:

( c - 1 ) If there exists an item  of the form [Bk — 7*.4 • 6 k (pk ) , f k , Vk ] in Ij  where uk ̂  v*, then add a
new arc [uk , i>*;[1 ]) to the parse graph.

( c -2 ) O therw ise, add a new vertex vk and a new arc (u*, t;*; [z]) to the parse graph, and add a new 
item  [Bk — 7kA ■ 6 k (Pk), A , Vfc] to Ij.

We describe our algorithm  for constructing a parse graph as follows:

A lgorith m  1. A n a lgorithm  for con stru ctin g  a parse graph

A context-free gram m ar G = {Vy,  V j, P, S)  and a sentence a La2 • • • an are given.

[step 1 ] Add the m eta symbol “$n to the tail of the sentence. Add the production S'  — 5$ (0 ) to P.
C reate the parse graph consisting of r , ( 0 ). C reate the item  list Iq consisting of [5 ' — -5$ (0), v,(0)].

[step 2 ] C reate the item lists Iq , / 1 , . . . ,  /„+i in order, by perform ing the following operations from k = 1 
to k = n.

O p e r a t i o n  1 ( s c a n n e r )
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(1 ) Perform the predictor or the completer to add items to the item list Ik, until no more items can 
be added to I

(2 ) Then, perform the scanner to add items to Ik+i-

[s te p  3] If / n+i has an item of the form [5/ —* 5$ • (0), u], then it means that the parser accepts the 
sentence, and the algorithm  term inates. Otherwise, it means tha t the parser rejects the sentence, and 
the algorithm  term inates.

Note that this algorithm  is the same as Earley's algorithm except the portion for constructing a parse 
graph.

As for the time and space complexities of this algorithm , the following theorem  holds.

T h e o r e m  1. The time and space complexities of our algorithm  are both 0 ( n 3), where n is the length 
of the sentence.

(proof) Consider the number of items in the item lists. Acc«. .ding to three operations, namely the 
scanner, the predictor and the com pleter, each item list does not have items such th a t their first and second 
com ponents are the same. Therefore, each item list has 0 ( n ) items, because the num ber of the kinds of the 
first com ponent is constant, and tha t of the second com ponent is not more than n +  2. Hence, the num ber 
of items of the parse list is 0 ( n 2), because the parse list consists of n  +  2 item lists. Consider the time and 
space complexities of the operations per item.

(1) As for the scanner, the time and space complexities are both 0 (1 ).

(2) As for the predictor, at most 0( \P\ )  items are added to the item list, and 0 ( |P |)  vertices and arcs are
added to the parse graph, where |P | denotes the num ber-of the productions. Therefore, the tim e and 
space complexities are both 0 ( |P |)  =  0 (1 ).

(3) As for the com pleter, if the second component of the performed item is / ,  the com pleter scans all items
in I f ,  adds at most 0 ( n )  items to the item list, and adds at most 0 ( n )  vertices and arcs to the parse 
graph. Therefore, the time and space complexities are both  0 (n ) .

Consequently, the time and space complexities of the operations per item is 0 (n ) .  Therefore, the tim e and 
space complexities of the parse graph construction algorithm  are both 0 ( n 3). □

Com pared with (e-1) in section 2, the tim e complexity for constructing a parse graph is the same as 
E arley’s algorithm , but the space complexity is worse because the num ber of arcs in a parse graph is 0 ( n 3).

4 Enum eration o f  Parses

4.1 Extracting parses

In order to ex tract parses from a parse graph, we introduce a traversal paths of a parse graph. The no tation  
7r(u,  v )  represents traversal paths from u  to v.

A traversal path from a vertex it to a vertex v is defined as follows provided th a t L(u)  =  L(v).

(1 ) A null sequence is defined as a traversal path if u  =  v .
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( 2 )  The sequence of the arcs where e x =  ( i t , - ,  i \ ) ,  is defined as a traversal pa,th if a  =  u i , v i  =

Uo, U2 =  « 3 .  • • • . y n - l  =  « n ,  =  y -

( 3 )  Let e i e 2 • • • c n be a traversal path from u to v . in which an arc e;  is labeled with a nonterm inal symbol
.4. The-sequence of the arc e'i • • • e,_ i tt( i’3( .4). i’t(.4))e,-+i • • • en in which e,(.4) is replaced by a traversal 
path  JrfwjM), is defined as a traversal path.

(4 ) Let eieo • • • en be a traversal path from u to u, in which an arc e, is labeled with the index of a vertex
v. The sequence of the arc eL • • • e ,_ Lx (vs[v), v )e, + l • • • en in which e,[u] is replaced by a traversal path 
ic[v, (v) ,v)  is defined as a traversal path.

Especially, the traversal path that has only the arcs labeled with the index of the production is called a 
proper traversal path. The notation r* (u , v) represents proper traversal paths from u to v. This notation is 
also used to represent the sequence of the labels of the proper traversal paths.

As for the relationship between proper traversal paths and parses, the following theorem  holds.

T heorem  2. If there exist two items [A — or • 7  ( p), / ,  u] E / j ,  [-4 — a/3 • 7  (p), / ,  v] € Ik, where
a ,/? , 7  G V m, the sequence of the labels r* (u ,v )  is the reverse order of the sequence of the production 
num bers used for the rightm ost derivation aJ + 1 • • • .

r m

(proof) It is easy to prove this theorem  by induction on the length of the derivation sequence. □

Let u((0) be the third com ponent v of the item [5' —• 5 S ■ (0), 0, v] € / n+ 1 - According to theorem  2, 
the sequences of the labels 7rm( u,(0), vt(0)) represent the right parses of the parsed sentence. An exam ple of 
a proper traversal path  of the parse graph in Figure 3 is shown in Figure 4, where Uj(0) is vertex # 0  and 
yt(0) is vertex # 20 .

A right parse can be ex tracted  from the parse graph by searching a proper traversal pa th  from i/f(0) 
toward tfj(O). This extraction can be done w ithout backtracking, because each layer has only one source. 
Therefore, the following theorem  holds.

T heorem  3. If the given gram m ar is cycle-free, the tim e complexity for ex tracting  a parse is O(n), 
where n is the length of the sentence.

(proof) If the gram m ar is cycle-free, the length of the parse is O(n) .  Therefore, the tim e complexity is 
O(n) .  □

C om pared with (e-2 ) in section 2, the time complexity for ex tracting  a parse is be tte r than  Earley’s 
algorithm .

4.2 An algorithm for parse enumeration

Using a parse graph, enum eration of the parses in the order of the to ta l weight is equivalent to enum eration 
of the proper traversal paths from ^j(O) to vt(0) in the order of the length. W hile m any researchers have 
developed the algorithm s for finding the k shortest paths[9, 10, 11, 12, 13], we apply one of them  developed 
by K atoh, Ibaraki and Mine[10] to the parse graph recursively. Because of the lack of the space, we explain
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right parse: 1 5 3 2 5 3 2

Figure 4: A proper traversal path from vertex # 0  to vertex #20

only the outline of the algorithm . The details of the algorithm  are described in [14]. In the following 
discussion, the k- th shortest traversal path from i/,(0) to vt(0) is referred to as x*.

First of all, derive the shortest path tree for v,(0), denoted as T ( v s(0)), which consists of the arcs of the 
shortest paths from i!,(0 ) to all o ther vertices. The shortest path  tree can easily be derived in the algorithm  
for constructing  a parse graph, x 1 can be extracted  from T (uJ(0)). tt2 consists of the path  o fT (v ,(0 ))  from 
MO) to a vertex u, the arc (u, v) where v is one of the vertices on 7T1, and the subpath  of from v to v*(0). 
Therefore, the num ber of the candidates of tt2  is the same as the sum o f  the in-degree of all vertices on the 
shortest path . As for the parse graph, the length of the shortest path and the in-degree of a vertex are both 
0 (n )[ l4 ] , and hence we can derive tt2  in 0 ( n 2). In order to derive t 3, all paths from vf(0) to ut(0) except 
tt1 and x 2 are divided into three sets as follows (see Figure 5 ):

(1) The set of paths th a t join the subpath  common to tt1 and tt2. The shortest path in this set is referred
to as i a .

(2) T he set of paths th a t jo in  x 1, and contain the subpath  common to x l and x2 as their final subpath .
The shortest pa th  in this set is referred to as x*,.

(4) The set of paths th a t jo in  x 2, and contain the subpath  common to x 1 and x2 as their final subpath .
The shortest pa th  in this set is referred to as xc.

xa , Xi, and xc can be derived in the same m anner as deriving x2 in 0 ( n 2), respectively, x 3 is the shortest one 
of xa , Xfc, and xc, and the rest of these paths are stored in another set as the candidates of x 4. x 4, x 5, . . .  are 
derived by repeating the sim ilar calculation. Therefore, the time and space complexities of the enum eration 
of the k shortest paths are 0 ( n 3 +  k n2) and 0 ( n 2 +  k n ), respectively.

In the above discussion, the k shortest paths are derived. However, we can also derive the k longest
paths in the sam e m anner.
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Figure 5: The relation among t l , x2, and t 3 

Table 1: The time and space complexities of our algorithm s (n :the length of the sentence)

Com plexity Construction of parse graph Enum eration of k parses
Tim e 0 ( n 3) 0 ( n 3 +  k n 2)
Space 0 ( " 3) 0 ( n 2 4- kn)

We sum m arize the tim e and space complexities of our algorithm s in Table 1.

5 Conclusion

In this paper, we have presented an algorithm  for the enum eration of the parses in the order of the accept
ability. This algorithm  can be applied to the general context-free languages. In order to enum erate parses 
efficiently, we have in troduced a d a ta  s truc tu re  suitable for the enum eration called the parse graph. Using 
a parse graph, we can enum erate k parses in the order of acceptability efficiently in 0 ( n z +  k n 2).
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