
Head-Driven Parsing
Martin Kay

Xerox Palo Alto Research Center and Stanford University

There are clear signs of a "Back to Basics" movement in parsing and syntactic
generation. Our Latin teachers were apparently right. You should start with the
main verb. This will tell you what kinds of subjects and objects to look for and
what cases they will be in. When you come to look for these, you should also
stan by trying to find the main word, because this will tell you most about what
else to look for.

In the early days of research on machine translation, Paul Garvin advocated the
applicadon of what he called the "Fulcrum" method to the analysis of sentences. If
he was the last to heed the injunctions of his Latin teacher, it is doubtless because
America followed the tradition of rewriting systems exemplified by context-free
grammar and this provided no immediate motivation for the notion of the head of
a construction. The European tradition, and particularly the tradition of Eastern
Europe, where Garvin had his roots, tend more towards dependency grammar, but
away from that of mathematical formalization which has been the underpinning
of computational linguistics.

But the move now is towards linguistic descriptions that put more information
in the lexicon so that grammar rules take on a more schematic quality. Little by
little, we moved from rules like
(1) V P l - > V P 2 NP

C a s e O f (V P 2) = D a t i v e
C a s e O f (N P) = D a t i v e

to rules that attain greater abstraction through the use of logical variables (or the
equivalent), like

(2) VPl -> VP2 NP
ObjCase(VP2) =■ Case
CaseOf(NP) - Case

Where the underlined Case is to be taken as the name of a variable. From there,
it was a short step to

(3) V P l - > V P 2 X

C o m p l e m e n t O f (VP2) - X

-52- International Parsing Workshop '89

or even

(4) V P 1 - > V P 2 X

C o m p l e m e n t S t r i n g O f (V P 2) = X

Given rule (2), that parser knows what case the noun must have only after it has
encountered the verb. Rules (3) and (4), do not even tell it that the complement
must be a noun phrase. In (4) we cannot even tell how many complements ther
will be. For most parsers, the problem is masked in these examples by the fact
that they apply rules from left to right so that the value of the variable X is known
by the time it is needed. In rule (4a), the matter is different.

(4 a) V P 1 - > X V P 2

C o m p l e m e n t S t r i n g O f (V P 2) = X

Needless to say, these things have not gone unnoticed, least of all by the
participants in this conference. It has been noted, for example, that deftnite-
clause grammars can be adjusted so as to look for heads before complements and
adjuncts. If the head of a sentence is a verb phrase, then it is sufficient to write
(6) instead of (5).

(5) s (L e f t / R i g h t)
n p (L e f t / M i d d l e) ,
v p (M i d d l e / R i g h t) .

(6) s (L e f t / R i g h t)
v p (M i d d l e / R i g h t) ,

n p (L e f t / M i d d l e) .

A rule that expands the verb phrase would be something like (7).

(7) v p (L e f t / R i g h t)
v e r b (L e f t / M i d d l e) ,

n p (M i d d l e / R i g h t) .

This time, the order is the usual one because the head is on the left1.

Of course, all this works if L e f t , M i d d l e , and R i g h t are something like word
numbers that provide random access to the parts of the sentence. To make the
system work with difference lists, we need something more, for example, as in (8).

(8) s (L e f t / R i g h t)
a p p e n d (X , M i d d l e , L e f t) ,

v p (M i d d l e / R i g h t) , n p (L e f t / M i d d l e) .

We have now moved lo the Prolog convention of using caiulized names for variables.

-53- Intemational Parsing Workshop '89

The reason for the addition is that the parser, embodied here in the set of rules
themselves, has no way to tell where the verb phrase will begin. It must therefore
consider all possible positions in the string, an end which, against all expectation,
is accomplished by the a p p e n d predicate. If a p p e n d is not needed when something
like word numbers are used, it is because the inevitable search of the string is
being quietly conducted by the Prolog system as it searches its data base, rather
than being programmed explcitely.

The old-fashioned parser had no trouble finding the beginnings of things
because they were always immediately adjacent, either to the boundaries of the
sentence, or to another phrase whose position was already known. Given the
sentence

I sold my car to a student o f African languages whom I met at a party

and given appropriate rules, the head-driven parser will correcdy identify "my
car" as the direct object of "sold". But it will also consider for this role at least
the following:

(8) a s t u d e n t
a s t u d e n t o f A f r i c a n
a s t u d e n t o f A f r i c a n l a n g u a g e s
a s t u d e n t o f A f r i c a n l a n g u a g e s w h o m I m e t
a s t u d e n t o f A f r i c a n l a n g u a g e s w h o m I m e t a t a p a r t y
A f r i c a n
A f r i c a n l a n g u a g e s
A f r i c a n l a n g u a g e s w h o m I m e t
A f r i c a n l a n g u a g e s w h o m I- m e t a t a p a r t y
l a n g u a g e s
l a n g u a g e s w h o m I m e t
l a n g u a g e s w h o m I m e t a t a p a r t y

a p a r t y

It will reject them only when it fails to extend them far enough to the left to meet
the right-hand edge of the word "sold". Likewise, the last four entries on the list
will be constructed again as possible objects for the preposition "of'. As we shall
see, this problem is not easy to put to set aside.

O f course, definite-clause grammars have other problems, when interpreted
directly by a standard Prolog processor. The most notorious of these is that,
in their classical form, they cycle indefinitely when provided with a grammar
that involves left recursion. However this can be overcome by using a more
appropriate interpreter such as the one given in Appendix A of this paper. It

54- International Parsing Workshop '89

does not touch the question of the additional work that has to be done in parsing
a sentence.

Two solutions to the problem suggest themselves immediately. One is to use
an undirected bottom-up parsing strategy, and the other is to seek an appropriate
adaptation of chart parsing to a directed, head-driven, strategy. The first solution
works for the simple reason that the problem we are facing simply does not arise
in undirected bottom-up processing. There is no question of finding phrases that
are adjacent to, or otherwise positioned relative to, other phrases. The strategy is a
purely opportunistic one which finds phrases wherever, and whenever, its control
strategy dictates. A simple chart parser with these properties is given in Appendix
B. It accepts only unary and binary rules, but this is not a real restriction because
these binary rules can function as meta-rules that interpret the more general of
the actual grammar according to something like the following scheme. Real rules
have a similar format to that used in the program in Appendix A, namely

r r (M o t h e r , [L I , L2 . . . L n] , H e a d , [R l , R2 . . . R m])

Li ... Ln are the non-head (complement) daughters of ’Mother’ to the left of the
head, and R\ ... Rm are those to the right. For convenience, we give the ones on
the left in the reverse of the order in which they actually appear so that the one
nearest to the head is written first. We define the binary rule predicate referred
to in the algorithm somewhat as follows;

r u l e (p (M o t h e r , L, R e s t) , H e a d , N e x t)
r r (M o t h e r , L, H e a d , [N e x t I R e s t]) .

r u l e (p (M o t h e r , R e s t , []) , N e x t , H e a d)
r r (M o t h e r , [N e x t I R e s t] , H e a d , []) .

r u l e (p (M o t h e r , L , T) , p (M o t h e r , L, [H I T]) , H) .

r u l e (p (M o t h e r) , H, p (M o t h e r , [H I T] , []) .

One special unary rule is required, namely

r u l e (M o t h e r , p (M o t h e r , [] , [])) .

The scheme is reminiscent of categorial grammar, p (C a t e g o r y , L e f t , R i g h t)

is a partially formed phrase belonging to the given c a t e g o r y which can be com
pleted by adding the items sepecified by the L e f t list on the left, and the R i g h t

list on the right.
This scheme has a certain elegance in that the parser itself is simple and does

not reflect any peculiarities of head-driven grammar. Only the simple meta-rules
given above are in any way special. Furthermore, the performance properties

-55- International Parsing Workshop '89

of the chart parser are not compromised. On the other hand, this inactive chart
parser cannot be extended to make it into an active chan parser in a straightforward
manner as our second solution requires. This is the crux of the matter that this
paper addresses.

Suppose that the verb has been located that will be the head of a verb phrase,
but that it remains to identify one or two objects for it on the right. A standard
active chart parser does this by introducing active edges at the vertex to the
right of the verb which will build the first object if the material necessary for its
construction is available, or comes to be available. As the construction procedes,
active edges stretch further and further to the right intil the construction is complete
and the corresponding inactive edge is introduced. This works only because the
phrase can be built incrementally starting from the left, that is, starting next to
the phrase to which it must be adjacent. But this strategy is not open to the
head-driven parser which must begin by locating, or constructing the head of the
new phrase. The rest of the phrase must then be constructed outwards from the
head. We are therefore forced to modify the standard approach.

We propose to enrich the notion of a chart so that instead of simply active
and inactive edges, it contains five different types of object. Edges can be active
and inactive, but they can also be pending or current. This gives four of the five
kinds. The fifth we shall refer to simply as a seek. It is a record of the fact that
phrases with a given label are being sought in a given region of the chart. A seek
contains a label and also identifies a pair of vertices in the chart. It is irrelevant at
the level of generality of this discussion whether we think of the seek as actually
being located in, or on, one of the vertices, or being representable as a transition
between them. A condition that the chart is required to maintain is that edges with
the same label as that of a seek, both of whose end points lie within the region of
the seek, must be current. Edges which are not so situated must be pending. The
standard chart regime never calls for information in a chart to change, but that is
not the case here. W^hen a new seek is introduced, pending edges are modified to
become current as necessary to maintain the above invariant.

The fundamental rule (Henry Thompson’s term) of chart parsing is that an
action is taken, possibly resulting in the introduction of new edges, whenever
the introduction o f a particular new edge brings the operative end of an active
edge together, at the same vertex, with an end of an inactive edge. If the label
on the inactive edge is o f the kind that the active edge can consume, a new

-56- Intemational Parsing Workshop '89

edge is introduced, possibly provoking new applications of the fundamental rule.
The fundamental rule also applies in our enriched charts, but only to current
edges-pending edges are ignored by it.

Suppose once again that a verb has been identified and that we are now
concerned to find its sisters to the right. The verb can have been found only
because there was a seek in existance for verbs covering the region in which it
was found, and this, in its turn, will have come about because seeks were extant in
that region for higher-level phrases, notably verb phrases. The objects we are now
interested to locate must lie entirely in a region bounded on the left by the verb
itself and, on the right, by the furthest right-hnd end of a VP seek that includes
the verb. Accordingly, a new seek is established for NP’s in this region. The
immediate effect of this will be to make current any pending edges in that region
that are inactive and labeled NP, or active and labeled with a rule that forms NP’s.

It remains to discuss how active edges, whether current or pending, are
introduced in the first place. The simplest solution seems to be to do this just as it
would be in an undirected, bottom-up, parser. Whenever a current inactive edge
is introduced, or a pending one becomes current, active edges are introduced, one
for each rule that could accept the new item as head. However, these do not
become current until a need for them emerges higher in the structure, and this is
signaled by the introduction of a seek.

Consider, for example, the sentence the dog saw the cat and assume that
dog , saw , and cat are nouns, saw is also a transitive verb, and that the grammar
contains the following rules:

r u l e (s (s (N P , V P)) , [n p (N P)] , v p (V P) ; []) .
r u l e (v p (v p (V , N P)) , [] , v (V) , [n p (N P)]) .

r u l e (n p (n p (D , N)) , [d e t (D)] , n (N) , []) .

The sequence o f events involved in parsing the sentence with a parser that follows
a simple shift reduce regime, would be as follows:

1 . A d d p e n d i n g f o r d e t (d e t (t h e)) f r o m 0 t o 1 /
L e f t * [] , R i g h t - []

2 . A d d p e n d i n g f o r n (n (d o g)) f r o m 1 t o 2 , L e f t = [] ,

R i g h t - []
3 . A d d e d g e f o r v (v (s a w)) f r o m 2 t o 3 , L e f t =* [] ,

R i g h t - []
4 . A d d e d g e f o r v p (v p (v (s a w) , _ 6 5 3)) f r o m 2 t o 3 ,

L e f t = [] / R i g h t - [n p (_ 6 5 3)]
5 . A d d e d g e f o r v p (v p (v (s a w) , _ 6 5 3)) f r o m 2 t o 3 ,

-57- Intemational Parsing Workshop '89

L e f t =* [] , R i g h t = [s (___6 5 3)]
6 . A d d p e n d i n g f o r n (n (s a w)) f r o m 2 t o 3 , L e f t = [] ,

R i g h t = []
7 . A d d p e n d i n g f o r d e t (d e t (t h e)) f r o m 3 t o 4 ,

L e f t = [] , R i g h t = []
8 . A d d e d g e f o r n (n (c a t)) f r o m 4 t o 5 R u l e = 0 / 0 , L e f t = [] ,

R i g h t = []
9 . A d d e d g e f o r n p (n p (_ 6 9 0 , n (c a t))) f r o m 4 t o 5 ,

L e f t = [d e t (_ 6 9 0)] , R i g h t = []
1 0 . A d d e d g e f o r d e t (d e t { t h e)) f r o m 3 t o 4 ,

L e f t = [] , R i g h t = []
1 1 . A d d e d g e f o r n p (n p (d e t (t h e) , n (c a t))) f r o m 3 t o 5

R u l e » r 4 / 1 , L e f t = [] , R i g h t * []
1 2 . A d d e d g e f o r v p (v p (v (s a w) , n p (d e t (t h e) , n (c a t)))) f r o m 2 t o 5 ,

L e f t = [] , R i g h t = []
1 3 . A d d e d g e f o r s (s (_ 1 5 0 7 , v p (v (s a w) , n p (d e t (t h e) , n (c a t)))))

f r o m 2 t o 5 , L e f t = [n p (_ 1 5 0 7)] , R i g h t = []
1 4 . A d d e d g e f o r n (n (d o g)) f r o m 1 t o 2 , L e f t = [] ,

R i g h t = []
1 5 . A d d e d g e f o r n p (n p (_ 2 0 1 4 , n (d o g))) f r o m 1 t o 2 ,

L e f t = [d e t (_ 2 0 1 4)] , R i g h t = []
1 6 . A d d e d g e f o r d e t (d e t (t h e)) f r o m 0 t o 1 ,

L e f t = [] , R i g h t = []
1 7 . A d d e d g e f o r n p (n p (d e t (t h e) , n (d o g))) f r o m 0 t o 2 ,

L e f t = [] , R i g h t = []
1 8 . A d d e d g e f o r s (s (n p (d e t (t h e) , n (d o g)) , v p (v (s a w) ;

n p (d e t (t h e) , n (c a t))))) f r o m 0 t o 5 , L i f t = [] ,
R i g h t = []

R e s u l t = [s (s (n p (d e t (t h e) , n (d o g)) , v p (v (s a w) , n p (d e t (t h e) , n (c a t)))))] ,

We write a d d e d g e . . . when the edge being added is current. Notice that
the edge for the word saw, construed as a verb, is initially introduced as current,
because the goal is to find a sentence and a seek is therefore extant for S, VP,
and V, covering the whole string. The N edge for saw, however, is pending. In
step 4 , the active adge is introduced that will consume the object of saw when it
is found. This introduces a seek for NP and N between vertex 3and the end of
the sentence. For this reason, when cat is introduced in step 8 , it is as a current
edge. Notice, however, that the, in step 7, is introduced as pending, because it is
not the head o f a NP. However, the introduction of the active NP edge in step 9
causes the edge for the to be made current, and this is what happens in step 1 0 .
The active S edge in step 13 activates the search for an NP before the verb so

-58- International Parsing Workshop '89

that all the remaining edges are introduced as current At the end of the process
all pending edges have been made current except the one corresponding to the
nominal interpretation of s a w .

The Prolog code that implements this strategy is considerably more com-
picated that that for the techniques discussed earlier, and I have therefore not
included it.

I believe that the strategy I have outlined is the natural one for anyone to adopt
who is determined to work with a head-driven active chart parser. However, it is
entirely unclear that the advantages that it offers over the simple undirected chart
parser are worth its considerable added expense in complexity. Notice that, if one
of the other nouns in the sentence just considered also had a verbal interpretation,
the search for noun phrases would have been active everywhere. The longer the
sentence, and therefore the more pressing the need for high performance, the more
active regions there would be in the string and the more nearly the process as a
whole would approximate that of the undirected technique. This should not, of
course, be taken as an indictment o f head-driven parsing, which is interesting for
reasons having nothing to do with performance. It does, however, suggest that the
temptation to claim that it is also a natural source of efficiency should be resisted.

Appendix A - A PARSER-GENERATOR FOR HEAD-
D RIVEN G RAM M AR.

This is a simple head-driven recursive-descent parser. There is a distinction
between the top level p a r s e predicate and the s y n t a x predicate to eliminate
inessential arguments to the top level call, and also because the program can,
with only minor modifications in s y n t a x , be used as a generator. The p r e d i c a t e

h e a d is assumed to be defined as pan o f the grammar. It is true of a pair of
grammatical labels if the second can be the head (of the head, o f the head ...) of
the first. Having hypothesized the label of the eventual lexical head of a phrase
that w ill satisfy the current goal, s y n t a x c a l l s r a n g e to find a word in the string
with that label. If such a word is found, its position in the string will be given
by the H R a n g e (head range) difference list and it must, in any case, lie within
the range o f the string given by M a x i and M a x r . The b u i l d predicate constructs
phrases with the given putative head so long as their labels stand in the h e a d

relation to the goal.

-59- Intemational Parsing Workshop '89

.......
* parse(String, Result) *

* String is a list of words *
* Struct is the structure (nondeterministicaiiy) returned if the parse
* succedes *
........
parse (String, Struct)

syntax(String/[]/Struct, String/[]).

* syntax((L/R)/Goal, Maxl/Maxr) ’
» *
* G is the Goal for the parsen. '
* L/R is a DL giving the bounds of the phrase satisfying the goal *
* Maxl/Maxr gives the string bounds for the current search. *
* tr
******...........*****.........

syntax(Range/Goal, Max)
head(Goal, Head), % Find lexical head for Goal
range(HRange/Head, Max), % Associate Head with actual

% word and string position,
buiId(Range/Goal, HRange/Head, Max). % Build bottom up based on Head.

* range((L/R)/Head, MaxL/MaxR) *
«
* True of (1) position L/R in the string *
* (3) with grammatical description Head *
* (4) somewhere in the string range MaxL/MaxR (parsing) *
...
%
% Whole maximum range explored.
% =

range(_, X/X) !, fail.
%
% Next word in maximum range is the required head,

range(L/R/Head, L/_) diet(L/R, Head).
%
% Try again one place to the right.

range(Head, [HiT]/MaxR)
range(Head, T/MaxR).

/******...............
* D u i l d f (GL/GR)/Goal, (HL/HR)/Head, MaxL/MaxR)
* *
* Build phrases bottom up based on the Head located in the string at *
* HL/HR. The location of the phrase found will be GL/GR and it must *
* fall in the range MaxL/MaxR. *

build(X, X, _). % Current head is result,
build(GL/GR/Goal, HL/HR/Head, MaxL/MaxR) % Find rule matching Head

rr(Lhs, Left, Head, Right), head(Goal, Lhs),
build_left(Left, LL/HL, MaxL/HL), % Check left daughters
build_right(Right, HR/RR, HR/MaxR), % and right daughters,
buiid(GL/GR/Goal, LL/RR/Lhs, MaxL/MaxR). % Try building further on that.

-60- Intemational Parsing Workshop '89

build_Ieft{[], X/X, _) . build_ie ft([HIT], L/R, MaxL/MaxR)
syntax(HL/R/H, MaxL/MaxR),
buiid_ieft(T, L/HL, MaxL/HL).build_right([], X/X, _).

buiId_right([HIT1, L/R, MaxL/MaxR) :-
syntax(L/HR/H, MaxL/MaxR),
build_nght (T, HR/R, HR/MaxR) .

A ppendix B - A SIM PLE INACTIVE CHART PARSER

This is a chart version of a nondeterminisitc shift-reduce parser. Vertices of
the chart are constructed from left to right, one on each recursive call to p a r s e / 3,

A vertex is a list of edges headed by a number which is provided for convenience
in printing. An edge takes the form [l a b e l , n e x t - v e r t e x] . The predicate
b u i i d _ e d g e is given a word and its successor vertex and returns a completed
vertex. It succeeds once for each entry that the word has in the dictionary and,
for each one, calls b u i i d _ e d g e i . This can succeed in three ways, all of which are
collected into the list of edges contributing to the current vertex by virtue of the
s e t o f construction. The three possbilities are (1) The word’s lexical entry itself
labels an edge; (2) A unary rule applies to the entry, and its left-hand side labels
an edge, and (3) A binary rule matches the entry and an entry in the next vertex
(m e m b e r ([L a b e l , N e x t l] , N e x t)) . Each new label is passed to b u i l d - e d g e l

to be processed in the same manner as the original lexical entry.

p a r s e (S t r i n g , R e s u l t)
p a r s e (S t r i n g , [0] , R e s u l t) .

p a r s e ([] , V , V) .
p a r s e ([W o r d I R e s t] , [N I N e x t] , V e r t e x)

s e t o f (E d g e , b u i l d _ e d g e (W o r d , [N I N e x t] , E d g e) , V) ,
M i s N + l ,
p a r s e (R e s t , [M | V] , V e r t e x) .

% N e x t v e r t e x n u m b e r
% { M | V] i s t h e v e r t e x

b u i l d _ e d g e (W o r d , N e x t , E d g e)
d i e t (W o r d , E n t r y) ,
b u i l d _ e d g e l (E n t r y , N e x t , E d g e) .

b u i l d _ e d g e l (E n t r y , N e x t , [E n t r y , N e x t])
b u i l d _ e d g e l (E n t r y , N e x t , E d g e)

r u l e (L h s , E n t r y) ,
b u i l d _ e d g e l (L h s , N e x t , E d g e) .

b u i l d _ e d g e l (E n t r y , [N I N e x t] , E d g e)

% D i c t i o n a r y l o o k u p

% S h i f t .
% R e d u c e o n e i t e m

% R e d u c e t w o i t e m s

-61- Intemational Parsing Workshop '89

m e m b e r ([L a b e l , N e x t l] , N e x t) ,
r u l e (L h s , L a b e l , E n t r y) ,
b u i l d _ e d g e l (L h s , N e x t l , E d g e) .

-62- IntemationaJ Parsing Workshop '89

