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Abstract

Monotonicity reasoning is one of the impor-
tant reasoning skills for any intelligent natural
language inference (NLI) model in that it re-
quires the ability to capture the interaction be-
tween lexical and syntactic structures. Since
no test set has been developed for monotonic-
ity reasoning with wide coverage, it is still
unclear whether neural models can perform
monotonicity reasoning in a proper way. To
investigate this issue, we introduce the Mono-
tonicity Entailment Dataset (MED). Perfor-
mance by state-of-the-art NLI models on the
new test set is substantially worse, under 55%,
especially on downward reasoning. In addi-
tion, analysis using a monotonicity-driven data
augmentation method showed that these mod-
els might be limited in their generalization
ability in upward and downward reasoning.

1 Introduction

Natural language inference (NLI), also known as
recognizing textual entailment (RTE), has been
proposed as a benchmark task for natural language
understanding. Given a premise P and a hypothe-
sis H , the task is to determine whether the premise
semantically entails the hypothesis (Dagan et al.,
2013). A number of recent works attempt to
test and analyze what type of inferences an NLI
model may be performing, focusing on various
types of lexical inferences (Glockner et al., 2018;
Naik et al., 2018; Poliak et al., 2018) and logical
inferences (Bowman et al., 2015b; Evans et al.,
2018).

Concerning logical inferences, monotonicity
reasoning (van Benthem, 1983; Icard and Moss,
2014), which is a type of reasoning based on word
replacement, requires the ability to capture the in-
teraction between lexical and syntactic structures.
Consider examples in (1) and (2).

(1) a. All [ workers ↓] [joined for a French dinner ↑]

b. All workers joined for a dinner
c. All new workers joined for a French dinner

(2) a. Not all [new workers ↑] joined for a dinner
b. Not all workers joined for a dinner

A context is upward entailing (shown by [... ↑])
that allows an inference from (1a) to (1b), where
French dinner is replaced by a more general con-
cept dinner. On the other hand, a downward
entailing context (shown by [... ↓]) allows an in-
ference from (1a) to (1c), where workers is re-
placed by a more specific concept new workers.
Interestingly, the direction of monotonicity can be
reversed again by embedding yet another down-
ward entailing context (e.g., not in (2)), as witness
the fact that (2a) entails (2b). To properly handle
both directions of monotonicity, NLI models must
detect monotonicity operators (e.g., all, not) and
their arguments from the syntactic structure.

For previous datasets containing monotonicity
inference problems, FraCaS (Cooper et al., 1994)
and the GLUE diagnostic dataset (Wang et al.,
2019) are manually-curated datasets for testing
a wide range of linguistic phenomena. How-
ever, monotonicity problems are limited to very
small sizes (FraCaS: 37/346 examples and GLUE:
93/1650 examples). The limited syntactic patterns
and vocabularies in previous test sets are obstacles
in accurately evaluating NLI models on mono-
tonicity reasoning.

To tackle this issue, we present a new evaluation
dataset1 that covers a wide range of monotonicity
reasoning that was created by crowdsourcing and
collected from linguistics publications (Section 3).
Compared with manual or automatic construction,
we can collect naturally-occurring examples by
crowdsourcing and well-designed ones from lin-
guistics publications. To enable the evaluation of

1The dataset will be made publicly available at
https://github.com/verypluming/MED.



skills required for monotonicity reasoning, we an-
notate each example in our dataset with linguistic
tags associated with monotonicity reasoning.

We measure the performance of state-of-the-art
NLI models on monotonicity reasoning and inves-
tigate their generalization ability in upward and
downward reasoning (Section 4). The results show
that all models trained with SNLI (Bowman et al.,
2015b) and MultiNLI (Williams et al., 2018) per-
form worse on downward inferences than on up-
ward inferences.

In addition, we analyzed the performance of
models trained with an automatically created
monotonicity dataset, HELP (Yanaka et al., 2019).
The analysis with monotonicity data augmentation
shows that models tend to perform better in the
same direction of monotonicity with the training
set, while they perform worse in the opposite di-
rection. This indicates that the accuracy on mono-
tonicity reasoning depends solely on the major-
ity direction in the training set, and models might
lack the ability to capture the structural relations
between monotonicity operators and their argu-
ments.

2 Monotonicity

As an example of a monotonicity inference, con-
sider the example with the determiner every in (3);
here the premise P entails the hypothesis H .

(3) P : Every [NP person ↓] [VP bought a movie ticket ↑]
H: Every young person bought a ticket

Every is downward entailing in the first argument
(NP) and upward entailing in the second argument
(VP), and thus the term person can be more spe-
cific by adding modifiers (person ⊒ young per-
son), replacing it with its hyponym (person ⊒
spectator), or adding conjunction (person ⊒ per-
son and alien). On the other hand, the term buy a
ticket can be more general by removing modifiers
(bought a movie ticket ⊑ bought a ticket), replac-
ing it with its hypernym (bought a movie ticket
⊑ bought a show ticket), or adding disjunction
(bought a movie ticket ⊑ bought or sold a movie
ticket). Table 1 shows determiners modeled as bi-
nary operators and their polarities with respect to
the first and second arguments.

There are various types of downward operators,
not limited to determiners (see Table 2). As shown
in (4), if a propositional object is embedded in a
downward monotonic context (e.g., when), the po-
larity of words over its scope can be reversed.

Determiners First argument Second argument
every, each, all downward upward
some, a, a few, many,

upward upward
several, proper noun
any, no, few, at most X,

downward downward
fewer than X, less than X
the, both, most, this, that non-monotone upward
exactly non-monotone non-monotone

Table 1: Determiners and their polarities.

Category Examples
determiners every, all, any, few, no
negation not, n’t, never
verbs deny, prohibit, avoid
nouns absence of, lack of, prohibition
adverbs scarcely, hardly, rarely, seldom
prepositions without, except, but
conditionals if, when, in case that, provided that, unless

Table 2: Examples of downward operators.

(4) P : When [every [NP young person ↑] [VP bought a
ticket ↓]], [that shop was open]

H: When [every [NP person] [VP bought a movie
ticket]], [that shop was open]

Thus, the polarity (↑ and ↓), where the replace-
ment with more general (specific) phrases licenses
entailment, needs to be determined by the inter-
action of monotonicity properties and syntactic
structures; polarity of each constituent is calcu-
lated based on a monotonicity operator of func-
tional expressions (e.g., every, when) and their
function-term relations.

3 Dataset

3.1 Human-oriented dataset

To create monotonicity inference problems, we
should satisfy three requirements: (a) detect the
monotonicity operators and their arguments; (b)
based on the syntactic structure, induce the polar-
ity of the argument positions; and (c) replace the
phrase in the argument position with a more gen-
eral or specific phrase in natural and various ways
(e.g., by using lexical knowledge or logical con-
nectives). For (a) and (b), we first conduct polar-
ity computation on a syntactic structure for each
sentence, and then select premises involving up-
ward/downward expressions.

For (c), we use crowdsourcing to narrow or
broaden the arguments. The motivation for using
crowdsourcing is to collect naturally alike mono-
tonicity inference problems that include various
expressions. One problem here is that it is un-



Figure 1: Overview of our human-oriented dataset cre-
ation. E: entailment, NE: non-entailment.

clear how to instruct workers to create monotonic-
ity inference problems without knowledge of natu-
ral language syntax and semantics. We must make
tasks simple for workers to comprehend and pro-
vide sound judgements. Moreover, recent stud-
ies (Gururangan et al., 2018; Poliak et al., 2018;
Tsuchiya, 2018) point out that previous crowd-
sourced datasets, such as SNLI (Bowman et al.,
2015a) and MultiNLI (Williams et al., 2018), in-
clude hidden biases. As these previous datasets
are motivated by approximated entailments, work-
ers are asked to freely write hypotheses given a
premise, which does not strictly restrict them to
creating logically complex inferences.

Taking these concerns into consideration, we
designed two-step tasks to be performed via
crowdsourcing for creating a monotonicity test set;
(i) a hypothesis creation task and (ii) a valida-
tion task. The task (i) is to create a hypothesis
by making some polarized part of an original sen-
tence more specific. Instead of writing a com-
plete sentence from scratch, workers are asked to
rewrite only a relatively short sentence. By re-
stricting workers to rewrite only a polarized part,
we can effectively collect monotonicity inference
examples. The task (ii) is to annotate an entail-
ment label for the premise-hypothesis pair gen-
erated in (i). Figure 1 summarizes the overview
of our human-oriented dataset creation. We used
the crowdsourcing platform Figure Eight for both
tasks.

3.1.1 Premise collection
As a resource, we use declarative sentences with
more than five tokens from the Parallel Mean-
ing Bank (PMB) (Abzianidze et al., 2017). The
PMB contains syntactically correct sentences an-

notated with its syntactic category in Combi-
natory Categorial Grammar (CCG; Steedman,
2000) format, which is suitable for our pur-
pose. To get a whole CCG derivation tree, we
parse each sentence by the state-of-the-art CCG
parser, depccg (Yoshikawa et al., 2017). Then,
we add a polarity to every constituent of the
CCG tree by the polarity computation system
ccg2mono (Hu and Moss, 2018) and make the po-
larized part a blank field.

We ran a trial rephrasing task on 500 exam-
ples and detected 17 expressions that were too
general and thus difficult to rephrase them in a
natural way (e.g., every one, no time). We re-
moved examples involving such expressions. To
collect more downward inference examples, we
select examples involving determiners in Table 1
and downward operators in Table 2. As a result,
we selected 1,485 examples involving expressions
having arguments with upward monotonicity and
1,982 examples involving expressions having ar-
guments with downward monotonicity.

3.1.2 Hypothesis creation
We present crowdworkers with a sentence whose
polarized part is underlined, and ask them to
replace the underlined part with more specific
phrases in three different ways. In the instruc-
tions, we showed examples rephrased in various
ways: by adding modifiers, by adding conjunc-
tion phrases, and by replacing a word with its hy-
ponyms.

Workers were paid US$0.05 for each set of sub-
stitutions, and each set was assigned to three work-
ers. To remove low-quality examples, we set the
minimum time it should take to complete each set
to 200 seconds. The entry in our task was re-
stricted to workers from native speaking English
countries. 128 workers contributed to the task, and
we created 15,339 hypotheses (7,179 upward ex-
amples and 8,160 downward examples).

3.1.3 Validation
The gold label of each premise-hypothesis pair
created in the previous task is automatically de-
termined by monotonicity calculus. That is, a
downward inference pair is labeled as entailment,
while an upward inference pair is labeled as non-
entailment.

However, workers sometimes provided some
ungrammatical or unnatural sentences such as the
case where a rephrased phrase does not satisfy the



selectional restrictions (e.g., original: Tom doesn’t
live in Boston, rephrased: Tom doesn’t live in yes),
making it difficult to judge their entailment re-
lations. Thus, we performed an annotation task
to ensure accurate labeling of gold labels. We
asked workers about the entailment relation of
each premise-hypothesis pair as well as how natu-
ral it is.

Worker comprehension of an entailment rela-
tion directly affects the quality of inference prob-
lems. To avoid worker misunderstandings, we
showed workers the following definitions of labels
and five examples for each label:

1. entailment: the case where the hypothesis is
true under any situation that the premise de-
scribes.

2. non-entailment: the case where the hypoth-
esis is not always true under a situation that
the premise describes.

3. unnatural: the case where either the premise
and/or the hypothesis is ungrammatical or
does not make sense.

Workers were paid US$0.04 for each question,
and each question was assigned to three workers.
To collect high-quality annotation results, we im-
posed ten test questions on each worker, and re-
moved workers who gave more than three wrong
answers. We also set the minimum time it should
take to complete each question to 200 seconds.
1,237 workers contributed to this task, and we an-
notated gold labels of 15,339 premise-hypothesis
pairs.

Table 3 shows the numbers of cases where an-
swers matched gold labels automatically deter-
mined by monotonicity calculus. This table shows
that there exist inference pairs whose labels are
difficult even for humans to determine; there are
3,354 premise-hypothesis pairs whose gold labels
as annotated by polarity computations match with
those answered by all workers. We selected these
naturalistic monotonicity inference pairs for the
candidates of the final test set.

To make the distribution of gold labels symmet-
ric, we checked these pairs to determine if we can
swap the premise and the hypothesis, reverse their
gold labels, and create another monotonicity infer-
ence pair. In some cases, shown below, the gold
label cannot be reversed if we swap the premise
and the hypothesis.

Upward /cases(%) Downward /cases(%) Total /cases(%)
3 labels match 1,069 (7.0) 2,285 (14.9) 3,354 (21.9)
2 labels match 1,814 (11.8) 2,301 (15.0) 4,115 (26.8)
1 labels match 2,295 (15.0) 1,915 (12.5) 4,210 (27.5)
no match 1,998 (27.8) 1,652 (10.8) 3,650 (37.8)

Table 3: Numbers of cases where answers matched
automatically determined gold labels.

(a) Replacement with synonyms In (5), child
and kid are not hyponyms but synonyms, and the
premise P and the hypothesis H are paraphrases.

(5) P : Tom is no longer a child

H: Tom is no longer a kid

These cases are not strict downward inference
problems, in the sense that a phrase is not replaced
by its hyponym/hypernym.

(b) Non-constituents Consider the example (6).

(6) P : The moon has no atmosphere

H: The moon has no atmosphere, and the gravity
force is too low

The hypothesis H was created by asking workers
to make atmosphere in the premise P more spe-
cific. However, the additional phrase and the grav-
ity force is too low does not form constituents with
atmosphere. Thus, such examples are not strict
downward monotone inferences.

In such cases as (a) and (b), we do not swap
the premise and the hypothesis. In the end,
we collected 4,068 examples from crowdsourced
datasets.

3.2 Linguistics-oriented dataset

We also collect monotonicity inference problems
from previous manually curated datasets and lin-
guistics publications. The motivation is that pre-
vious linguistics publications related to mono-
tonicity reasoning are expected to contain well-
designed inference problems, which might be
challenging problems for NLI models.

We collected 1,184 examples from 11 linguis-
tics publications (Barwise and Cooper, 1981;
Hoeksema, 1986; Heim and Kratzer, 1998;
Bonevac et al., 1999; Fyodorov et al., 2003;
Geurts, 2003; Geurts and van der Slik, 2005;
Zamansky et al., 2006; Szabolcsi et al., 2008;
Winter, 2016; Denic et al., 2019). Regarding
previous manually-curated datasets, we collected
93 examples for monotonicity reasoning from the
GLUE diagnostic dataset, and 37 single-premise
problems from FraCaS.



Genre Tags Premise Hypothesis Gold

Crowd

up There is a cat on the chair There is a cat sleeping on the chair NE
up: If you heard her speak English, you would take her If you heard her speak English, you would take her
cond for a native American for an American E
up:rev: Dogs and cats have all the good qualities of people Dogs have all the good qualities of people without
conj without at the same time possessing their weaknesses at the same time possessing their weaknesses E
up:lex He approached the boy reading a magazine He approached the boy reading a book E
down:lex Tom hardly ever listens to music Tom hardly ever listens to rock ’n’ roll E
down:conj You don’t like love stories and sad endings You don’t like love stories NE
down:cond If it is fine tomorrow, we’ll go on a picnic If it is fine tomorrow in the field, we’ll go on a picnic E
down I never had a girlfriend before I never had a girlfriend taller than me before E

Paper

up:rev Every cook who is not a tall man ran Every cook who is not a man ran E
up:disj Every man sang Every man sang or danced E
up:lex: None of the sopranos sang with fewer than three of None of the sopranos sang with fewer than three of
rev the tenors the male singers E
non Exactly one man ran quickly Exactly one man ran NE
down At most three elephants are blue At most three elephants are navy blue E

Table 4: Examples in the MED dataset. Crowd: problems collected through crowdsourcing, Paper: problems
collected from linguistics publications, up: upward monotone, down: downward monotone, non: non-monotone,
cond: condisionals, rev: reverse, conj: conjunction, disj: disjunction, lex: lexical knowledge, E: entailment, NE:
non-entailment.

Type Label Crowd Paper Total

Upward (1,820)
Entailment 323 305 628
Non-entailment 893 299 1,192

Downward (3,270)
Entailment 1,871 201 2,072
Non-entailment 979 219 1,198

Non-monotone (292)
Entailment 0 15 15
Non-entailment 2 275 277

Total 4,068 1,314 5,382

Table 5: Statistics for the MED dataset.

Both the GLUE diagnostic dataset and FraCaS
categorize problems by their types of monotonic-
ity reasoning, but we found that each dataset has
different classification criteria.2 Thus, following
GLUE, we reclassified problems into three types
of monotone reasoning (upward, downward, and
non-monotone) by checking if they include (i) the
target monotonicity operator in both the premise
and the hypothesis and (ii) the phrase replacement
in its argument position. In the GLUE diagnos-
tic dataset, there are several problems whose gold
labels are contradiction. We regard them as non-
entailment in that the premise does not semanti-
cally entail the hypothesis.

3.3 Statistics

We merged the human-oriented dataset created via
crowdsourcing and the linguistics-oriented dataset
created from linguistics publications to create the
current version of the monotonicity entailment
dataset (MED). Table 4 shows some examples
from the MED dataset. We can see that our dataset

2FraCaS categorizes each problem by whether its replace-
ment broadens an argument (upward monotone) or narrows it
(downward monotone).

contains various phrase replacements (e.g., con-
junction, relative clauses, and comparatives). Ta-
ble 5 reports the statistics of the MED dataset, in-
cluding 5,382 premise-hypothesis pairs (1,820 up-
ward examples, 3,270 downward examples, and
292 non-monotone examples). Regarding non-
monotone problems, gold labels are always non-
entailment, whether a hypothesis is more spe-
cific or general than its premise, and thus almost
all non-monotone problems are labeled as non-
entailment.3 The size of the word vocabulary in
the MED dataset is 4,023, and overlap ratios of
vocabulary with previous standard NLI datasets is
95% with MultiNLI and 90% with SNLI.

We assigned a set of annotation tags for lin-
guistic phenomena to each example in the test set.
These tags allow us to analyze how well models
perform on each linguistic phenomenon related to
monotonicity reasoning. We defined 6 tags (see
Table 4 for examples):

1. lexical knowledge (2,073 examples): infer-
ence problems that require lexical relations
(i.e., hypernyms, hyponyms, or synonyms)

2. reverse (240 examples): inference problems
where a propositional object is embedded in
a downward environment more than once

3. conjunction (283 examples): inference prob-
lems that include the phrase replacement by
adding conjunction (and) to the hypothesis

315 non-monotone problems which include the replace-
ment with synonyms are labeled as entailment.



4. disjunction (254 examples): inference prob-
lems that include the phrase replacement by
adding disjunction (or) to the hypothesis

5. conditionals (149 examples): inference prob-
lems that include conditionals (e.g., if, when,
unless) in the hypothesis 4

6. negative polarity items (NPIs) (338 exam-
ples): inference problems that include NPIs
(e.g., any, ever, at all, anything, anyone, any-
more, anyhow, anywhere) in the hypothesis

4 Results and Discussion

4.1 Baselines
To test the difficulty of our dataset, we checked
the majority class label and the accuracies
of five state-of-the-art NLI models adopt-
ing different approaches: BiMPM (Bilateral
Multi-Perspective Matching Model; Wang et al.,
2017), ESIM (Enhanced Sequential Inference
Model; Chen et al., 2017), Decomposable
Attention Model (Parikh et al., 2016), KIM
(Knowledge-based Inference Model; Chen et al.,
2018), and BERT (Bidirectional Encoder Repre-
sentations from Transformers model; Devlin et al.,
2019). Regarding BERT, we checked the perfor-
mance of a model pretrained on Wikipedia and
BookCorpus for language modeling and trained
with SNLI and MultiNLI. For other models, we
checked the performance trained with SNLI.
In agreement with our dataset, we regarded the
prediction label contradiction as non-entailment.

Table 6 shows that the accuracies of all models
were better on upward inferences, in accordance
with the reported results of the GLUE leader-
board. The overall accuracy of each model was
low. In particular, all models underperformed the
majority baseline on downward inferences, despite
some models having rich lexical knowledge from
a knowledge base (KIM) or pretraining (BERT).
This indicates that downward inferences are diffi-
cult to perform even with the expansion of lexical
knowledge. In addition, it is interesting to see that
if a model performed better on upward inferences,
it performed worse on downward inferences. We
will investigate these results in detail below.

4When-clauses can have temporal and non-temporal inter-
pretations (Moens and Steedman, 1988). We assign the con-
ditional tag to those cases where when is interchangeable with
if, thus excluding those cases where when-clauses have tem-
poral episodic interpretation (e.g., When she came back from
the trip, she bought a gift).

Model Train Upward Downward Non All
Majority 65.5 63.3 99.3 50.4

BiMPM SNLI 53.5 57.6 27.4 54.6
ESIM SNLI 71.1 45.2 41.8 53.8
DeComp SNLI 66.1 42.1 64.4 51.4
KIM SNLI 78.8 30.3 53.1 48.0
BERT SNLI 50.1 46.8 7.5 45.8
BERT MNLI 82.7 22.8 52.7 44.7

Table 6: Accuracies (%) for different models and train-
ing datasets.

Training set Upward Downward Non All
MNLI 82.7 22.8 52.7 44.7
MNLI–Hyp 34.3 18.3 31.5 24.4
MNLI+HELP 76.0 70.3 59.9 71.6
MNLI+HELP–Hyp 61.3 30.5 34.9 41.1

Table 7: Evaluation results on types of monotonicity
reasoning. –Hyp: Hypothesis-only model.

4.2 Data augmentation for analysis

To explore whether the performance of models on
monotonicity reasoning depends on the training
set or the model themselves, we conducted fur-
ther analysis performed by data augmentation with
the automatically generated monotonicity dataset
HELP (Yanaka et al., 2019). HELP contains 36K
monotonicity inference examples (7,784 upward
examples, 21,192 downward examples, and 1,105
non-monotone examples). The size of the HELP
word vocabulary is 15K, and the overlap ratio of
vocabulary between HELP and MED is 15.2%.

We trained BERT on MultiNLI only and on
MultiNLI augmented with HELP, and compared
their performance. Following Poliak et al. (2018),
we also checked the performance of a hypothesis-
only model trained with each training set to test
whether our test set contains undesired biases.

4.2.1 Effects of data augmentation
Table 7 shows that the performance of BERT
with the hypothesis-only training set dropped
around 10-40% as compared with the one with the
premise-hypothesis training set, even if we use the
data augmentation technique. This indicates that
the MED test set does not allow models to pre-
dict from hypotheses alone. Data augmentation
by HELP improved the overall accuracy to 71.6%,
but there is still room for improvement. In addi-
tion, while adding HELP increased the accuracy
on downward inferences, it slightly decreased ac-
curacy on upward inferences. The size of down-
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Figure 2: Accuracy throughout training BERT (i) with only upward examples and (ii) with only downward exam-
ples. We checked the accuracy at sizes [50, 100, 200, 500, 1000, 2000, 5000] for each direction. (iii) Performance
on different ratios of upward/downward training sets. The total size of the training sets was 5,000 examples.

ward examples in HELP is much larger than that
of upward examples. This might improve accu-
racy on downward inferences, but might decrease
accuracy on upward inferences.

To investigate the relationship between accu-
racy on upward inferences and downward infer-
ences, we checked the performance throughout
training BERT with only upward and downward
inference examples in HELP (Figure 2 (i), (ii)).
These two figures show that, as the size of the up-
ward training set increased, BERT performed bet-
ter on upward inferences but worse on downward
inferences, and vice versa.

Figure 2 (iii) shows performance on a different
ratio of upward and downward inference training
sets. When downward inference examples con-
stitute more than half of the training set, accura-
cies on upward and downward inferences were re-
versed. As the ratio of downward inferences in-
creased, BERT performed much worse on upward
inferences. This indicates that a training set in
one direction (upward or downward entailing) of
monotonicity might be harmful to models when
learning the opposite direction of monotonicity.

Previous work using HELP (Yanaka et al.,
2019) reported that the BERT trained with
MultiNLI and HELP containing both upward
and downward inferences improved accuracy
on both directions of monotonicity. MultiNLI
rarely comes from downward inferences (see Sec-
tion 4.3), and its size is large enough to be im-
mune to the side-effects of downward inference
examples in HELP. This indicates that MultiNLI
might act as a buffer against side-effects of the
monotonicity-driven data augmentation technique.

Genre −HELP +HELP △

Crowd

Up 87.1 83.6 −3.5
Down 21.2 70.3 +49.1

Non 100.0 100.0 ±0.0
All 40.9 74.3 +33.4

Paper

Up 74.5 60.8 −13.7
Down 33.8 69.5 +35.7

Non 52.4 59.7 +7.3
All 56.6 63.3 +6.7

Table 8: Evaluation results by genre. Paper: problems
collected from linguistics publications, Crowd: prob-
lems via crowdsourcing.

4.2.2 Linguistics-oriented versus
human-oriented

Table 8 shows the evaluation results by genre.
This result shows that inference problems col-
lected from linguistics publications are more chal-
lenging than crowdsourced inference problems,
even if we add HELP to training sets. As shown
in Figure 2, the change in performance on prob-
lems from linguistics publications is milder than
that on problems from crowdsourcing. This re-
sult also indicates the difficulty of problems from
linguistics publications. Regarding non-monotone
problems collected via crowdsourcing, there are
very few non-monotone problems, so accuracy is
100%. Adding non-monotone problems to our test
set is left for future work.

4.2.3 Linguistic phenomena
Table 9 shows the evaluation results by type of lin-
guistic phenomenon. While accuracy on problems
involving NPIs and conditionals was improved on
both upward and downward inferences, accuracy
on problems involving conjunction and disjunc-
tion was improved on only one direction. In ad-
dition, it is interesting to see that the change in



Tag −HELP +HELP △

Up

Lexical (743) 81.0 70.8 −10.2
non-Lexical (1,077) 84.1 79.6 −4.5
NPIs (64) 20.3 35.9 +15.6
Conditionals (29) 51.7 62.1 +9.4
Conjunction (175) 94.3 88.0 −6.3
Disjunction (96) 4.2 32.3 +28.1
Reverse (240) 74.2 28.7 −45.5

Down

Lexical (477) 46.1 64.6 +18.5
non-Lexical (2,793) 18.8 71.2 +52.4
NPIs (266) 44.0 60.2 +16.2
Conditionals (120) 15.8 20.0 +4.2
Conjunction (106) 24.5 40.6 +16.1
Disjunction (138) 80.4 40.6 −39.8

Non

Lexical (182) 58.2 64.3 +6.1
non-Lexical (110) 43.6 52.7 +9.1
NPIs (8) 0.0 0.0 ±0.0
Disjunction (20) 10.0 15.0 +5.0

Table 9: Evaluation results by linguistic phenomenon
type. (non-)Lexical: problems that (do not) require lex-
ical relations. Numbers in parentheses are numbers of
problems.

accuracy on conjunction was opposite to that on
disjunction. Downward inference examples in-
volving disjunction are similar to upward infer-
ence ones; that is, inferences from a sentence to a
shorter sentence are valid (e.g., Not many campers
have had a sunburn or caught a cold ⇒ Not many
campers have caught a cold). Thus, these results
were also caused by addition of downward infer-
ence examples. Also, accuracy on problems an-
notated with reverse tags was apparently better
without HELP because all examples are upward
inferences embedded in a downward environment
twice.

Table 9 also shows that accuracy on condition-
als was better on upward inferences than that on
downward inferences. This indicates that BERT
might fail to capture the monotonicity property
that conditionals create a downward entailing con-
text in their scope while they create an upward en-
tailing context out of their scope.

Regarding lexical knowledge, the data augmen-
tation technique improved the performance much
better on downward inferences which do not re-
quire lexical knowledge. However, among the 394
problems for which all models provided wrong
answers, 244 problems are non-lexical inference
problems. This indicates that some non-lexical in-
ference problems are more difficult than lexical in-
ference problems, though accuracy on non-lexical
inference problems was better than that on lexical
inference problems.

4.3 Discussion
One of our findings is that there is a type of down-
ward inferences to which every model fails to pro-
vide correct answers. One such example is con-
cerned with the contrast between few and a few.
Among 394 problems for which all models pro-
vided wrong answers, 148 downward inference
problems were problems involving the downward
monotonicity operator few such as in the following
example:

(7) P : Few of the books had typical or marginal readers
H: Few of the books had some typical readers

We transformed these downward inference
problems to upward inference problems in two
ways: (i) by replacing the downward operator few
with the upward operator a few, and (ii) by re-
moving the downward operator few. We tested
BERT using these transformed test sets. The re-
sults showed that BERT predicted the same an-
swers for the transformed test sets. This suggests
that BERT does not understand the difference be-
tween the downward operator few and the upward
operator a few.

The results of crowdsourcing tasks in Sec-
tion 3.1.3 showed that some downward inferences
can naturally be performed in human reasoning.
However, we also found that the MultiNLI train-
ing set (Williams et al., 2018), which is one of
the dataset created from naturally-occurring texts,
contains only 77 downward inference problems,
including the following one.5

(8) P : No racin’ on the Range
H: No horse racing is allowed on the Range

One possible reason why there are few downward
inferences is that certain pragmatic factors can
block people to draw a downward inference. For
instance, in the case of the inference problem in
(9), unless the added disjunct in H , i.e., a small
cat with green eyes, is salient in the context, it
would be difficult to draw the conclusion H from
the premise P .

(9) P : I saw a dog
H: I saw a dog or a small cat with green eyes

Such pragmatic factors would be one of the rea-
sons why it is difficult to obtain downward infer-
ences in naturally occurring texts.

5The MultiNLI training set has 1,700 inference problems
where the downward entailing operators no and never occur
in both the premise and the hypothesis, but most of them are
not an instance of downward inferences.



5 Conclusion

We introduced a large monotonicity entailment
dataset, called MED. To illustrate the usefulness
of MED, we tested state-of-the-art NLI models,
and found that performance on the new test set
was substantially worse for all state-of-the-art NLI
models. In addition, the accuracy on downward in-
ferences was inversely proportional to the one on
upward inferences.

An experiment with the data augmentation tech-
nique showed that accuracy on upward and down-
ward inferences depends on the proportion of up-
ward and downward inferences in the training set.
This indicates that current neural models might
have limitations on their generalization ability in
monotonicity reasoning. We hope that the MED
will be valuable for future research on more ad-
vanced models that are capable of monotonicity
reasoning in a proper way.
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