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Abstract
With the extensive use of Machine Transla-
tion (MT) technology, there is progressively
interest in directly translating between pairs
of similar languages. Because the main chal-
lenge is to overcome the limitation of available
parallel data to produce a precise MT output.
Current work relies on the Neural Machine
Translation (NMT) with attention mechanism
for the similar language translation of WMT19
shared task in the context of Hindi-Nepali pair.
The NMT systems trained the Hindi-Nepali
parallel corpus and tested, analyzed in Hindi
⇔ Nepali translation. The official result de-
clared at WMT19 shared task, which shows
that our NMT system obtained Bilingual Eval-
uation Understudy (BLEU) score 24.6 for pri-
mary configuration in Nepali to Hindi transla-
tion. Also, we have achieved BLEU score 53.7
(Hindi to Nepali) and 49.1 (Nepali to Hindi) in
contrastive system type.

1 Introduction

MT acts as an interface, which handles language
perplexity issues using automatic translation in be-
tween pair of diverse languages in Natural Lan-
guage Processing (NLP). Although, corpus-based
based MT system overcome limitations of rule-
based MT system such as dependency on lin-
guistic expertise, the complexity of various tasks
of NLP and language diversity for Interlingua-
based MT system (Dave et al., 2001). But it
needs sufficient parallel corpus to get optimize
MT output. The NMT falls under the category
of corpus-based MT system, which provides bet-
ter accuracy than Statistical Machine Translation
(SMT), corpus-based MT system. The NMT
system used to overcome the demerits of SMT,
such as the issue of accuracy and requirement of
large datasets. Recurrent Neural Network (RNN)
encoder-decoder NMT system, which assists en-
coding of a variable-length source sentence into a

fixed-length vector and same is decoded to gen-
erate the target sentence (Cho et al., 2014). The
simple RNN adopted Long Short Term Memory
(LSTM), which is a gated RNN used to improve
the translation quality of longer sentences. The
importance of LSTM component is to learn long
term features for encoding and decoding. Be-
sides, LSTM, other aspects that improve the per-
formance of the NMT system like the require-
ment of test-time decoding using beam search,
input feeding using attention mechanism (Luong
et al., 2015). The reason behind the massive un-
folding of the NMT system over SMT is the abil-
ity of context analysis and fluent translation (Ma-
hata et al., 2018; Pathak and Pakray, 2018; Pathak
et al., 2018).

Motivated by the merits of the NMT over other
MT systems and the importance of direct trans-
lation in between pairs of similar languages, cur-
rent work has investigated similar language pair
namely, Hindi-Nepali, for translation from Hindi
to Nepali and vice-versa using the NMT sys-
tem. Due to lack of background work of similar
language pair translation, the specific translation
work for Hindi ⇔ Nepali is still in its infancy. To
examine the efficiency of our NMT systems, the
predicted translations exposed to automatic eval-
uation using the BLEU score (Papineni et al.,
2002).

The rest of the paper is structured as follows:
Section 2, details of the system description is pre-
sented. Section 3, result and analysis are discussed
and lastly, Section 4, concludes the paper with fu-
ture scope.

2 System Description

The key steps of system architecture are data pre-
processing, system training and system testing and
same have been described in the subsequent sub-
sections. We have used OpenNMT (Klein et al.,
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2017) and Marian NMT (Junczys-Dowmunt et al.,
2018) toolkit to train and test the NMT system.
The OpenNMT, an open source toolkit for NMT,
which prioritizes efficiency, modularity and sup-
port significant research extensibility. Likewise,
Marian, a research-friendly tookit based on dy-
namic computation graphs written in purely C++,
which achieved high training and translation speed
for NMT.

2.1 Data Preprocessing

During the preprocessing step, source and target
sentences of raw data are tokenized using Amun
toolkit and makes a vocabulary size of dimension
66000, 50000 for Nepali-Hindi parallel sentence
pairs, which indexes the words present in the train-
ing process. All unique words are listed out in
dictionary files. The details of the data set are dis-
cussed next.
Data The NMT system has been trained us-
ing parallel source-target sentence pairs for Hindi
and Nepali, where Hindi and Nepali are the
source and target language and vice-versa. The
training corpus has been compiled manually by
back-translation using Google translator1 from the
Wikipedia source of Hindi language,2 Nepali lan-
guage,3 and source of Bible4 and as well as
dataset provided by the WMT19 organizer (Bar-
rault et al., 2019). The test data provided by the or-
ganizer for Hindi to Nepali translation consists of
1,567 number of instances and for Nepali to Hindi
translation consists of 2,000 number of instances,
have been used to check the translational effect of
the trained system. Also, validate using a subset
of training corpus containing 500 instances. The
details of the corpus statistics are shown in Table
1. The NMT system has been trained and tested in
three different configurations such as Run-1, Run-
2, and Run-3 using primary and contrastive system
type, which are summarized in Table 2 and 3.

2.2 System Training

After preprocessing the data, the source and tar-
get sentences were trained using our NMT sys-
tems for translation prediction in case of both
Hindi to Nepali and Nepali to Hindi. Our NMT
systems adopted OpenNMT and Marian NMT to
train parallel training corpora using sequence-to-

1https://translate.google.com/
2https://en.wikipedia.org/wiki/Hindi
3https://en.wikipedia.org/wiki/Nepali language
4https://www.bible.com

Figure 1: NMT System Architecture.

sequence RNN having attention mechanism. In
NMT system architecture, encoder and decoder
are the main components of the system. The en-
coder consists of a two-layer network of LSTM
units, having 500 nodes in each layer, which trans-
forms the variable length input sentence of the
source language into a fixed size summary vec-
tor. After that, a two-layer LSTM decoder hav-
ing 500 hidden units, process the summary vec-
tor (output of encoder) to generate target sentence
as output. Multiple Graphics Processing Units
(GPU) were used to increase the performance of
training. The minimum batch size is set to 2000
for memory requirements, a drop out of 0.1 and
enable layer normalization, which guarantees that
memory will not grow during training that result
in a stable training run.
NMT System with Attention Mechanism The
main disadvantage of the basic encoder-decoder
model is that it transforms the source sentence into
a fixed length vector. Therefore, there is a loss
of information in case of a long sentence. The
encoder is unable to encode all valuable informa-
tion into the summary vector. Hence, an attention
mechanism is introduced to handle such an issue.
The encoder design is the main difference between
basic encoder-decoder model and attention model.
In the attention model, a context vector is taken
as input by the decoder, unlike a summary vec-
tor in the basic encoder-decoder model. The con-
text vector is computed using convex coefficients,
are called attention weights, which measure how
much important is the source word in the genera-
tion of the current target word.

Figure 1 presents the NMT system architec-
ture, where attention mechanism and input feed-
ing are used to translate Hindi source sentence

“ ” into the Nepali target sentence
“ ” (Luong et al., 2015). Here, <
eos > marks the end of a sentence.
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Nature of corpus Name of Corpus/Source Number of instances
Training WMT19 Organizer 65,505

Bible + Wikipedia 1,81,368
(using Back-translation)
Total 2,46,873

Test Hindi to Nepali 1,567
Nepali to Hindi 2,000

Validation WMT19 Organizer 500

Table 1: Corpus Statistics.

Configuration Tools Training Data
(No. of instances)

Primary Marian NMT 65,505
(NMT-1): Run-1 (WMT19 Organizer)
Contrastive OpenNMT 1,33,526
(NMT-2): Run-2 (65,505: WMT19 Organizer + Bible + Wikipedia)
Contrastive Marian NMT 2,46,873
(NMT-3): Run-3 (65,505: WMT19 Organizer + Bible + Wikipedia)

Table 2: Different configuration, tools and training data used for Hindi-Nepali Translation.

Configuration Tools Training Data
(No. of instances)

Primary Marian NMT 65,505
(NMT-1): Run-1 (WMT19 Organizer)
Contrastive Marian NMT 1,33,526
(NMT-2): Run-2 (65,505: WMT19 Organizer + Bible + Wikipedia)
Contrastive OpenNMT 2,46,873
(NMT-3): Run-3 (65,505: WMT19 Organizer + Bible + Wikipedia )

Table 3: Different configuration, tools and training data used for Nepali-Hindi Translation.
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2.3 System Testing

During system testing phase, the trained system
is carried out on test sentences as mentioned in
Section 2.1 provided by the WMT19 organizer for
predicting translations.

3 Result and Analysis

The official results of the competition are reported
by WMT19 organizer (Barrault et al., 2019) and
the same are presented in Table 4, 5, 6 and 7 re-
spectively.

A total of six, five teams participated in Hindi
to Nepali and Nepali to Hindi translation using
primary and contrastive system type. In the pri-
mary system type of Hindi to Nepali translation,
our NMT system attained a lower BLEU score and
a higher BLEU score in Nepali to Hindi trans-
lation than other participated teams. However,
in both directions of Hindi-Nepali translation un-
der contrastive configuration our system (Mar-
ian) obtained excellent BLEU score 53.7 (Hindi
to Nepali), 49.1 (Nepali to Hindi). Moreover, it
has been observed that our system’s BLEU score
of Marian outperforms OpenNMT in both direc-
tions of Hindi-Nepali translation under contrastive
as well as primary configuration.
Analysis To analyze the best and worst perfor-
mance of our NMT system, considered the sam-
ple sentences from test data provided by the orga-
nizer and predicted target sentences on the same
test data by our NMT system and Google transla-
tor. In the case of a short, medium, long sentences
of best performance are given in Table 8, our NMT
system provides a perfect prediction like Google
translation for the given test sentences. In Table 9,
the worst case prediction sentences are presented.
In Segment Id = 136, our NMT system’s predic-
tion is wrong. The predicted target sentence is
in a different language in Segment Id = 25 and
also, in case of a long sentence as given in Seg-
ment Id = 153, the prediction is not precise. How-
ever, Google translation yields accurate prediction
in the same sentences.

Table 8: Best Performance examples in Nepali to
Hindi translation.

Table 9: Worst Performance examples in Nepali to
Hindi translation.

Moreover, the BLEU scores of the test set trans-
lated by the Google translator with the test set pro-
vided by the organizer show close to each other for
both target language Hindi and Nepali, as shown
in Table 10.

Target BLEU
Language Score
Hindi 0.405171
Nepali 0.332679

Table 10: BLEU scores of Hindi and Nepali target lan-
guage for test data and test set translation by Google
translator.
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Team BLEU Score Type System
Panlingua-KMI 11.5 Primary PBSMT
CMUMEA N 11.1 Primary AUGTRAN
TeamZeroGang 8.2 Primary -
NITS-CNLP 3.7 Primary NMT-1 (Marian)

Table 4: BLEU scores result of participated teams at WMT19 shared task in Hindi to Nepali translation.

Team BLEU Score Type System
NITS-CNLP 24.6 Primary NMT-1 (Marian)
CMUMEA N 12.1 Primary AUGTRAN
Panlingua-KMI 9.8 Primary PBSMT
TeamZeroGang 9.1 Primary -
CFILT IITB 2.7 Primary WITH MONOLINGUAL

Table 5: BLEU scores result of participated teams at WMT19 shared task in Nepali to Hindi translation.

Team BLEU Score Type System
NITS-CNLP 53.7 Contrastive NMT-3 (Marian)
TeamZeroGang 8.2 Contrastive -
NITS-CNLP 3.6 Contrastive NMT-2 (OpenNMT)
CFILT IITB N 3.5 Contrastive Basic

Table 6: BLEU scores result of participated teams at WMT19 shared task in Hindi to Nepali translation.

Team BLEU Score Type System
NITS-CNLP 49.1 Contrastive NMT-3 (Marian)
TeamZeroGang 9.1 Contrastive -
Panlingua-KMI 4.2 Contrastive NMT
Panlingua-KMI 3.6 Contrastive NMT-Transformer
NITS-CNLP 1.4 Contrastive NMT-2 (OpenNMT)

Table 7: BLEU scores result of participated teams at WMT19 shared task in Nepali to Hindi translation.
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4 Conclusion and Future Scope

In this work, our NMT systems adopted attention
mechanism to predict translation of similar lan-
guage pair namely, Hindi to Nepali and vice-versa.
In the current competition, in primary configura-
tion, our NMT system obtained BLEU score 24.6
in Nepali to Hindi translation and BLEU score
3.7 in Hindi to Nepali translation. On the other
hand, in contrastive configuration, our NMT sys-
tem acquired BLEU score 53.7 (Hindi to Nepali),
49.1 (Nepali to Hindi). However, close analysis
of generated target sentences on given test sen-
tences remarks that our NMT systems need to im-
prove in case of wrong translation, translation in a
different language. Moreover, BLEU scores pre-
sented in Table 10, pointed out that is case of both
target language Hindi and Nepali, the scores are
in relatively stable in both directions of Hindi-
Nepali translation like our systems (both Marian
and OpenNMT) in contrastive configuration (as
mentioned in Table 6 and 7) but unlike in primary
configuration (Marian) (as mentioned in Table 4
and 5). Hence, more experiments and compar-
ative analysis will be needed in future work to
reason about Marian outperforms OpenNMT in
both directions i.e. Hindi to Nepali and Nepali to
Hindi translation. In the future work, more num-
ber of instances in Hindi-Nepali pair, different In-
dian similar language pair like Bengali-Assamese,
Telugu-Kannada, Hindi-Punjabi, shall be consid-
ered for machine translation, which may be possi-
ble to overcome the limitation of available parallel
data to produce precise MT output.

Acknowledgement

Authors would like to thank WMT19 Shared task
organizers for organizing this competition and
also, thank Centre for Natural Language Process-
ing (CNLP) and Department of Computer Science
and Engineering at National Institute of Technol-
ogy, Silchar for providing the requisite support
and infrastructure to execute this work.

References
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