
R ecogn ition o f C om binatory Categorial Gram m ars and Linear
Indexed Gram m ars

1 In trod u ction

In recent papers [14,15,3] we have shown th a t Com binatory Categorial G ram m ars (CCG), Head G ram
mars (H G), Linear Indexed G ram m ars (LIG), and Tree Adjoining G ram m ars (TAG) are weakly equiv
alent; i.e., they generate the same class of string languages. Although it is known th a t there are
polynomial-time recognition algorithms for HG and TAG [7,11], there are no known polynomial-time
recognition algorithms th a t work directly with CCG or LIG. In this paper we present polynomial
time recognition algorithms for CCG and LIG th a t resemble the CKY algorithm for Context-Free
G ram m ars (C F G) [4,16].

The tree sets derived by a C FG can be recognized by finite state tree au to m a ta [10]1. This
is reflected in CFL bo ttom -up recognition algorithms such as the CKY algorithm. Intermediate
configurations of the recognizer can be encoded by the sta tes of these finite s ta te au to m a ta (the
nonterm inal symbols of the g ram m ar). The similarity of TAG, CCG, and LIG can be seen from the
fact th a t the tree sets derived by these formalisms can be recognized by pushdown (ra ther than finite
s ta te) based tree au to m a ta . We give recognition algorithms for these formalisms by extending the
CK Y algorithm so th a t in term ediate configurations are encoded using stacks. In [6] a chart parser for
CCG is given where copies of stacks (derived categories) are stored explicitly in each chart entry. In
Section 4 we show th a t storing stacks in this way leads to exponential run-time. In the algorithm we
present here the stack is encoded by storing its top element together with information about where
the rem ainder of the stack can be found. Thus, we avoid the need for multiple copies of parts of the
same stack through the sharing of common substacks. This reduces the num ber of possible elements
in each en try in the chart and results in a polynomial time algorithm since the time complexity is
related to the num ber of elements in each chart entry.

It is not necessary to derive separa te algorithms for CCG, LIG, and TAG. In proving th a t these
formalisms are equivalent, we developed constructions th a t m ap g ram m ars between the different for
malisms. We can m ake use of these constructions to adap t an algorithm for one formalism into an
algorithm for another. First we present a discussion of the recognition algorithm for LIG in Section 22.

1A bottom-up finite state tree automaton reads a tree bottom-up. The state that the automaton associates with each
node that it visits will depend on the states associated with the children of the node.

2 We consider LIG that correspond to the Chomsky normal form for CFG although we do not prove that all LIG have
an equivalent grammar in this form. A discussion of the recognition algorithm for LIG in this form is sufficient to enable
us to adapt it to give a recognition algorithm for CCG, which is the primary purpose of this paper.

K. Vijay-Shanker

Department of CIS
University of Delaware

Delaware, DE 19716

David J. Weir

Department of EECS
Northwestern University

Evanston, IL 60208

-172- International Parsing Workshop '89

We present the LIG recognition algorithm first since it appeares to be the clearest example involving
the use of the notion of stacks in derivations. In Section 3 we give an informal description of how to
m ap a CCG to an equivalent LIG. Based on this relationship we adapt the recognition algorithm for
LIG to one for CCG.

2 Linear Indexed Gram m ars

An Indexed G ram m ar [l] can be viewed as a CFG in which each nonterminal is associated with a
stack of symbols. In addition to rewriting nonterminals, productions can have the effect of pushing
or popping symbols on top of the stacks tha t are associated with each nonterminal. A LIG [2] is an
Indexed G ram m ar in which the stack associated with the nonterminal of the LHS of each production
can only be associated with one of the occurrences of nonterminals on the RHS of the production.
E m pty stacks are associated with o ther occurrences of nonterminals on the RHS of the production. We
write A[--] (or A[--7]) to denote the nonterminal A associated with an a rb itra ry stack (or an arbitrary
stack whose top symbol is 7). A nonterm inal A with an em pty stack is written A[].

D e f in i t io n 2.1 A LIG, G, is denoted by (V>/, Vj, V>, 5, P) where

V'v is a finite set of nonterminals,
V j is a finite set of terminals,
Vj is a finite set of indices (stack symbols),
S 6 Vn is the s ta r t symbol, and
P is a finite set of productions, having one of the following forms.

/ t N - A1[] . . .A, - ["] . . .An(] A H - . 4 1[] . . . A , [- 7] . . .A„[] A[] —* a

where A, A \ , . . . , A n 6 Vn a ^d flG { e } U V j .

The relation = > is defined as follows where a € V f and T i , T 2 are strings of nonterminals with
G

associated stacks.

• If A[--7] — A i [] . . . A t ["] . . . A n [] € P then

T iA [q 7]T 2 = > T 1 A 1 [] . . . A , [a] . . . A „ [] T 2

• If A[-] ~ A1[] . . . A j[- i] . . . A „ [] € P then

T ,A [a]T 2 =>• T 1A i [] . . . A , [a 7] . . . A n[]T2

In each of these two cases we say th a t A, is the d i s t i n g u i s h e d child of A in the derivation.

• If A[] a 6 P then
r l A [} T 2 = > r i a r 2

The language genera ted by a LIG, G, L (G) = { w | S[] ==>• w }.

-173- Intemational Parsing Workshop '89

In considering the recognition of LIG, we assum e th a t the underlying CFG is in Chom sky Normal
Form; i.e., e ither two nonterm inals (w ith their stacks) or a single term inal can appear on the RHS of a
rule. A lthough we have not confirmed w hether this yields a norm al form, a recognition algorithm for
LIG in this form of LIG is sufficient to enable us to develop a recognition algorithm for CCG. We use
an array L consisting of n2 elem ents where the string to be recognized is a x .. .a n . In the case of the
CKY algorithm for CFG recognition each array elem ent L t<J contains th a t subset of the nonterm inal
symbols th a t can derive the substring ax .. .a ; . In our algorithm the elem ents stored in L i j will encode
those nonterm inals and associated stacks th a t can derive the string a, . . . a^.

In order to ob tain a polynom ial algorithm we m ust encode the stacks efficiently. W ith each
nonterm inal we store only the top of its associated stack and an indication of the element in L
where the next p a rt of the stack can be found. This is achieved by storing sets of tuples of the form
(.4 , 7 , A ' , 7 ' ,p, q) in the array elem ents. Roughly speaking, a tuple (A, 7 , A', 7 ', p, <7) is stored in I tiJ
when A [q7 /7] = > a , . . .aj and A/[q;7 /] —̂ ap . . , a q where q is a string of stack symbols and A is
the unique distinguished descendent of A in the derivation of a , . . . a ; .

Note th a t tuples, as defined above, assum e the presence of a t least two stack symbols. We must
also consider two o ther cases in which a nonterm inal is associated with either a stack of a single
elem ent, or w ith the em pty stack. Suppose th a t A is associated w ith a stack containing only the single
sym bol 7 . This case will be represented using tuples of the form (A, 7 , A ' , p , <7) (w- ” indicates that
an em pty stack is associated w ith A '). W hen an em pty stack is associated w ith A we will use the tuple
(A, - , -) . In discussing the general case for tuples we will use the form (A, 7 , A ', 7 ', p, <7) with
the understand ing th a t: A' G VN or 7 , 7 ' £ V/ or and p, q are integer betw een 1 and n or
T he algorithm can be understood by verifying th a t at each step the following invariant holds.

P r o p o s i t io n 2.1 (A , 7 , A', 7 ', p, q) £ L XyJ if and only if one of the following holds.

If -y' ^ — then A[7] = > a , . . . a p_i A'[}aq+\ . . . a ; and A'[ol~i'\ ===> ap . . . aq for some a E

V f where A ' is a distinguished descendent of A. Note th a t this implies th a t for
a ll 0 e V f , A[j3~f] a l- . . . a p_ iA /[/3]a, + 1 . . . a j . T hus, for (3 = 0 7 ', A [aY f] =^>

a,-. . . a p_ i A '[a7 /] a ,+ i . . .aj which implies A [a7 ;7] =̂ => a , . . .a j .

If 7 7 = - ^ A' then A[7] ==> a,-.. .a3 and A'[] ap .. .aq.

If A' = - then A[] =̂ => a t- . . .aj.

Wre now describe how each en try L i j is filled. As the algorithm proceeds, the gap betw een i and j
increases until it spans the en tire inpu t. T he inpu t, <zi. . . an , is accepted if (S , , —) E L\ n.
New entries are added to the a rray elem ents according to the productions of the g ram m ar as follows.

1. T he p roduction A[»7] -+ A i[]A 2[-] is used while filling the a rray elem ent L i j as follows. For
every k where i < k < j , check the previously com pleted array elem ents L itk and L k+\,j for
(A i , * - , a n d some (A 2, 72, A3,73 ,P , <?), respectively. If these entries are found add
(A , 7 , A2, 72? k + 1, j) to L i j . If 72 = 73 = ^3 = P = q = ~ we Place (A ,7 ,A 2, - , f c + l , j) in
L i j . From these entries in L iyk and Ifc+i.j we know by P roposition 2.1 th a t A x[] =̂=> a t- . . . a fc

2.1 Recognit ion of LIG

-174- International Parsing Workshop ’89

and .4.2[a] ==> a,k+i . . .a ; for some a E V}- . T hus, Afcry] ==> a, •. •a: . The production A[**-y] —

Ai[*-]A2[] is handled similarly.

2. Suppose A[-*] —*> A i[].42[--7] is a production. W hen filling L tyJ we m ust check whether the
tuple (A i , i s in L x and (A2, 7 , A3, 73 , p, q) is in L k+lyJ for some k between i
and j . If we do find these tuples then we check in L v<q for some (A 3 , 73, A4, 74, r, s). In this
case we add (A , 73 , A4, 74, r, s) to L{j . If 73 = - then the stack associated with A3 is empty,
74 = A 4 = r = s = —, and we add the tuple (A, r , 5) to L{yJ. T he above steps can be
related to Proposition 2.1 as follows.

(a) If 73 5* - then for some a € V /, A4[q74J =^> ar . . . a 3 a subderivation of .43 (0:7473] =̂=>

av . . . a q a subderivation of A2[c*74737] ==> a * + i . . . a j . Com bining this w ith A i[] ==>

a , . . . a t we have A [q7 473] ===> a, . . . a ; .

(b) If 73 = — then A3[] av . . . a q is a subderivation of A2[7] ==>• ^k+ 1 - . . a j . C o m b in i n g

w ith Ai [] ==> a,-. . .a* , we get A[] = = > < Z j...a j.

P roductions of the form A[-*] —1► Ai[-*7]A2[] are handled similarly.

3 . Suppose A[] — a is a p roduction . This is used by the algorithm in the initialization of the array
L. If the term inal sym bol a is the sam e as the i th sym bol in the input string , i.e., a = a ,, then
we include (A , - in the a rray elem ent Z ,tl.

2 .2 C o m p le te A lg o r ith m

For i := 1 to n do

Li.i := {(>1, I A []-» a,}

For i := n to 1 do
For j := j to n do

For k := i to j — 1 do

Step la. For each production A(--7] — Ai[]A2[--]
if (A i, - , , -) € Li'k and (A2 , 72 , A3 , 7 3 , p, q) € Lk+i,j
then Li j := Li j U { (A, 7 , A2, 72 , k + 1 ,;) }

Step lb. For each production A[--7] —*> Ai[--]A2[]
if (Ai , 7 1 , A3 , 7 3 , p , q) € Li,!, and (A2) —, —, —, —) € L k + i j

then Li j 1 —- Li j U {(A,7>Ai,7i>*i^')}

Step 2a. For each production A[-] —* Ai[]A2[--7]
if (A 2 , 7 i A3 , 7 3 , p, q) € £*+i,;> (A3 , 7 3 , A4, 74 , r, s) € £ Pl?, and (A i € L%,k
then Li j .= Li j U { (A, 7 3 > A4, 74> }

S/ep 2 b. For each production A[--] —*• Ai[--7]A2[]
if (Ai , 7 , A3 , 73, p, ?) 6 (A3, 73, A4, 74, r , 5) G Ip,}, and (A2) —, - , , -) 6 £*+ 1 ,;
then L i j := L i j U { (A, 73, A4 , 74, r, s) }

-175- International Parsing Workshop '89

2 .3 C o m p le x ity o f th e A lg o r ith m

Any array elem ent, say Z j j , is a set of tuples of the form (A, 7 , A', 7 ', p, q) where p and q are either
integers betw een i and j , or i = j = The num ber of possible values for A, A', 7 , and 7 ' are each
bounded by a constan t. Thus the num ber of tuples in L XJ is at m ost 0 ((j — t)2). For a fixed value
of i , j , k , steps l a and lb will a tte m p t to place at most 0 ((j — i)2) tuples in L{j . Before adding m y
tuple to L i j we first check w hether the tuple is already present in th a t array elem ent. This can be
done in constan t tim e on a RAM by assum ing th a t each array elem ent L XtJ is itself an (i -f 1) x (j 4- 1)
array. A tuple of the form (A, 7 , A', 7 ', p, q) will be in the (p ,q) th elem ent of L Xi] and a tuple of the
form (A, —, —, —, —, -) will be in the (i + l , j + l) th elem ent of L xj . Thus these steps take at most
0 ({ j ~ 0 2) tim e- Similarly, for a fixed value of i, j , and fc, steps 2a and 2b can add at m ost 0 ((j - i)2)
d istinct tuples. However, in these steps 0 ((j — i)4) not necessarily distinct tuples may be considered.
There are 0 ((j — i)4) such tuples because the integers p , q , r , s can take values in the range between i
and j . Thus steps 2a and 2b m ay each take 0 ((j — i)4) tim e for a fixed value of i , j , k . Since we have
three in itial loops for i, j , and k, the tim e com plexity of the algorithm is 0 (n 7) where the length of
the input is n.

3 C om binatory C ategorial G ram m ars

CCG [9,8] is an extension of Classical C ategorial G ram m ars in which bo th function composition
and function application are allowed. In addition , forw ard and backw ard slashes are used to place
conditions concerning the relative ordering of adjacent categories th a t are to be combined.

D e f in i t io n 3 .1 A C C G , G, is denoted by (V j, V)v, 5 , / , R) where

V j is a finite set of term inals (lexical item s),
V)v is a finite set of nonterm inals (atom ic categories),
5 is a distinguished m em ber of Vjv,
/ is a function th a t m aps elem ents of Vj U {e} to finite subsets of C (Vj\r), the set of
categories ,3 where C(V}v) is the sm allest set such th a t Vjv C C (V ^) and c i ,c 2 G C(Vjv)
implies (c i / c 2), (c i \ c 2) € C(VN),
R is a finite set of com binatory rules.

T here are four types of com binatory rules involving variables x , y , z , z \ , . . . over C(V)y) and where

It € { \ > / } 4-

1 . forward application: > i x / y) V ~ '* x

2 . backward application: y (x \ y) -+ x
For these rules we say th a t (x / y) is the prim ary category and y the secondary category.

3 . generalized forward com position for som e fixed n > 1 :

(x / y) (. • . (y | l * l) | 2 • • • | » * n) -*■ (* • • (* | l * l) | 2 • • - In^n)

3 Note that / can assign categories to the empty string, e, though, to our knowledge, this feature has not been employed
in the linguistic applications of CCG.

4There is no type-raising rule although its effect can be achieved to a limited extent since / can assign type-raised
categories to lexical items.

-176* International Parsing Workshop ’89

4. generalized backw ard com position for some n > 1:

(• - * (2/ | l-l)|2 • • -ln*n) (A y) —’ (• • . (x | i * i) | 2 • • -ln*n)

For these rules (x / y) is the prim ary category and (. .)|2 . . . |n*n) the secondary category.

R estrictions can be associated with the use of each com binatory rule in R. These restrictions take the
form of constra in ts on the in stan tia tions of variables in the rules.

1. T he leftm ost nonterm inal (t a r g e t c a te g o ry) of the prim ary category can be restric ted to be in
a given subset of Vjv.

2. T he category to which y is in stan tia ted can be restricted to be in a given finite subset of C (V \) .

D erivations in a C C G , G = (V j, Vyv, 5 , / , R), involve the use of the com binatory rules in R. Let = >
G

be defined as follows, where T i , T 2 € [C{VN) u VT)m and c ,c i ,c 2 € C (V N).

• If R contains a com binatory rule th a t has CiC2 — c as an instance then

T ic T 2 ==> T iG ic2T 2

• If c 6 / (a) for some a 6 Vt U { c } and c £ C (V)v) then

T ic T 2 =► T i a T 2
G

T he string languages generated by a C C G , G , L(G) = { it; | 5 w \ w € V f }.

In the present discussion of CCG recognition we m ake the following assum ptions concerning the
form of the g ram m ar.

1 . In order to simplify our p resen tation we assum e th a t the categories are parenthesis-free. The
algorithm that we present can be adapted in a straightforward way to handle parenthesized cate
gories and this more general algorithm is given in [1 2].

2. We will assum e th a t the function / does not assign categories to the em pty string . This is
consisten t w ith the linguistic use of CCG although we have not shown th a t th is is a norm al form
for CC G .

3.1 The LIG/CCG Relationship
In this section, we describe the relationship betw een LIG and CCG by discussing how we can construct
from any CC G a weakly equivalent LIG. T he weak equivalence of LIG and CCG was established
in [15]. T he purpose of this section is to show how a CCG recognition algorithm can be derived from
the a lgorithm given above for LIG.

Given a C C G , G = (V j, V\r, 5 , / , R), we construct an equivalent LIG, G' = (V j, V)v, VjvU{/, \} , S ,P)»
as follows. Each category in c 6 C(V]v) can be represented in G' as a non term inal and associated
stack A[a] where A is the ta rg e t category of c and a € ({/»\}V)v)* suck A a = c. N ote th a t we
are assum ing th a t categories are parenthesis-free.

177- International Parsing Workshop '89

We begin by considering the function, / , which assigns categories to each element of V j- Suppose
th a t c E f (a) where c G C (V h) and a G Vt - We should include the production A[a] —* a where
c - A a in P. For each com binatory rule in R w'e may include a num ber of productions in P. From the
definition of CCG it follows th a t the length of all secondary categories in the rules R is bounded by
some constan t. Therefore there are a finite num ber of possible ground instan tia tions of the secondary
category in each rule. Thus we can remove variables in secondary categories by expanding the number
of rules in R. The rules th a t result will involve a secondary category c G C(Vjv) and a prim ary category
of the form x / A or x \A where A 6 Vyv is the target category of c. The rule m ay also place a restriction
on the value of the targe t category of x. In the case of the prim ary categories of the com binatory
rules there is no bound on their length and we cannot remove the variable th a t will be bound to the
unbounded p a rt of the category (the variable x above). Therefore the rules contain a single variable
and are linear w ith respect to this variable; i.e., it appears once on either side of the rule.

It is stra igh tfo rw ard to convert com binatory rules in this form into corresponding LIG productions.
We illu s tra te how this can be done with an exam ple. Suppose we have the following com binatory rule.

x / A A / B \ C \ B - x / B \ C \ B

where the ta rg e t category of x m ust be either C or D. This is converted into the following two
productions in P.

C [- /B \C \B] - C [-M] A [/B \C \B] D [- /B \C \B] - D[- / A] A { /B \C \B]

Notice th a t these LIG productions do not correspond precisely to our earlier definition. We are
pushing and popping m ore th a t one sym bol on the stack and we have not associated em pty stacks with
all bu t one of the RHS nonterm inals. A lthough this clearly does not affect weak generative power, as
we will see in the next section, it will require a m odification to the recognition algorithm given earlier
for LIG.

3 .2 R e c o g n it io n o f C C G

In order to produce a CCG recognition algorithm we extend the LIG recognition algorithm given in
Section 2.2. From the previous section it should be clear th a t the CCG and LIG algorithm s will be
very sim ilar. Therefore we do not present a detailed description of the CCG algorithm . We use an
array , C , w ith n 2 e lem ents, C tJ for 1 < t < j < n. T he tuples in the array will have a slightly different
form from those of the LIG algorithm . This is because each derivation step m ay depend on more than
one sym bol of the category (stack). T he num ber of such sym bols is bounded by the g ram m ar and is
equal to the num ber of sym bols in the longest secondary category. We define th is bound for a CCG,
G = (V j, V}v, 5 , / , R) as follows. Let 1(c) = k if c € ({ /A } ^ jv) fc- Let 5(G) be the m axim um 1(c) of
any category c G C(V}v) such th a t c can be the secondary category of a com binatory rule in R.

As in the LIG a lgorithm we do not store the en tire category explicitly. However, ra th e r th an storing
only the top sym bol locally, as in the LIG algorithm , we store some bounded num ber of sym bols locally
together w ith a indication of where in C the rem ainder of the category can be found. This m odification
is needed since a t each step in the recognition algorithm we m ay have to exam ine the top s (G) symbols
of a category. W ith o u t this extension we would be required to trace th rough c(G) entries in C in order
to exam ine the top c(G) sym bols of a category and the a lgo rithm ’s tim e com plexity would increase.

-178- Intemational Parsing Workshop '89

An en try in C will be a six-tuple of the form (A ,a ,/3 ,7 ,p , q) where A E V /y ,,a ,(3 E ({ / A K v V
and one of the two cases applies.

or 2 < 1(a) < s(G) — 1, l((3) = s(G) - 1, 7 E { / , \ }Viv , 1 < p < q < n

0 < 1(a) < 23(G) — 2, (3 = €, 7 = p = q —

An en try (A, a, (3,~/,p,q) is placed in C t,j when

• If /3 = € and 7 — p — q — - then A a a, . . . a 7.
G

• If (3 £ e then for some a ' E ({ / , \ }V/v)*, A a '/3a a , . . . a ; and A a '/?7 = ^ > a „ . . . a 7.
G G

The steps of the algorithm th a t apply for exam ples of forw ard application and forw ard composition
are as follows.

• x / A A —► x E R
For each k betw een i and j , we look for (B , a , /?, 7 , p, <7) E C,,* and (A , -) E C*+liJ
where B is a possible ta rge t category of x and the string (3a has /A as a suffix. If we find these
tuples then do the following.

If 1(a) > 3 or (3 = e then include (B , a ' , / 3 , i , p , q) in C tJ where a = a ' / A

If 1(a) = 2 and (3 ^ e then look in Cp<q for some (B , a ', /?', 7 ', r, s) such th a t (3 is a suffix of
/3'a ', and include (B , a '"a " , fi', 7 ', r, 3) in C t)J where a = q " /A and a ' = q //;7 .

If 1(a) = / A then we know th a t (3 = e and 7 = p = g = —, and we should add (5 , e, £, —, -)
in

• x / A A \ B / C —*• x \ B / C E i?
For each A: betw een i and j , we look for (A ', a , j3, 7 ,p , <?) E C,,^ and (A , \ B / C , e, -) E Cjt+i.j
where A ' is a possible ta rg e t category of x and /A is a suffix of /3a. If we find these tuples then
do the following.

If l(j3) = s (G) — 1 or 1(a) = 2,s(G) — 3 then include (A ' , \ B / C , /3', / A , i , k) in C , j where (3'/A
is a suffix of (3a such th a t l((3') — s (G) — 1 .

If l((3) = 0 and 1(a) < 2s(G) — 3) then include (A', \ B / C a \ e, —, —, —) in C ,tJ where a ' / A =
(3a.

Each of th e o th e r form s of com binatory rules can be trea ted in a sim ilar way yielding an algorithm
th a t closely resem bles the LIG algorithm presented in Section 2 .2 . Note th a t in a com plete algorithm,
the forw ard com position exam ple th a t we have considered here would have to be m ade m ore general
since the num ber of cases th a t m ust be considered depends on the length of the secondary category in
the rule. T he tim e com plexity of the full CCG recognition algorithm is the sam e as th a t of the LIG
algorithm ; i.e., 0 (n 7).

179- International Parsing Workshop '89

4 Im portance o f Linearity

T he recognition algorithm s given here have polynom ial-tim e complexity because each array element
(e -g-» L XyJ in LIG recognition) contains a polynomial num ber of tuples (w ith respect to the difference
betw een j and i). These tuples encode the top symbol of the stack (or top symbols of the category)
together with an indication of where the next p a rt of the stack (category) can be found. If we had
stored the entire stack in the array elem ents5, then each array en try could include exponentially many
elem ents. The recognition com plexity would then be exponential.

It is in teresting to consider why it is not necessary to store the entire stack in the array elements.
Suppose th a t (A , 7 , .4', 7 ', p, q) 6 L i j . This indicates the existence of a tuple, say (A ', 7 ', A", 7 ", r, s),
in L Pyq. It is crucial to note th a t when we are adding the first tuple to L X<J we are not concerned about
how the second tuple came to be put in L p<q. This is because the productions in LIG (com binatory
rules in C C G) are linear w ith respect to their unbounded stacks (categories). Hence the derivations
from different nonterm inals and their associated stacks (categories) are independent of each other. In
Indexed G ram m ars, productions can have the form A[-*7] —*> A i [--] A 2 [*•]. In such productions there is
no single distinguished child th a t inherits the unbounded stack from the nonterm inal in the LHS of the
production . In a bo ttom -up recognition algorithm the identity of the entire stacks associated with A\
and A2 has to be verified. This nullifies any advantage from the sharing of stacks since we would have
to exam ine the com plete stacks. A sim ilar situation arises in the case of coordination schem a used to
handle certain forms of coordination in D utch. A coordination schem a has been used by Steedm an [9]
th a t has the form x con j x —► x where the variable x can be any category. W ith this schem a we have
to check the iden tity of two derived categories. This results in the loss of independence am ong paths
in derivation trees. In [13] we have discussed the notion of independent pa ths in derivation trees with
respect to a range of gram m atica l form alisms. We have shown [12] th a t when CCG are extended with
this coord ination schem a the recognition problem becomes N P-com plete.

5 C onclusion

We have presented a general schem e for polynom ial-tim e recognition of languages generated by a
class of g ram m atica l form alism s th a t are m ore powerful th an C FG . This class of form alism s, which
includes LIG, C C G , and TA G , derives m ore complex trees th an C FG due the use of an additional
s tack -m an ipu la ting m echanism . Using constructions given in [15,3], we have described how a recog
nition algorithm presented for LIG can be adap ted to give an algorithm for C C G . These are the first
polynom ial recognition algorithm s th a t work directly w ith these form alism s. This approach can also
be used to yield TA G recognition a lgorithm , a lthough the TAG algorithm is not discussed in this
paper. A sim ilar approach has been independently taken by Lang [5] who presents a Earley parser for
TA G th a t appears to be very closely related to the algorithm s presented here.

5In the chart parser for CCG given by Pareschi and Steedman [6] the entire category is stored explicitly in each chart
entry.

-180- International Parsing Workshop '89

R eferences

[1] A. V. Aho. Indexed gram m ars — An extension to context free gram m ars. J . A C M , 15:647-671,
1968.

[2] G. G azdar. Applicability o f Indexed Gram m ars to Natural Languages. Technical Report CSLI-
85-34, C enter for S tudy of Language and Inform ation, 1985.

[3] A. K. Joshi, K. V ijay-Shanker, and D. J. W eir. The convergence of mildly context-sensitive
gram m ar form alisms. In T . Wasow and P. Sells, editors, The Processing o f L inguistic Structure ,
M IT Press, 1989.

[4] T . K asam i. A n E fficien t Recognition and Syn tax A lgorithm fo r Context-Free Languages. Technical
R eport A F-CRL-65-758, Air Force Cam bridge Research L aboratory, Bedford, MA, 1965.

[5] B. Lang. N ested Stacks and Structure Sharing in Earley Parsers. In p reparation .

[6] R. Pareschi and M. J. S teedm an. A lazy way to chart-parse with categorial gram m ars. In 23th
m eeting Assoc. Com put. Ling., 1987.

[7] C. Pollard . Generalized Phrase Structure Grammars, Head Gram m ars and Natural Language.
PhD thesis, S tanford University, 1984.

[8] M. S teedm an. C om binators and gram m ars. In R. Oehrle, E. Bach, and D. W heeler, editors,
Categorial G ram m ars and N atural Language Structures, Foris, D ordrecht, 1986.

[9] M. J. S teedm an. Dependency and coordination in the g ram m ar of D utch and English. Language,
61:523-568, 1985.

[10] J. W . T h a tch er. C haracterizing derivations trees of context free g ram m ars through a generaliza
tion of finite a u to m a ta theory. J. Com put. Syst. S c i ., 5 :365-396y 1971.

[1 1] K. V ijay-Shanker and A. K. Joshi. Some com puta tional properties of tree adjoining gram m ars.
In 23rd m eeting Assoc. Com put. Ling., pages 82-93, 1985.

[12] K. V ijay-Shanker and D. J. W eir. The com puta tional properties of constrained g ram m ar for
m alism s. In p repara tion .

[13] K. V ijay-Shanker, D. J . W eir, and A. K. Joshi. C haracterizing s tru c tu ra l descriptions produced
by various g ram m atica l form alism s. In 25t/l m eeting Assoc. Com put. L ing., 1987.

[14] K. V ijay-Shanker, D. J . W eir, and A. K. Joshi. Tree adjoining and head w rapping. In I I th
In terna tiona l Conference on Com put. Ling., 1986.

[15] D. J . W eir and A. K. Joshi. C om binato ry categorial gram m ars: G enerative power and relationship
to linear contex t-free rew riting system s. In 26t/l m eeting Assoc. Com put. L ing., 1988.

[16] D. H. Younger. Recognition and parsing of context-free languages in tim e n 3. Inf. Control,
10(2):189-208, 1967.

-181- Intemational Parsing Workshop '89

