
Handling of Ill-designed Grammars in

T om ita’s Parsing Algorithm

R. Nozohoor-Farshi

School of Computer Science
University of Windsor, Windsor, Canada N9B 3P4

ABSTRACT
In this paper, we show that some non-cyclic context-free grammars with e-rules cannot be han

dled by Tomita’s algorithm properly. We describe a modified version of the algorithm which remedies
the problem.

1. Introduction
Tomita’s parsing algorithm [8,9] is an efficient all-paths parsing method which is driven by an LR

parse table with multi-valued entries. The parser employs an acyclic parse graph instead of the conven
tional LR parser stack. The parser starts as an ordinary LR parser, but splits up when multiple actions
are encountered. Multiple parses are synchronized on their shift actions and are joined whenever they
are found to be in the same state.

The parallel parsing of all possible paths makes this algorithm suitable for parsing nearly all the
arbitrary context-free grammars. In fact, one may view this method as a precompiled form of Earley’s
algorithm [2,3]. Earley [2] proposed a form of precompiled approach to his method in the case of a res
tricted class of grammars which has undecidable membership. Tomita’s algorithm, on the other hand, is
intended for use with general grammars. Since the method uses a parse table, it achieves considerable
efficiency over the Earley’s non-compiled method which has to compute a set of LR items at each stage
of parsing. In this respect, Tomita’s algorithm can indeed be considered as a breakthrough in efficient
parallel parsing in practical systems. However, there seem to be at least two types of context-free gram
mars that cannot be handled by this method properly. The first type are cyclic grammars. These gram
mars have infinite ambiguity and therefore have to be excluded from syntactic analyses. The second
kind of grammars include certain context-free grammars with e-productions. Some of these are unambi
guous and some have bounded, bounded direct or unbounded degrees of ambiguity.

Grammars of the latter type may seldom be used to describe the syntax of natural language. In
fact, we consider them as somewhat ill-designed. But, they may creep in easily when one is designing a
natural language grammar with e-rules. Such rules cause unexpected infinite loops in parsing. In this
paper, we modify the parsing algorithm so that it can handle the second type grammars.

The modification introduces cyclic subgraphs in the original graph-structured parse stack. These
subgraphs correspond to the parsing of null substrings in the input sentence. Thus, the modification
incurs no cost to the grammars or the inputs that do not need this feature. We believe that adding such
a feature to Tomita’s algorithm is very desirable. Because, it enriches the method to be comparable to
Earley’s algorithm in its coverage, and yet it is in a precompiled form.

In the following sections, we discuss the two types of the grammars that cause problems in the
original algorithm, and we present the modified algorithm.

2. The Two Types of Grammars
Cyclic grammars are those in which a non-terminal, like A, can derive itself (i.e., A =^=> A).

and G2 are examples of cyclic grammars.

-182- Intemational Parsing Workshop '89

- 2 -

G
S A
A —> S
A —» x

G 2:
S -> S S
S —> x
S —> £

In G lt A = = > S = > A, and in G2, S = = > S S = = > S. Cyclic grammars produce infinite number
of parse trees for a finite length input such as "x" in L ^) and U G ^. They cause problem in every
parsing algorithm. Therefore, they have been avoided in describing syntax of languages traditionally.

Both Earley’s and Tomita’s algorithms will fail to detect the cyclicity of and G 2. Given an
input sentence x , one can however obtain the minimal parses with respect to either grammar by
Earley’s algorithm and only with respect to Gt by Tomita’s algorithm. The second algorithm will not
terminate when the grammar G2 is used. Tomita [8] discusses the cyclic grammars and rules out their
inclusion in natural language parsing. Such exclusion can be achieved through a simple test before gen
erating a parse table (see [1] for example).

Among the second kind grammars that cannot be handled with the original algorithm are the
examples G 3, G4, G5 and G6 below.

G3:
S —> A S b
S —> x
A —» £

G4:
S -> M

’ S —> N
M —> A M b
M -> x
N —» A N b
N —» x
A —» £

G 5:
S -» A S b
S —» x
A -> t
A -> £

G6:
S - > M N
M -» A M b
M —> x
N —» b N A
N -> x
A —> £

G 3 is unambiguous, G4 has bounded ambiguity, G5 has bounded direct ambiguity while G6 *has
unbounded ambiguity (see Apendix 1 for the definition of these terms). One may note that in these
grammars, unlike cyclic grammars, there are only finite number of parse trees for a given finite length
input.

A property common to these grammars is that there exists a non-terminal, say S, such that
^ + > a S p where ot ——■> £ but (3 =/=> e. For example, in G 3 or G5, S can be rewritten as
S A S b ■> S b. Rules like these may be excluded from a grammar by using an appropriate
test (see Appendix 2). However, one may keep or include such rules in a grammar for the following
reasons.

(1) To capture some rare phenomena, for example, embedded that-sentences
[[THAT [[THAT . . . [[THAT SI VP 1 . . .1 VP]] VP] in which a number of terminal ’that’s are omit
ted.

(2) Grammars with E-productions are more concise and readable than the grammars without £-rules. In
fact, elimination of £-rules from a grammar may increase the size of the grammar exponentially. There
fore, one may use rules similar to the examples G 3 to G6 to compact the grammar and the parse table,
knowing that their presence should not affect the correct parsing of valid inputs.

-183- Intemational Parsinc Workshoo '89

(3) More frequently, such rules may appear in a grammar when e-productions are introduced without an
adequate care. It is important to note that replacement of these rules (and their associated symbols) may
not always be easy.

Grammars G 3 through G6 can be parsed by Earley’s algorithm with no problem. For example,
consider the sentence xbbb e L(G3). That algorithm will produce the following states.

state 0 state 1 state 2 state3
root —» .S#, 0 S —> x., 0 S —> ASb., 0 S —> ASb., 0
S -> .ASb, 0 x —> root S.#, 0 b —> root —> S J , 0 b —> root —> S.#, 0
S —> .x, 0 S —> AS.b, 0 S -> AS.b,0 S AS.b,0
A —» e., 0
S —> A.Sb, 0

state 4
S —> ASb., 0
root —» S.#, 0
S —> AS.b, 0

state 5

root —» S#., 0

However, the above grammars cause an infinite loop in Tomita’s algorithm. Applying the algorithm for
e-grammars (given in [8]) to the input sentence xbbb and the parse table for G 3 , the result will be an
infinite graph-structured stack as shown below.

State x b # A S Grammar Gy.
(1) S —> A S b
(2) S —» x
(3) A -> e

0 re3,sh3 2 1
1 acc
2 re3,sh3 2 4
3 re 2 re2
4 sh5
5 rel rel

Action table Goto table

U 0.0 U 0,1 U 02 U 0.3

In Tomita’s algorithm the state nodes created in the parse graph are partitioned into UQl U lt . . . ,
Un where each £/, is the set of state vertices which are created before shifting of word a 1+1 in the input
Furthermore, in the presence of e-productions, each U[is partitioned into Ui 0, C/Itl, Ul2, . . •• Each
Ui j denotes the set of state vertices created while parsing the j-th null construct after the i-th input

-184- Intemational Parsing Workshop '89

symbol a, is shifted and before the shifting of next actual input symbol ai+1 takes place. Tomita
assumes that the number of null constituents between every adjacent pair of input symbols is always
finite. Though his assumption is correct for non-cyclic grammars, it cannot be incorporated as such in
the parser since it will require arbitrary and complex lookaheads in general case. As noted earlier this
strategy fails in the example grammars.

It is interesting to note that the same strategy will succeed in the case of LR grammar G 3 which
is the reverse of G 3 .

C'3:
S —> b S A
S —> x
A —> e

The difference between G3 and G3 is that in G3 a null deriving constituent appears on the left part of a
recursive phrase, while in G 3, it appears on the right side of the recursive construct. Thus, the parser
for G3 does not know how many A’s it has to create before consuming the first input word "x". In the
case of G3 , the left context provides enough information to limit the number of empty constructs to a
finite size.

One may observe that though G3 is an unambiguous grammar, it is not LR(k) for any k. Viewing
differently, one may argue that such grammars can be parsed deterministically and more efficiently by
non-canonical parsers. Marcus’ parser [5] and bottom-up variations of it described in [6,7] can handle
this grammar in a much better way, since they create the rightmost A in the parse tree first. The reader
may also consult [6,7] to see the advantage of these parsers over Tomita’s algorithm when grammars
like G 7 are to be parsed.

G7:
S —> a S a
S -> B S b
S —> C S c
B —> a
C —> a
S —» x

However, we should emphasis that the whole thrust and advantage of Tomita’s parser lies in obtaining
multiple parses with respect to ambiguous grammars such as those in examples G4 to G6.

In the following section, we modify Tomita’s algorithm in a way that the second type grammars
can be handled within this framework. In doing so, we believe that we are introducing a version of
Tomita’ algorithm which is a partially-precompiled equivalent of Earley’s parser and can be applied to
all non-cyclic context-free grammars.

3. Modified Algorithm
To accommodate grammars like G3 to G6 within Tomita’s parsing method, we allow cycles in

the graph-structured parse stack. These cycles are introduced in the parse graph in a very restricted way.
Each cyclic subgraph represents a regular expression that corresponds to parsing of a null substring
between two adjacent input symbols. Unlike Tomita’s algorithm for e-grammars [8], we do not partition
each Ui any further. So, the set of state vertices of each cyclic subgraph entirely lies within a single £/,.
Obviously, cycles are created within £/, only if parsing of the input sentence requires them. Since the
parse graph is now cyclic, we do reductions along arbitrary paths (i.e., paths that are not simple and
may contain repetitive vertices or arcs). Such paths are usually termed (directed) walks in graph theory.

Our approach though is intuitive, it has its roots in LR theory. In LR parsing, the finite automaton
(from which a parse table is extracted) represents the set of all viable prefixes of the grammar in closed
form. The parse stack, on the other hand, represents an actual viable prefix (of a right sentential form)
in open form. The actual viable prefix is built from the input symbols which are consumed by the LR

-185- Intemational Parsing Workshop '89

parser. It is necessary to hold the actual viable prefix in the stack so that the parser can be provided
with the exact left context. However, in the modified all-paths parser we do not need to keep the null-
deriving segments of the left context in open form. For example, in parsing sentences like xb. .b e
L(G3), e and A. . .A are the viable prefixes when the parser scans the first input symbol "x". Since each
A derives a null string and we do not know exacdy how many of them we should assume, we represent
the left context in the closed form e+AA*. The corresponding parse graph will appear as the figure in
below when "x" is just shifted. The parser will pick as many A’s as it needs from this regular expres
sion when the remainder of the sentence is seen.

AI)

Similarly, consider the example grammar G5 and the parse table for it as shown below. One will
obtain the following snapshot of the parse graph after the parser consumes the prefix txb of the sentence
txb. . .b, and all the appropriate reductions are done.

state t X b # A S

0 sh4/e4 sh3je4 2 1
1 acc
2 sh4je4 sh3je4 2 5
3 re2 re2
4 re 3 re 3
5 sh6
6 rel rel

Grammar G5
(1) S —» A S b
(2) S —» x
(3) A —» t
(4) A —» e

Action table Goto table

U r U i
i--------1

U 2
I--------1

U,
I--------1

i— i

-186- Intemational Parsing Workshop '89

In this example, the left context just before shifting the word "x" can represented as the regular
expression (AA* A + A) A*. For clarity, the bold faced A represents the non-terminal obtained by
reducing "t". For the same reason, we are not combining identical symbol vertices which are adjacent to
the same state vertex, (a measure of optimization suggested in [8]), in the illustrated examples or in the
algorithm that to follow.

As another example, an interested reader using the parse table in Appendix 3 may verify that U0
for the grammar G% will have the following format.

Cg:
S —> x
S B S b
S —> A S b
B —> A A
A —> £

In the above examples, we have used an LALR(l) parser generator, similar to YACC [4], to
obtain the parse tables with multi-valued entries. Tomita [8,9] also uses LALR(l) tables, however, using
non-optimized LR(1) tables will decrease the number of superfluous reductions in general.

We are now in a position to present the modified algorithm. For simplicity, we give an algorithm
for a recognizer rather than a parser. The recognizer can be augmented in a way similar to that of [81 to
provide a parser that also creates the parse foresL

Recognition Algorithm:

PARSE (G, a j • • • a„)
• T := 0 .
• a . :=
• r = FALSE.
• Create a vertex v0 labeled s 0 in T.
• U0 := (v0).
• For i := 1 to n do PARSEWORD (i).
• Return r.

PARSEWORD (i)
• A := Ui.
• R := 0 ; Q ; = 0 ,
• Repeat

' if A * 0 then do ACTOR
else if R * 0 then do COMPLETER

until R = 0 and A = 0 .
• Do SHIFTER.

ACTOR
• Remove an element v from A.
• For all a 6 ACTION (STATE (v), a1+1) do

begin
if a = ’accept’ then r := TRUE;

-187- International Parsing Workshop '89

if a = ’shift s ’ then add <v ,s> to Q;
if a = ’reduce p’ then

for all vertices w such that there exists a directed
walk of length 2 I RHS (p) I from v to w /* For e-rules this is a trivial walk, i.e. w=v */
do add <w ,p> to R

end.

COMPLETER
• Remove an element <vv ,p> from R.
• N := LHS (p); s := GOTO (STATE (w), N)..
• If there exists u e U, such that STATE(u) = s then

begin
if there does not exist a path of length 2 from u to w then

begin
create a vertex z labeled N in T;
create two arcs in T from u to z and from z to w;
for all v g (.Ui - A) do
/* In the case of non-e-gram mars this loop executes for v -u only */

for all q such that ’reduce q’ e ACTION (STATE (v), aI+1) do
for all vertices t such that there exists a directed walk of
length 2 I RHS (q) I from v to t that goes through vertex z
do add <t ,q> to R

end
end

else I* i.e., when there does not exist u e £/,• such that STATE (u) = s */
begin

create in r two vertices u and z labeled s and N respectively;
create two arcs in T from u to z and from z tow ;
add u to both A and £/,

end.

SHIFTER
• Ui+j := 0 .
• Repeat

remove an element <v ,s> from Q;
create a vertex x labeled al+1 in T;
create an arc from x to v;
if there exists a vertex u e Ui+l such that STATE (u) = s then

create an arc from u to x
else

begin
create a vertex u labeled s and an arc from u to x in T;
add u to £/i+1

end.
until Q = 0 .

As noted earlier, the above recognition algorithm can be changed into a parsing algorithm to pro
duce the shared parse forest among the different parses. In the parsing algorithm the elements of R are
triples <w, p, L> where L is a list of vertices that represent RHS symbols of p. One must note that our
algorithm creates e-deriving non-terminals that may be shared as a son by other non-terminals that are
in ancestor-descendant relationship in the parse forest. To illustrate this point, we show the full parse
graphs and corresponding parse trees of example sentences in Appendix 4. As an alternative, in build
ing a parse forest one may replicate a null yielding subtree whenever this subtree participates in a

-188- Intemational Parsing Workshop '89

reduction where at least one other sibling has non-empty yield.
As a final remark, we may add that the above algorithm can obtain the minimal parses in the case

of cyclic grammars, but does not detect their cyclicity. It is also possible to precompile some subsets
of each C/, that are obtained under the transitions with respect to null-deriving non-terminals.

4. Conclusion
We have modified Tomita’s parsing algorithm so that it can handle some ill-designed grammars

with e-rules that caused a problem in the original algorithm. We have introduced cycles in the parse
graph in a restricted way. This makes the parse graph in the new algorithm a cyclic directed graph in
some general cases. However, the new algorithm works exacltly like the original one in case of gram
mars that have no £-productions. This algorithm has no extra costs beyond that of the original algo
rithm.

We believe that the modified algorithm is a precompiled equivalent of Earley’s algorithm with
respect to its coverage, though we have not provided a formal proof for it The resulting algorithm sug
gests that Tomita’s graph-structured parsing approach can be used with a broader class of context-free
grammars.

Appendix 1: Ambiguous grammars

Definition: A context-free grammar G has bounded ambiguity of degree k if each sentence in L(G) has
at most k distinct derivation trees.

Definition: A context-free grammar G has unbounded ambiguity if for each i>l, there exists a sentence
in L(G) which has at least i distinct derivation trees.

Definition: The degree of direct ambiguity of a non-terminal A with respect to a string x is the number
of distinct tuples (p, x irx 2> • • • .*»). where p is a production A -» B XB 2 • • • Bn, and x {x 2 • • • xH=x is
a factorization of x such that Bi =^=> x, for 1 < 1 £ n.

Definition: A context-free grammar has bounded direct ambiguity of degree k if the degree of direct
ambiguity of any of its non-terminals with respect to any string is at most k.

For example, the grammar G 5 has direct ambiguity of degree 2, in spite of being unboundedly
ambiguous.

Appendix 2: Identifying the e-grammars that cannot be parsed by the original algorithm.
LetG = (N , T , P , S) b e a context-free grammar with e productions. The following algorithm

decides whether G can be parsed by the original algorithm.

(1) Compute the set of non-terminals E = (C IC =£=> e } that can derive a null string.

(2) Let p c N x N be a binary relation such that (A,B) € p if and only if A -> C jC 2 • • • CnB a is a
production in P and C, e E for 1 <i £ n.

(3) Compute p+ the closure of p. If there exists a non-terminal A where (A A) 6 p+ then G cannot be
parsed by the Tomita’s original algorithm for e-grammars.

-189- International Parsing Workshop '89

Appendix 3: Parse Table for G ra m m a r G s

state X b # A B S Grammar G 8
(1) S -» x
(2) S -> B S b0 sh2j-e5 4 j 1

1 acc (3) S -* A S b
2 rel rel (4) B -) A A
3 sh2je5 4 3 5 (5) A -4 e
4 sh2/e5 6 3 7
5 sh8
6 sh2,re4je5 6 3 7
7 sh9
8 re2 re 2
9 re 3 re 3

Action table Goto table

Appendix 4: Parsing of example sentences
The following figures illustrate parsing of the sentences xbbb € L(G3) and bbbx e L(G3). The

dotted lines indicate the rejected paths. The shared non-terminals are shown in italics.

Ur U i U- u- u<

Parse graph and parse tree of the sentence xbbb e L(Gi)

S

-190- Intemational Parsing Workshop '89

Parse graph and parse tree of the sentence bbbx g L(G$)

One may observe that the parse graph and the parse tree of the sentence bbbx e L(G3) are
different from those that one can obtain by using Tomita’s algorithm for e-grammars [8]. The modified
recognizer creates a single A node in the parse graph whereas Tomita’s recognizer will create three A
vertices. In our representation of parse tree, the null yielding subtree with root A is shared among the
S nodes that are descendants of each other. However as it was noted in the paper, the parser could
replicate such subtrees in the parse tree if one wishes so.

References

[1] A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation, and Compiling, Volume 1, Pren
tice Hall, Englewood Cliffs, NJ, 1972.

[2] J. Earley, An Efficient Context-free Parsing Algorithm, Ph.D. Thesis, Computer Science Depart
ment, Camegie-Mdlon University, Pittsburg, PA, 1968.

[3] J. Earley, An efficient context-free parsing algorithm, CACM, vol. 13, no. 2, pp. 94-102 February
1970. ’

[4] S.C. Johnson, YACC: Yet Another Compiler-Compiler, Technical Report 32, Bell Laboratories,
Murray Hill, NJ, 1975. Also reproduced in Unix Programmer’s Manual.

[5] M.P. Marcus, A Theory of Syntactic Recognition for Natural Language, MIT Press, Cambridge
MA, 1980. 6 ’

[6] R. Nozohoor-Farshi, On formalizations of Marcus’ parser, COLING’ 86, Proceedings of the 1 1 th
International Conference on Computational Linguistics, University of Bonn, West Germany d d .
533-535, August 1986.

-191 - International Parsing Workshop '89

- 11 -

[7] R. Nozohoor-Farshi, LRRL(k) Grammars: A Left to Right Parsing Technique with Reduced Loo
kaheads, Ph.D. Thesis, Department of Computing Science, University of Alberta, Edmonton,
Canada, 1986.

[8] M. Tomita, Efficient Parsing for Natural Language, Kluwer Academic Publishers, Boston, MA,
1986.

[9] M. Tomita, An efficient augmented-context-free parsing algorithm, Computational Linguistics,
vol. 13, no. 1-2, pp. 31-46, January 1987.

Acknowledgement
The research reported in this paper was supported by the Natural Sciences and Engineering

Research Council of Canada grant A9447.

-192- International Parsing Workshop 89

