
R ecogn ition  o f C om binatory Categorial Gram m ars and Linear 
Indexed Gram m ars

1 In trod u ction

In recent papers [14,15,3] we have shown th a t  Com binatory  Categorial G ram m ars  (CCG), Head G ram 
mars (H G ), Linear Indexed G ram m ars  (LIG), and Tree Adjoining G ram m ars  (TAG) are weakly equiv
alent; i.e., they generate the same class of string languages. Although it is known th a t  there are 
polynomial-time recognition algorithms for HG and TAG [7,11], there  are no known polynomial-time 
recognition algorithms th a t  work directly with CCG or LIG. In this paper we present polynomial
time recognition algorithms for CCG and LIG th a t  resemble the CKY algorithm for Context-Free
G ram m ars  (C F G ) [4,16].

The tree sets derived by a C FG  can be recognized by finite  state tree au to m a ta  [10]1. This 
is reflected in CFL bo ttom -up  recognition algorithms such as the CKY algorithm. Intermediate 
configurations of the recognizer can be encoded by the sta tes  of these finite s ta te  au to m a ta  (the 
nonterm inal symbols of the g ram m ar). The similarity of TAG, CCG, and LIG can be seen from the 
fact th a t  the  tree sets derived by these formalisms can be recognized by pushdown  ( ra ther  than  finite 
s ta te )  based tree au to m a ta .  We give recognition algorithms for these formalisms by extending the 
CK Y algorithm  so th a t  in term ediate  configurations are encoded using stacks. In [6] a chart parser for 
CCG is given where copies of stacks (derived categories) are stored explicitly in each chart entry. In 
Section 4 we show th a t  storing stacks in this way leads to exponential run-time. In the algorithm we 
present here the stack is encoded by storing its top element together with information about where 
the rem ainder of the stack can be found. Thus, we avoid the need for multiple copies of parts  of the 
same stack through  the sharing of common substacks. This reduces the num ber of possible elements 
in each en try  in the  chart  and results in a polynomial time algorithm since the time complexity is 
related to the num ber  of elements in each chart entry.

It is not necessary to  derive separa te  algorithms for CCG, LIG, and TAG. In proving th a t  these 
formalisms are equivalent, we developed constructions th a t  m ap g ram m ars  between the different for
malisms. We can m ake use of these constructions to adap t an algorithm for one formalism into an 
algorithm  for another. First we present a discussion of the recognition algorithm  for LIG in Section 22.

1A bottom-up finite state tree automaton reads a tree bottom-up. The state that the automaton associates with each 
node that it visits will depend on the states associated with the children of the node.

2 We consider LIG that correspond to the Chomsky normal form for CFG although we do not prove that all LIG have 
an equivalent grammar in this form. A discussion of the recognition algorithm for LIG in this form is sufficient to enable 
us to adapt it to give a recognition algorithm for CCG, which is the primary purpose of this paper.
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We present the LIG recognition algorithm first since it appeares to be the clearest example involving 
the use of the notion of stacks in derivations. In Section 3 we give an informal description of how to 
m ap a CCG to an equivalent LIG. Based on this relationship we adapt the recognition algorithm for 
LIG to one for CCG.

2 Linear Indexed  Gram m ars

An Indexed G ram m ar [l] can be viewed as a CFG in which each nonterminal is associated with a 
stack of symbols. In addition to rewriting nonterminals, productions can have the effect of pushing 
or popping symbols on top of the stacks tha t  are associated with each nonterminal. A LIG [2] is an 
Indexed G ram m ar in which the stack associated with the nonterminal of the LHS of each production 
can only be associated with one of the occurrences of nonterminals on the RHS of the production. 
E m pty  stacks are associated with o ther occurrences of nonterminals on the RHS of the production. We 
write A[--] (or A[--7 ]) to denote the nonterminal A  associated with an a rb itra ry  stack (or an arbitrary 
stack whose top symbol is 7 ). A nonterm inal A  with an em pty stack is written  A[].

D e f in i t io n  2.1 A LIG, G, is denoted by (V>/, Vj, V>, 5, P )  where

V'v is a finite set of nonterminals,
V j  is a finite set of terminals,
Vj is a finite set of indices (stack symbols),
S  6 Vn  is the s ta r t  symbol, and
P  is a  finite set of productions, having one of the following forms.

/ t N -  A1[] . . .A, - ["] . . .An(] A H - . 4 1[ ] . . . A , [ - 7 ] . . .A„[ ]  A[] —* a

where A, A \ , . . . ,  A n 6 Vn  a ^d flG { e } U V j .

The relation = >  is defined as follows where a  € V f  and T i , T 2 are strings of nonterminals with
G

associated stacks.

• If A[--7 ] — A i [ ] . . . A t [ " ] . . . A n [] € P  then

T iA [ q 7 ]T 2 = >  T 1 A 1 [ ] . . . A , [ a ] . . . A „ [ ] T 2

• If A[-] ~  A1[ ] . . . A j[ - i ] . . . A „ [ ]  € P  then

T ,A [a]T 2 =>• T 1A i [ ] . . . A , [ a 7 ] . . . A n[]T2 

In each of these two cases we say th a t  A, is the d i s t i n g u i s h e d  child of A in the derivation.

• If A[] a 6  P  then
r l A [ } T 2 = > r i a r 2

The language genera ted  by a LIG, G, L ( G ) =  { w  | S[] ==>• w  }.
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In considering the recognition of LIG, we assum e th a t the underlying CFG is in Chom sky Normal 
Form; i.e., e ither two nonterm inals (w ith their stacks) or a single term inal can appear on the RHS of a 
rule. A lthough we have not confirmed w hether this yields a norm al form, a recognition algorithm  for 
LIG in this form of LIG is sufficient to enable us to develop a recognition algorithm  for CCG. We use 
an array  L consisting of n2 elem ents where the string to be recognized is a x ..  .a n . In the case of the 
CKY algorithm  for CFG  recognition each array  elem ent L t<J contains th a t subset of the nonterm inal 
symbols th a t can derive the substring ax ..  .a ; . In our algorithm  the elem ents stored in L i j  will encode 
those nonterm inals and associated stacks th a t can derive the string a, . .  . a^.

In order to ob tain  a polynom ial algorithm  we m ust encode the stacks efficiently. W ith each 
nonterm inal we store only the top of its associated stack and an indication of the  element in L 
where the next p a rt of the stack can be found. This is achieved by storing sets of tuples of the form 
(.4 , 7 , A ' , 7 ' ,p,  q) in the array  elem ents. Roughly speaking, a tuple (A, 7 , A', 7 ', p, <7) is stored in I tiJ 
when A [q7 /7 ] = >  a , . .  .aj  and A/[q;7 /] —̂  ap . . , a q where q  is a string of stack symbols and A is 
the unique distinguished descendent of A in the derivation of a , . .  . a ; .

Note th a t tuples, as defined above, assum e the presence of a t least two stack symbols. We must 
also consider two o ther cases in which a nonterm inal is associated with either a stack of a single 
elem ent, or w ith the em pty  stack. Suppose th a t A is associated w ith a stack containing only the single 
sym bol 7 . This case will be represented using tuples of the form (A, 7 , A ' , p ,  <7) ( w- ” indicates that 
an em pty  stack  is associated w ith A '). W hen an em pty  stack is associated w ith A we will use the tuple 
(A, - ,  - ) .  In discussing the general case for tuples we will use the form (A, 7 , A ', 7 ', p, <7) with
the understand ing  th a t:  A' G VN or 7 , 7 ' £ V/ or and p, q are integer betw een 1 and n or
T he algorithm  can be understood  by verifying th a t at each step the following invariant holds.

P r o p o s i t io n  2.1 (A , 7 , A', 7 ', p, q) £ L XyJ if and only if one of the following holds.

If -y' ^  — then  A[7 ] = >  a , . . .  a p_i A'[ }aq+\ . . .  a ; and A'[ol~i'\ ===> ap . . . aq for some a  E 

V f  where A ' is a distinguished descendent of A. Note th a t this implies th a t for 
a ll 0  e  V f ,  A[j3~f] a l- . . . a p_ iA /[/3]a, + 1 . . . a j .  T hus, for (3 = 0 7 ',  A [aY f ]  =^>

a,-. . . a p_ i A '[a7 /] a ,+ i . .  .aj  which implies A [a7 ;7 ] =̂ => a , . .  .a j .

If 7 7 =  -  ^  A' then  A[7 ] ==> a,-.. .a3 and A'[] ap .. .aq.

If A' =  -  then  A[] =̂ => a t- . .  .aj.

Wre now describe how each en try  L i j  is filled. As the algorithm  proceeds, the  gap betw een i and j  
increases until it spans the  en tire  inpu t. T he inpu t, <zi. . .  an , is accepted if (S , , —) E L\  n.
New entries are added to  the  a rray  elem ents according to the  productions of the  g ram m ar as follows.

1. T he p roduction  A[»7] -+ A i[]A 2[-] is used while filling the  a rray  elem ent L i j  as follows. For 
every k  where i < k < j ,  check the previously com pleted array  elem ents L itk and  L k+\,j for 
( A i , * - , a n d  some (A 2, 72, A3,73 ,P , <?), respectively. If these entries are found add 
(A , 7 , A2, 72? k  +  1, j )  to  L i j .  If 72 =  73 =  ^3  =  P =  q = ~  we Place ( A ,7 ,A 2, - , f c +  l , j )  in 
L i j .  From  these entries in L iyk and Ifc+i.j we know by P roposition  2.1 th a t A x[] =̂=> a t- . . . a fc

2.1 Recognit ion of LIG
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and .4.2[a] ==> a,k+i . .  .a ; for some a  E V}- . T hus, Afcry] ==> a, •. •a: . The production A[**-y] — 

Ai[*-]A2[] is handled similarly.

2. Suppose A[-*] —*> A i[].42[--7 ] is a production. W hen filling L tyJ we m ust check whether the
tuple ( A i , i s  in L x and ( A2, 7 , A3, 73 , p, q) is in L k+lyJ for some k between i 
and j .  If we do find these tuples then we check in L v<q for some (A 3 , 73, A4, 74, r, s). In this 
case we add (A , 73 , A4, 74, r, s) to  L{j .  If 73 = -  then the stack associated with A3 is empty, 
74 =  A 4 =  r = s = —, and we add the tuple ( A, r , 5 ) to L{yJ. T he above steps can be
related  to Proposition  2.1 as follows.

(a) If 73 5* -  then for some a  € V /, A4[q74J =^> ar . .  . a 3 a subderivation of .43 (0:7473] =̂=> 

av . . . a q a subderivation of A2[c*74737] ==> a * + i . . . a j .  Com bining this w ith A i[] ==>

a , . . .  a t  we have A [q7 473] ===> a, . . .  a ; .

(b) If 73 =  — then  A3[] av . . . a q is a subderivation of A2[7 ] ==>• ^k+ 1 - . . a j .  C o m b in i n g  

w ith Ai [ ] ==> a,-. .  .a* , we get A[] = = > < Z j...a j.

P roductions of the  form A[-*] —1► Ai[-*7 ]A2[] are handled similarly.

3 . Suppose A[] — a is a p roduction . This is used by the algorithm  in the initialization of the  array
L. If the term inal sym bol a is the sam e as the  i th sym bol in the  input string , i.e., a =  a ,, then 
we include (A , -  in the  a rray  elem ent Z ,tl.

2 .2  C o m p le te  A lg o r ith m

For i := 1 to n do

Li.i := {(>1, I A []-»  a,}

For i := n to 1 do 
For j  := j to n do

For k := i to j  — 1 do

Step la. For each production A(--7] — Ai[]A2[--]
if (A i, - ,  , - )  € Li'k and (A2 , 72 , A3 , 7 3 , p, q) € Lk+i,j
then Li j  := Li j  U  { (A, 7 , A2, 72 , k +  1 ,;) }

Step lb. For each production A[--7] —*> Ai[--]A2[]
if (Ai ,  7 1 , A3 , 7 3 , p ,  q) €  Li,!, and (A2) —, —, —, —) € L k + i j

then Li j  1 —- Li j  U {(A,7>Ai,7i>*i^')}

Step 2a. For each production A[- ] —* Ai[]A2[--7 ]
if (A 2 , 7 i A3 , 7 3 , p, q) €  £*+i,;> (A3 , 7 3 , A4, 74 , r, s) € £ Pl?, and ( A i € L%,k 
then Li j  .=  Li j  U { ( A, 7 3 > A4, 74> }

S/ep 2 b. For each production A[--] —*• Ai[--7]A2[]
if (Ai ,  7 , A3 , 73, p, ?) 6 (A3, 73, A4, 74, r , 5) G Ip,}, and (A2) —, - ,  , - )  6 £*+ 1 ,;
then L i j  := L i j  U  { (A, 73, A4 , 74, r, s) }
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2 .3  C o m p le x ity  o f  th e  A lg o r ith m

Any array  elem ent, say Z j j ,  is a set of tuples of the form (A, 7 , A', 7 ', p, q) where p and q are either 
integers betw een i and j ,  or i =  j  =  The num ber of possible values for A, A', 7 , and 7 ' are each 
bounded by a constan t. Thus the num ber of tuples in L XJ is at m ost 0 ( ( j  — t)2). For a fixed value 
of i , j , k ,  steps l a  and lb  will a tte m p t to place at most 0 ( ( j  —  i )2) tuples in L{j .  Before adding m y  
tuple to  L i j  we first check w hether the tuple is already present in th a t array  elem ent. This can be 
done in constan t tim e on a RAM by assum ing th a t each array  elem ent L XtJ is itself an (i -f 1) x ( j  4- 1 ) 
array. A tuple of the form ( A, 7 , A', 7 ', p, q) will be in the (p ,q) th elem ent of L Xi] and a tuple of the 
form (A, —, —, —, —, - )  will be in the (i +  l , j  +  l ) th elem ent of L xj .  Thus these steps take at most 
0 ( { j  ~  0 2) tim e- Similarly, for a fixed value of i, j ,  and fc, steps 2a and 2b can add at m ost 0 ( ( j  -  i )2) 
d istinct tuples. However, in these steps 0 ( ( j  — i )4) not necessarily distinct tuples may be considered. 
There are 0 ( ( j  — i )4) such tuples because the integers p , q , r , s  can take values in the range between i 
and j .  Thus steps 2a and 2b m ay each take 0 ( ( j  — i )4) tim e for a fixed value of i , j , k .  Since we have 
three in itial loops for i, j ,  and k,  the tim e com plexity of the algorithm  is 0 (n 7) where the length of 
the input is n.

3 C om binatory  C ategorial G ram m ars

CCG [9,8] is an extension of Classical C ategorial G ram m ars in which bo th  function composition 
and function application are allowed. In addition , forw ard and backw ard slashes are used to  place 
conditions concerning the relative ordering of adjacent categories th a t are to  be combined.

D e f in i t io n  3 .1  A C C G , G, is denoted by (V j, V)v, 5 , / ,  R) where

V j  is a  finite set of term inals (lexical item s),
V)v is a finite set of nonterm inals (atom ic categories),
5  is a  distinguished m em ber of Vjv,
/  is a function th a t m aps elem ents of Vj  U {e} to  finite subsets of C (Vj\r), the set of 
categories ,3 where C(V}v) is the  sm allest set such th a t  Vjv C C ( V ^ )  and  c i ,c 2 G C(Vjv) 
implies ( c i / c 2), ( c i \ c 2) € C(VN),
R is a finite set of com binatory  rules.

T here  are four types of com binatory  rules involving variables x , y , z , z \ , . . .  over C(V)y) and where

It € { \ > / } 4-

1 . forward application: > i x / y )  V ~ '* x

2 . backward application: y ( x \ y )  -+ x
For these rules we say th a t  ( x / y )  is the  prim ary  category and y  the  secondary category.

3 . generalized forward com position  for som e fixed n >  1 :

( x / y )  ( .  • . ( y | l * l ) | 2  • • • | » * n )  -*■ (* • • ( * | l * l ) | 2  • • - In^n)

3 Note that /  can assign categories to the empty string, e, though, to our knowledge, this feature has not been employed
in the linguistic applications of CCG.

4There is no type-raising rule although its effect can be achieved to a limited extent since /  can assign type-raised
categories to lexical items.
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4. generalized backw ard com position for some n > 1:

(• - * (2/ | l-l  )|2 • • -ln*n) ( A y )  —’ (• • . ( x | i * i ) | 2 • • -ln*n)

For these rules ( x / y )  is the prim ary category and ( . .  )|2 . . .  |n*n) the secondary category.

R estrictions can be associated with the use of each com binatory  rule in R.  These restrictions take the 
form of constra in ts  on the in stan tia tions of variables in the rules.

1. T he leftm ost nonterm inal ( t a r g e t  c a te g o ry )  of the prim ary category can be restric ted  to be in 
a given subset of Vjv.

2. T he category to which y is in stan tia ted  can be restricted  to  be in a given finite subset of C (V \) .  

D erivations in a C C G , G  =  (V j, Vyv, 5 , / ,  R),  involve the use of the  com binatory  rules in R. Let = >
G

be defined as follows, where T i ,  T 2 € [C{VN ) u  VT )m and c ,c i ,c 2 € C ( V N ).

• If R  contains a com binatory  rule th a t has CiC2 — c as an instance then

T ic T 2 ==> T iG ic2T 2

• If c 6 / ( a )  for some a 6 Vt  U { c } and c £ C ( V )v) then

T ic T 2 =► T i a T 2
G

T he string  languages generated  by a C C G , G , L( G)  =  { it; | 5  w \ w € V f  }.

In the  present discussion of CCG recognition we m ake the following assum ptions concerning the 
form of the  g ram m ar.

1 . In order to  simplify our p resen tation  we assum e th a t the  categories are parenthesis-free. The 
algorithm  that we present can be adapted in a straightforward way to handle parenthesized cate
gories and this more general algorithm is given in [1 2 ].

2. We will assum e th a t  the  function /  does not assign categories to  the  em pty  string . This is 
consisten t w ith the linguistic use of CCG although we have not shown th a t  th is is a  norm al form 
for CC G .

3.1 The LIG/CCG Relationship
In this section, we describe the  relationship  betw een LIG and CCG by discussing how we can construct 
from  any CC G  a  weakly equivalent LIG. T he weak equivalence of LIG and CCG was established 
in [15]. T he purpose of this section is to  show how a CCG recognition algorithm  can be derived from 
the  a lgorithm  given above for LIG.

Given a C C G , G =  ( V j, V\r, 5 , / ,  R ), we construct an equivalent LIG, G' =  (V j, V)v, VjvU{/, \} ,  S ,P )» 
as follows. Each category in c 6 C(V]v) can be represented  in G' as a  non term inal and associated 
stack  A[a] where A  is the  ta rg e t category of c and a  € ({/»\}V)v)* suck A a  =  c. N ote th a t we 
are assum ing th a t  categories are parenthesis-free.
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We begin by considering the function, / ,  which assigns categories to each element of V j-  Suppose 
th a t c E f ( a )  where c G C ( V h ) and a G Vt - We should include the production A[a] —* a where 
c -  A a  in P. For each com binatory  rule in R  w'e may include a num ber of productions in P. From the 
definition of CCG it follows th a t the length of all secondary categories in the rules R  is bounded by 
some constan t. Therefore there are a finite num ber of possible ground instan tia tions of the secondary 
category in each rule. Thus we can remove variables in secondary categories by expanding the number 
of rules in R. The rules th a t result will involve a secondary category c G C(Vjv)  and a prim ary category 
of the form x / A  or x \A  where A  6 Vyv is the target category of c. The rule m ay also place a restriction 
on the value of the targe t category of x.  In the case of the prim ary categories of the  com binatory 
rules there is no bound on their length and we cannot remove the variable th a t will be bound to the 
unbounded p a rt of the category (the  variable x above). Therefore the rules contain a single variable 
and are linear w ith respect to  this variable; i.e., it appears once on either side of the rule.

It is stra igh tfo rw ard  to  convert com binatory rules in this form into  corresponding LIG productions. 
We illu s tra te  how this can be done with an exam ple. Suppose we have the following com binatory rule.

x / A  A / B \ C \ B  -  x / B \ C \ B

where the ta rg e t category of x  m ust be either C  or D.  This is converted into the following two 
productions in P.

C [ - /B \C \B ]  -  C [ -M ]  A [ /B \C \B ]  D [ - /B \C \B ]  -  D[- / A]  A { /B \C \B ]

Notice th a t  these LIG productions do not correspond precisely to  our earlier definition. We are 
pushing and popping m ore th a t  one sym bol on the stack and we have not associated em pty  stacks with 
all bu t one of the  RHS nonterm inals. A lthough this clearly does not affect weak generative power, as 
we will see in the  next section, it will require a m odification to the recognition algorithm  given earlier 
for LIG.

3 .2  R e c o g n it io n  o f  C C G

In order to  produce a CCG recognition algorithm  we extend the LIG recognition algorithm  given in 
Section 2.2. From  the previous section it should be clear th a t the CCG and LIG algorithm s will be 
very sim ilar. Therefore we do not present a detailed description of the  CCG  algorithm . We use an 
array , C , w ith n 2 e lem ents, C tJ  for 1 < t <  j  < n. T he tuples in the  array  will have a slightly different 
form  from  those of the  LIG algorithm . This is because each derivation step m ay depend on more than  
one sym bol of the  category  (stack ). T he num ber of such sym bols is bounded by the g ram m ar and is 
equal to  the  num ber of sym bols in the  longest secondary category. We define th is bound for a CCG, 
G  =  (V j, V}v, 5 , / ,  R )  as follows. Let 1(c) =  k if c € ( { /A } ^ jv ) fc- Let 5(G ) be the m axim um  1(c) of 
any category c G C(V}v) such th a t  c can be the secondary category of a com binatory  rule in R.

As in the  LIG a lgorithm  we do not store  the  en tire  category explicitly. However, ra th e r  th an  storing 
only the  top sym bol locally, as in the  LIG algorithm , we store  some bounded num ber of sym bols locally 
together w ith a indication of where in C  the  rem ainder of the  category can be found. This m odification 
is needed since a t each step  in the  recognition algorithm  we m ay have to  exam ine the top  s (G)  symbols 
of a category. W ith o u t this extension we would be required to  trace  th rough  c(G)  entries in C  in order 
to  exam ine the  top  c(G)  sym bols of a  category and the  a lgo rithm ’s tim e com plexity would increase.
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An en try  in C  will be a six-tuple of the form ( A ,a ,/3 ,7 ,p ,  q) where A E V /y ,,a ,(3 E ( { / A K v V  
and one of the two cases applies.

or 2 < 1(a) < s(G)  — 1, l((3) =  s(G ) -  1, 7 E { / ,  \  }Viv , 1 < p < q < n

0 < 1(a) < 23(G ) — 2, (3 =  €, 7 = p = q —

An en try  (A,  a,  (3,~/,p,q) is placed in C t,j when

• If /3 =  € and 7 — p — q — -  then A a a, . .  . a 7.
G

• If (3 £  e then  for some a '  E ( { / , \  }V/v)*, A a '/3a  a , . . . a ; and A a '/?7 = ^ > a „ . . . a 7.
G G

The steps of the algorithm  th a t apply for exam ples of forw ard application and forw ard composition 
are as follows.

• x / A  A  —► x  E R
For each k  betw een i and j ,  we look for ( B ,  a ,  /?, 7 , p, <7) E C,,* and (A , - )  E C*+liJ
where B  is a  possible ta rge t category of x  and the string (3a has /A  as a suffix. If we find these 
tuples then  do the following.

If 1(a) > 3  or (3 =  e then  include ( B , a ' , / 3 , i , p , q )  in C tJ where a = a ' / A

If 1(a) = 2 and (3 ^  e then  look in Cp<q for some (B ,  a ',  /?', 7 ', r, s) such th a t (3 is a suffix of
/3'a ', and include (B , a '"a " , fi', 7 ', r, 3 ) in C t)J where a  =  q " /A  and  a ' =  q //;7 .

If 1(a) =  / A  then  we know th a t  (3 =  e and 7 =  p =  g =  —, and we should add ( 5 ,  e, £, —, - )
in

• x / A  A \ B / C  —*• x \ B / C  E i?
For each A: betw een i and j ,  we look for (A ', a ,  j3, 7 ,p , <?) E C,,^ and ( A , \ B / C ,  e, - )  E Cjt+i.j 
where A ' is a possible ta rg e t category of x  and /A  is a suffix of /3a. If we find these tuples then 
do the following.

If l(j3 ) =  s (G)  — 1 or 1(a)  =  2,s(G) — 3 then  include ( A ' , \ B / C ,  /3', / A , i ,  k)  in C , j  where (3'/A 
is a  suffix of (3a such th a t  l((3') — s (G)  — 1 .

If l((3) =  0 and  1(a) < 2s(G)  — 3) then  include ( A', \ B / C a \  e, —, —, —) in C ,tJ where a ' / A = 
(3a.

Each of th e  o th e r form s of com binatory  rules can be trea ted  in a sim ilar way yielding an algorithm 
th a t  closely resem bles the  LIG algorithm  presented in Section 2 .2 . Note th a t in a  com plete algorithm, 
the  forw ard com position exam ple th a t  we have considered here would have to  be m ade m ore general 
since the  num ber of cases th a t  m ust be considered depends on the  length of the  secondary category in 
the rule. T he tim e com plexity of the  full CCG  recognition algorithm  is the  sam e as th a t  of the LIG 
algorithm ; i.e., 0 ( n 7).
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4 Im portance o f Linearity

T he recognition algorithm s given here have polynom ial-tim e complexity because each array  element 
(e -g-» L XyJ in LIG recognition) contains a polynomial num ber of tuples (w ith respect to  the difference 
betw een j  and i). These tuples encode the top symbol of the stack (or top symbols of the category) 
together with an indication of where the next p a rt of the stack (category) can be found. If we had 
stored  the entire  stack  in the  array  elem ents5, then each array  en try  could include exponentially many 
elem ents. The recognition com plexity would then be exponential.

It is in teresting  to  consider why it is not necessary to store the entire stack in the array  elements. 
Suppose th a t (A , 7 , .4', 7 ', p, q) 6 L i j .  This indicates the existence of a tuple, say (A ', 7 ', A", 7 ", r, s), 
in L Pyq. It is crucial to  note th a t when we are adding the first tuple to L X<J we are not concerned about 
how the second tuple came to be put in L p<q. This is because the productions in LIG (com binatory 
rules in C C G ) are linear w ith respect to  their unbounded stacks (categories). Hence the derivations 
from different nonterm inals and their associated stacks (categories) are independent of each other. In 
Indexed G ram m ars, productions can have the form A[-*7 ] —*> A i [--] A 2 [*•]. In such productions there is 
no single distinguished  child th a t inherits the  unbounded stack from the nonterm inal in the LHS of the 
production . In a bo ttom -up  recognition algorithm  the identity  of the entire  stacks associated with A\ 
and A2 has to  be verified. This nullifies any advantage from the sharing of stacks since we would have 
to  exam ine the com plete stacks. A sim ilar situation  arises in the  case of coordination schem a used to 
handle certain  forms of coordination in D utch. A coordination schem a has been used by Steedm an [9] 
th a t  has the  form x con j x  —► x  where the variable x  can be any category. W ith  this schem a we have 
to  check the iden tity  of two derived categories. This results in the loss of independence  am ong paths 
in derivation trees. In [13] we have discussed the notion of independent pa ths in derivation trees with 
respect to  a range of gram m atica l form alisms. We have shown [12 ] th a t when CCG are extended with 
this coord ination  schem a the recognition problem  becomes N P-com plete.

5 C onclusion

We have presented  a general schem e for polynom ial-tim e recognition of languages generated by a 
class of g ram m atica l form alism s th a t  are m ore powerful th an  C FG . This class of form alism s, which 
includes LIG, C C G , and  TA G , derives m ore complex trees th an  C FG  due the  use of an additional 
s tack -m an ipu la ting  m echanism . Using constructions given in [15,3], we have described how a recog
nition algorithm  presented  for LIG can be adap ted  to  give an algorithm  for C C G . These are the first 
polynom ial recognition algorithm s th a t  work directly w ith these form alism s. This approach can also 
be used to  yield TA G  recognition a lgorithm , a lthough the TAG algorithm  is not discussed in this 
paper. A sim ilar approach  has been independently  taken  by Lang [5] who presents a Earley parser for 
TA G th a t appears to  be very closely related  to  the algorithm s presented here.

5In the chart parser for CCG given by Pareschi and Steedman [6] the entire category is stored explicitly in each chart 
entry.
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