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Abstract

Predicting the knowledge of language
learners is crucial for personalized in-
teractions in any intelligent tutoring sys-
tem for language learning. This study
adopts a machine learning approach to the
task of predicting the knowledge of sin-
gle words for individual learners of En-
glish. We experiment with two machine
learning models, neural networks and ran-
dom forest, and with a set of learner-
specific and word-specific features. Both
the models are trained for all the learners
together. However, since learner-specific
features are used, the prediction is person-
alized for every learner. Both of the mod-
els achieve state-of-the-art results for the
task of vocabulary prediction for English
learners.

1 Introduction

This study is part of a larger project which at-
tempts to develop an intelligent personal assistant
for English learning called Elia. This assistant
aims to support English learners in their informal
contexts by reading or writing in English online
through a browser plugin. The browser plugin also
allows the collection of data about the learner’s in-
terests, knowledge and learning patterns which are
used to create additional opportunities for practice
in a mobile app to enhance their vocabulary ac-
quisition. For the creation of personalized materi-
als and personalized interaction, it is crucial to be
able to automatically identify the learner’s English
knowledge.

Focusing on vocabulary knowledge first, the
aim of this study is to create a model that would
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be able to predict the knowledge of single words
for each learner individually. This task was firstly
formulated by Ehara et al. (2014) as the vocabu-
lary prediction task of which the goal is “to pre-
dict whether a learner knows a given word based
on only a relatively small portion of his/her vocab-
ulary” (p. 1374).

To tackle this problem, we adopt a ma-
chine learning approach where we engineer two
sets of features, i.e., word-specific and learner-
specific features, using three data sources: COCA
wordlist (Davies, 2008), MRC Psycholinguis-
tic Database: Machine Usable Dictionary. Ver-
sion 2.00 (Wilson, 1988) and the English Vocabu-
lary Knowledge Dataset (Ehara et al., 2012, 2013),
the last which is also used for evaluation. We
experiment with two models, i.e., Random For-
est model which uses learner-specific as an input
to differentiate between learners, and Neural Net-
work model which learns the learner-specific fea-
tures from the word-specific features.

The rest of the paper is structured as follows.
The next section provides an overview of recent
studies which are most relevant to this work (sec-
tion 2). In section 3, the dataset used to evalu-
ate the model is introduced. The features used for
training and testing the models are described in
section 4 and the two machine-learning models are
described in section 5. Section 6 presents results
and discussion. The last section summarizes the
findings and suggest future directions (section 7).

2 Related Work

The knowledge prediction task is closely related
to other tasks that go by different names, e.g.,
complex word identification (Yimam et al., 2018),
automatic text simplification (Shardlow, 2014),
and vocabulary size estimation (Meara and Alcoy,
2010). The studies addressing these tasks differ in
their focus on a) the type of the object to be pre-
dicted, i.e., vocabulary, single words or the whole



text; b) the specific aspect of the object, i.e. size,
knowledge, difficulty or complexity; and c) the
process name, i.e. identification, prediction, es-
timation. Moreover, they differ in a) the target
group, i.e., native vs. non-native speakers of dif-
ferent languages, and b) application, i.e., reading
support, vocabulary testing, text simplification.
Our study focuses on the prediction of knowl-
edge (known/unknown) of single words similar to
the following studies.

Tack et al. (2016) developed an expert model
which predicts known and unknown words to a
learner of a given Common European Framework
of Reference (CEFR) level. They annotated words
and multi-word expressions in 51 texts with their
level of difficulty based on a French graded vo-
cabulary list FLELex. The same texts were then
annotated by four Dutch learners of French of cer-
tain proficiency level. They used the FLELex re-
source, not a machine learning model, as a pre-
dictive model of the learner’s lexical knowledge.
They compared the predictions to learner’s anno-
tation reaching the accuracy of 87.4% to 92.3%.
However, the recall of unknown words did not
even reach 50%.

Alfter and Volodina (2018) is another
recent study which used CEFR-annotated
wordlists SVALex (François et al., 2016) and
SweLLex (Volodina et al., 2016) to predict
the lexical complexity (i.e. appropriate CEFR
level) of single words for learners of Swedish
as a second language. In addition, they used a
corpus-based vocabulary list, namely the Kelly
list, to extract features grouped into count-based,
morphological, semantic and context-based sets.
They trained several machine learning models
reaching the accuracy of 59% for seen words.
Features including topic distributions were found
to significantly improve the accuracy.

Lee and Yeung (2018) presented a personal-
ized complex word identification model for Chi-
nese learners. They trained models which pre-
dict whether the learner knows a word or not
for each learner separately. Graph-based active
learning was used to select the most informative
words which were annotated by six learners as
known or unknown. They extracted several fea-
tures, e.g., difficulty level, the number of charac-
ters, the word frequency in a standard and learner
corpus. Trained on a set of 50 words, they ob-
tained the best accuracy of 78% with SVM clas-

sifier with features based on word difficulty levels
from pedagogical vocabulary lists.

Ehara et al. (2018) also used a personalized
model trained for each learner separately. He used
the dataset created by Ehara et al. (2012, 2013)
where sixteen English learners annotated 12,000
words on a five-point knowledge scale making it
the most exhaustive dataset for this task. For fea-
tures, he used the negative log of the 1-gram prob-
abilities of each word in several corpora. He did
not use a typical machine-learning classifier be-
cause it does not have an interpretable weight vec-
tor which was the criterion of the research. In-
stead, he used a modified mathematical function
based on the Rasch model reaching 77.8% accu-
racy which outperformed the other two models
which were not learner-specific, namely the Rasch
model and the Shared Difficulty model.

Similarly to Ehara, Yancey and Lepage (2018)
learned the learners’ proficiency levels and word
complexities simultaneously. However, in con-
trast, they learned the general CEFR-level profi-
ciency, not the learner-specific. The dataset con-
sisted of 2,385 passages annotated by 357 learn-
ers of Korean as known or not known. For fea-
ture selection, they used Pearson’s correlation and
Recursive Feature Elimination with Cross Valida-
tion. With their probabilistic results, they reached
the accuracy of 84.3% for unseen words at thresh-
old 0.5.

3 Dataset

We used the dataset provided by Ehara et al.
(2012, 2013) as it is the largest freely available
dataset for vocabulary knowledge prediction. It
contains 11,999 English single words annotated by
16 learners of English accounting for 191,984 data
points in total. Most of the learners were native
speakers of Japanese and attended the University
of Tokyo. The sampled words were taken from
the SVL 12000 wordlist (ALC, 1998). The learn-
ers were asked to indicate how well they knew the
given words on a scale from 1 (I have never seen
the word before) to 5 (I know the word’s meaning).
Similarly, as in Ehara et al. (2018) and Lee and Ye-
ung (2018), we assigned the words marked with 5
to “known” and the rest of the words marked with
1-4 to “unknown”.



4 Features

Since there can be a high variation between the
knowledge of learners even of the same CEFR
level (Tack et al., 2016), the goal is to make
the knowledge prediction for each learner indi-
vidually. As Ehara et al. (2018) rightly pointed
out, “For example, a learner interested in music
may know music-related words that even high-
level learners may not be familiar with” (p. 801).
Knowledge prediction which is learner-specific
can be achieved by training an independent classi-
fier for each learner separately (Ehara et al., 2018;
Lee and Yeung, 2018). However, we train the
model for all the learners together while keep-
ing the prediction individualized. This can be
achieved by adding learner-specific features which
would differentiate one learner from another.

4.1 Word-specific Features

Word knowledge has often been associated with
word difficulty which, in turn, has often been asso-
ciated with word frequency. This was also empir-
ically supported in the 2016 SemEval shared task
for complex word identification: “word frequen-
cies remain the most reliable predictor of word
complexity” (Paetzold and Specia, 2016, p. 560).
However, Tack et al. (2016) warn against word
frequencies as they “approximate the use of na-
tive speakers, but do not provide any information
about the frequency of words within the differ-
ent stages of the L2 curriculum” (p. 230). This
is, however, not the problem of frequencies but
rather of the resource from which the frequen-
cies were calculated. If the resources reflected a
representative sample of the learner’s experience,
whether in the classroom or beyond the class-
room, word frequencies could be a reliable pre-
dictor of the knowledge of second language learn-
ers. The logic behind this is as follows: the word
frequency conceptualized as the repeated oppor-
tunity to learn the word is the main predictor of
the learner having learned the word. We follow
this logic and create features representing differ-
ent frequencies of the words taken from the Cor-
pus of Contemporary American English (COCA)
wordlist1 (Davies, 2008) which contains word fre-
quencies on 20,000 words from dozens of subcor-
pora of different genres (from academic to spoken
conversations) and domains (from sports to biol-

1Available online at https://www.
wordfrequency.info/purchase.asp

ogy). Topic distribution was also found to be the
most important feature in the study by Alfter and
Volodina (2018). In order to ensure comparabil-
ity, the frequencies were normalized per million
words across all genres.

Apart from word frequencies, we also encode
the psycholinguistic properties of words into fea-
tures. For this, we use the data from the MRC
database2, e.g., the number of letters, the degree
of meaningfulness, the age of acquisition or the
degree of abstractness. The psycholinguistic prop-
erties of words have been found to be associ-
ated with learning difficulty (Laufer, 1997), even
though not directly with vocabulary knowledge.
The degree of their importance in the prediction
task together with the degree of importance of all
the other features will be tested and described in
section 4.3.

Since graded vocabulary lists have also been
found to be useful in predicting the vocabulary
knowledge of second language learners (Tack
et al., 2016; Lee and Yeung, 2018; Alfter and
Volodina, 2018), we add a feature representing
CEFR difficulty level obtained from the English
Vocabulary Profile (EVP)3 resource. If one word
is assigned to multiple CEFR levels, we use the
lowest level of the word. If a word is not found in
the database, it is automatically assigned the high-
est level which is the C2 level.

4.2 Learner-specific Features

For learner-specific features, we identify the num-
ber of known words in every keyword list which
were created from COCA subcorpora. The pro-
portion of known words in each keyword list
should represent the knowledge of the learner
across different genres and domains. The idea be-
hind this is that if the learner knows a lot of fre-
quent words occurring in the domain of, for exam-
ple, sports, it is very probable that he/she knows
another high-frequency word from this domain.
However, if the learner does not know a lot of low-
frequency words from the domain, it is not proba-
ble that he/she knows another low-frequency word
from this domain. To operationalize this idea, we
need to use a combined measure which would not

2For further details, see the MRC documentation
on http://websites.psychology.uwa.edu.au/
school/MRCDatabase/mrc2.html

3The EVP contains information about the known words
for learners of each CEFR level and is available on https:
//www.englishprofile.org/wordlists



only reflect the amount of known words but also
the frequencies of the known words in a particu-
lar domain. The calculation of the learner-specific
features is carried out in the following steps:

1. For each subcorpus, we extract keywords4,
that is, words which occur significantly more
frequently in the specific subcorpus than in
the general corpus. This results in a keyword
list for each subcorpus.

2. For each keyword list, k = d
√

n/2e of fre-
quency bands5 is created using the k-means
algorithm6 where n denotes the number of
words in the keyword list. We use the Elkan
variant of the k-means algorithm for better
efficiency with a maximum number of iter-
ations set to 300.7

3. In order to mitigate the effect of outliers with
high frequencies, for each subcorpus, we cal-
culate an average of the top 10 words8 with
the highest frequencies denoted as smax. For
the keyword lists where k is less than 10, we
take k words to calculate smax.

4. For each band B, we calculate the “power
of band” φi by taking the difference between
the subcorpus high frequency representative
smax and the average of all the word frequen-
cies in the band as follows:

φi =
smax − avg(Bi)∑k

j=1 (smax − avg(Bj))
,

for i = {1, 2, ..., k}.

5. For each learner, each word labeled as known
from the dataset used for training/testing is
looked up in the keyword lists to identify the
subcorpus of the word and consequently the
respective frequency band.

4As in Gardner and Davies (2013), we use a ratio of 1.5,
i.e., all words which occur 1.5 times more often in a specific
corpus compared to the general corpus are considered key-
words in the specific domain.

5We take this number as a rule of thumb. Other heuristics
can apply as well.

6https://scikit-learn.org/stable/
modules/generated/sklearn.cluster.
KMeans.html

7We do not use a fixed number for frequency bands due to
the Zipfian nature of the frequency distribution.

8We take this number after a manual inspection of the top
frequencies in each keyword list.

6. The subcorpus-specific knowledge ϕs for
each learner is calculated by adding up the re-
spective power of bands as many times as the
number of words identified in those bands as
follows:

ϕs =

k∑
j=1

φj ·
∣∣ B̂j

∣∣∣∣ Bj

∣∣ ,

where B̂j denotes the set of words which the
learner knows and which belong to the band
Bj , and

∣∣ · ∣∣ denotes set cardinality.

4.3 Selection of Features

The combination of the two above-mentioned
types of features resulted in an exhaustive list of
105 features. Having in mind that it is very proba-
ble that the list included redundant features, a fea-
ture selection procedure was needed. To remove
irrelevant and less important features, we used a
Tree Classifier, a method for determining feature
importance. This method gives a score for each
feature where the higher the score, the more im-
portant or relevant the feature is. Not surprisingly,
the word-specific features with a lot of missing
values and the learner-specific features containing
a limited number of keywords were ranked very
low in the feature importances list and thus were
discarded. Furthermore, we estimated the Pear-
son Correlation between the remaining features.
We created groups of features with a correlation
of higher than 0.99 and picked only one feature
from the group with the highest rank in the feature
importances list. These two procedures reduced
the initial list to a final set of 39 features (see ta-
ble 1 and table 2). It is worth noting that these
procedures decreased the final scores slightly due
to the occasional losses in information caused by
the reduced word-representation.

5 Models

The objective is to train a machine learning model
which would predict whether a given learner
knows a given word in English or not. The prob-
lem can be formulated as follows: Let p de-
note the number of learners, and q the number
of words in our training dataset D = {X,Y },
where X denotes the set of datapoints and Y their
respective labels. Let ui = (ui1 , ui2 , ..., uim)

t

and wj = (wj1 , wj2 , ..., wjn)
t denote the learner-

specific features, and word-specific features, for



Feature

Number of letters in the word 3

Number of syllables in the word 3

Familiarity 3

Concreteness 3

Imagery 3

Mean Colerado Meaningfulness 3

Mean Pavio Meaningfulness
Age of Acquisition 3

Type
Alphasyllable

Status 3

Written Capitalized

Table 1: Initial list of features from the MRC
database. Selected features for the final list are
marked with a check mark.

i = {1, 2, ...,p} and j = {1, 2, ..., q}, respec-
tively. The goal is to learn the function f : X →
Y , or y = f(w;u;D) that fits the dataset D to the
extent of not overfitting it.

We experiment with two kinds of settings: one
where both the learner-specific and word-specific
features are used as input (the Complete Feature
Space Dependent Model described in section 5.1)
and another one where only the word-specific fea-
tures are used as input and the learner-specific fea-
tures are learned by the model (the Neural Net-
work based model described in section 5.2).

5.1 The Complete Feature Space Dependent
Model

For the Complete Feature Space Dependent
model (CFSD), both word-specific and learner-
specific features are included in the input. We tried
out the following well-known machine-learning
algorithms using scikit-learn (Pedregosa et al.,
2011): Support Vector Machine (SVM) with var-
ious kernels, k Nearest Neighbors, Logistic Re-
gression, and Random Forest. Random For-
est (Breiman, 2001) provided the highest scores.
Moreover, we have seen that training a Random
Forest model, that achieved a respectable score,
required way less efforts in comparison to other
models. This lies to better prospects for construct-
ing an automatic online-training pipeline in the
Elia software. Consequently, Random Forest was
chosen for further experimentation with the hyper-
parameter search.

w l

COCA total frequency 3 3

dispersion 3

score

SPOKEN
CBS (Columbia Broadcasting Company) 3

MSNBC (Microsoft/National Brcst. Comp.) 3

PBS (Public Broadcasting Service) 3

NPR (National Public Radio) 3 3

independent 3 3

ABC (American Broadcasting Company)

NBC (National Broadcasting Company)

CNN (Cable News Network)

FOX (Fox Broadcasting Company)

NEWSPAPER 3

international newspaper 3

national newspaper 3

local newspaper 3

money; life 3

miscellaneous 3

sports; editorial

ACADEMIC 3 3

education 3

geographical/social science 3

law/political science; humanities
science/technology; medicine; history

philosophy/religion; miscellaneous

FICTION 3

journals 3 3

movies 3

science fiction/fantasy
juvenile; books

POPULAR MAGAZINES
news/opinion 3

religion 3

sports; entertainment 3

women/men 3

financial; science/technology
home/health; African American

social/arts; children

Table 2: Initial list of features from the COCA
wordlist. For word-specific features (w), the fre-
quency of the word in the particular subcorpus
was used, and for learner-specific features (l), the
proportion of known words in the subcorpus was
used. Selected features for the final list are marked
with a check mark. Individual subcorpora are sep-
arated by a semicolon.



The Random Forest model learns the function
f : Rm+n → {0, 1} by using Decision Trees. The
process of predicting the label for a specific input
x = (u,w)t consists of all Decision Trees assign-
ing a label. The label assigned by most of the trees
is taken as the final prediction.

To come up with the best values for the param-
eters, we used 3-fold cross validation on 80% of
the data.9 First, we applied a random search of
parameters in 100 configurations comprised of the
most crucial hyperparameters of Random Forest.
The selected values by random search are marked
in italics in the list below. Second, we ran a grid
search in a close neighborhood of the values of
the parameters provided by the random search to
come up with the final parameter setting. The val-
ues in the close neighborhood were chosen arbi-
trarily. The parameter setting that performed the
best as to F1 score are marked bold:

• the use of bootstrap sampling (True, False)

• the number of estimators (55, 75, 95)

• the maximum depth of the trees (91, 101,
111)

• the minimum number of samples an internal
node should contain for a split (13, 17, 21)

• the minimum number of samples a leaf node
should contain for a split (1, 8, 15)

Other preassigned parameters include the num-
ber of features to be picked randomly for a node
split, which we set to the square root of the num-
ber of features, and the entropy measure which we
set to Gini.

5.2 The Neural Network Based Model
In contrast to the former model, in the Neural Net-
work based model (NN), only the word-specific
features were used as input. The discrimination
between the learners is achieved by constructing
a unique set of parameters for each learner by the
model. We learn the function f : Rn → {0, 1}p
by a plain Fully Connected Neural Network using
PyTorch (Paszke et al., 2017).

The architecture of the model is comprised of
the input layer of n dimensions, 5 hidden layers
with a number of nodes that changes geometri-
cally using a factor f set to 4 (i.e., f · n, f · n · f/2,

93 folds were used due to limitations in time and comput-
ing capacities.

f · n · (f − 1), f · n · f/2, f · n) and an output layer
of dimension p which is linear. For numerical sta-
bility, we use a modified binary cross-entropy loss
that transforms the linear output using a Sigmoid
function and afterwards employs the log-sum-exp
trick.

Each of the hidden layers contains nodes with
ReLu(x) = max(0, x) activation functions.

We optimize the loss by making use of the
Adam optimizer which is a more sophisticated
version of the plain gradient. The hyperparameters
are set upon manual analysis of the loss change.
The learning rate is initially set to 0.0001, and we
use mini-batches of size 15. After each layer, ex-
cept layer 5, we employ a dropout regularization
of 0.2 and a weight decay equal to 0.003.

We use 80% of the data for training, 3% for val-
idation, and 17% for testing which is the same ra-
tio as in Ehara et al. (2018). The training runs for
a total of 40 epochs. For the first 20 epochs, we
use the same learning rate whereas for the remain-
ing 20 epochs we re-set the learning rate to be the
7/8 of the previous value. We noticed that in this
training setting, the accuracy in the validation set
saturates after the 40th epoch.

6 Evaluation

6.1 Isolated Testing

We call this the isolated testing as we prevent
any kind of data leakage from the training set
to the testing set; the testing set is separated in
the beginning before any tuning with the model
is undertaken; the learner-specific features in the
CFSD model are computed using information only
from the words used for training. We use roughly
the same ratio between the training and testing
sets as Ehara et al. (2018) for comparability pur-
poses, i.e., 80% for training in both of the models,
and 20% and 17% for testing for the CFSD and
the NNet model, respectively. As the classes are
imbalanced—67351 labeled as 0 and 96073 as 1—
we report scores other than accuracy as well (see
table 3). Precision, recall, and F1 scores are calcu-
lated as a weighted average for both labels. Thus,
the values of the scores are similar. The scores for
both models are shown in table 3. The evaluation,
including the training of our models, can be repro-
duced using the code accompanying this paper.10

10The link to the code: drive.google.com/
drive/folders/1ukdm3ekkfIV_86PyGRhijC_
tf07SVFxe



CFSD Neural Network

Precision 79.90% 79.19%
Recall 79.89% 79.18%
F1 79.89% 79.18%
Cohen’s Kappa 58.26% 56.93%
Accuracy 79.89% 79.18%

Table 3: The results of our models.

6.2 Discussion

The CFSD model trained on two sets of hand-
crafted features, one representing the words and
another representing the learners, achieved the
highest accuracy, i.e., 80%. The overall results
of the CFSD model support the fact that frequen-
cies from different genres and domains—which
reflect the different opportunities for learning the
learner might have had—can be used as a valid
representation of word-specific features. More-
over, the learner-specific features—calculated as
the amount of knowledge of the keywords of spe-
cific frequencies in various genres and domains—
can lead to a personalized prediction of unseen
words, even in one-time training for all the learn-
ers. However, a complete feature pre-calculation,
as it is the case with this model, comes with the
burden of limiting the feature space to a human-
defined set of features, which can not be seen
as exhaustive and universal in encoding learner-
specificity.

The NN model led to a slightly lower accuracy
and F1 scores. This model comes with the down-
side of not being able to predict for learners for
whom we did not train the model in the dataset
as the output is fixed to the number of learners.
On the other hand, it circumvents the limitation
of having hand-crafted learner-specific features by
learning such weight vectors from the data. In ad-
dition, we can increase the capacity of the model
to encode as many learner-specific aspects as re-
quired upon data availability. Those aspects can
go beyond the use of word frequencies on en-
coding learner-specificity as given in the CFSD
model.

Comparing it to related work, both the mod-
els performed similarly to Ehara et al. (2018)
who used the same dataset but different model.
Their proposed model builds on top of the Rasch
Model by introducing a feature map function
which enriches the model with the out-of-sample

setting and learner-specific learnable weight vec-
tors. Their approach seems to be more similar
to our NN model than the CFSD model in that
it learns the learner representations and uses fre-
quencies as features to represent words. However,
despite the obvious similarities, there are also con-
siderable differences, e.g., our feature map takes
frequencies along dozens of different specialized
corpora as opposed to few general corpora and on
top adds additional non-frequency features.

Furthermore, they limit the learner-specific
word difficulty vectors to the number of features
constructed by their feature map which can be un-
derstood as of dimension the number of corpora
they take frequencies from. On the other hand, the
nature of our feature map which takes different as-
pects of the word into account, makes it sensical
to up-project the initial feature map to higher di-
mensions, and thus encode learner-specificity into
higher dimension weight vectors, whose size can
change accordingly upon data availability.

Another difference lies in the fact that our NN
approach does not model the likelihood using a
single sigmoid transformation on the difference
between learner’s ability (au) and learner-specific
word difficulty (wd) and learning the parame-
ters using a MAP estimation, but, instead, mod-
els the likelihood as a chain of ReLu transforma-
tions on standard weights. Put differently, the NN
model encodes learner-specificity only on stan-
dard weights as given by the architecture. Those
weights can be taken as the weights of the last hid-
den layer (made of f · n nodes).

7 Conclusion and Future Work

This study presented an evaluation of two super-
vised machine learning models which perform the
task of learner’s knowledge prediction of single
words in the context of an intelligent tutoring sys-
tem. The main challenge in this task, and thus the
main goal of this study, was to make the prediction



specific for every learner. We compared two ap-
proaches, one which implemented an explicit set
of manually constructed learner-specific features,
and another one which implemented an implicit
set of learner-specific features which were learned
by the model from the data.

The Random Forest model which used a com-
plete set of hand-crafted features, both learner-
specific and word-specific, led to the state-of-the-
art results (accuracy of 80%) for English as a
foreign language. This supports the idea of us-
ing various frequencies from different genres and
domains to represent words and calculating the
knowledge of keywords from those very same
genre and topics to represent learners in predict-
ing which words a given learner knows or does not
know.

The Neural Network based model, using word-
specific features as input and learning learner rep-
resentations, led to the accuracy of 79% which
sends positive signals for future work as this
model does not require the construction of learner-
specific features, and thus not limit the learner rep-
resentation to a human-defined set of features and
their calculation.

This model was initiated with the idea of build-
ing an end-to-end architecture, which firstly would
encode learner specificity in the sense of dense-
vector representations, and then use such encoding
to create an intermediate input in concatenation
with word specific features, to come up with the
final prediction at the end. The idea of using the
intermediate input is similar to the CFSD model,
in the sense of training a one-time model which
will serve our platform in long term. This way
we would circumvent the limitation of our actual
Neural Network based model, which does not al-
low the usage of a pre-trained model to generate
predictions for learners whose data did not par-
ticipate in the initial training. It is inferable that
for such learners, we will need to run a learner-
representation encoder, similar to the encoding
step given in the envisioned end-to-end architec-
ture. This is a subject of our future work.

Despite having used a large dataset of words for
training and testing, the learner base was limited
to 16 learners of the same language background
and thus might not generalize well to heteroge-
neous learners which will be the case in the in-
telligent tutoring system Elia. However, it gives a
good starting point. In future work, we plan to col-

lect data on more learners of different background
and proficiency which can be then used for further
training and testing.

In conclusion, picking one model over the other
introduces trade-offs, as discussed above. Thus, it
is up to the designers of similar tutoring systems to
decide what goes on par with their goals. For the
intelligent tutoring system Elia, we are inclined to
the idea of using a cross-learner model that ex-
ploits inter-learner similarities, such as the CFSD
model, instead of using a model that does not al-
low for transfer of information between learners
in a collaborative fashion, as the NN model. How-
ever, as stated above, our future work goes in the
direction of taking the best aspects of two models.
Thus, it is more likely that our platform will utilize
such a model on its production state.
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