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Abstract 

In this paper we describe our system for 
morphological analysis and lemmatization 
in context, using a transformer-based 
sequence to sequence model and a biaffine 
attention based BiLSTM model. First, a 
lemma is produced for a given word, and 
then both the lemma and the given word 
are used for morphological analysis. We 
also make use of character level word 
encodings and trainable encodings to 
improve accuracy. Overall, our system 
ranked fifth in lemmatization and sixth in 
morphological accuracy among twelve 
systems, and demonstrated considerable 
improvements over the baseline in 
morphological analysis. 

1 Introduction 

In this paper we present our neural network 
architecture that we have used for the 
SIGMORPHON 2019 shared task 2 (McCarthy et 
al., 2019). We use two models by pipelining them 
in the sequence of operations. Our approach is 
based on the idea that lemmatization is an m-to-n 
mapping task where given a word of m characters 
we need to produce its lemma consisting of n 
characters. Unlike lemmatization, morphological 
analysis calls for a different approach where 
given a sentence consisting of m words, we need 
to choose one label from a fixed set of labels for 
each word. Hence, morphological 
analysis/tagging is a classification task for an 
input sequence. 

2 Task and Dataset 

There are two tasks in SIGMORPHON 2019 
and we chose task 2. The idea of the task is 
simple: the input is a sentence made of words and 
the output is a lemma and morphosyntactic 
description (MSD) for each word. Table 1 shows 
sample data for task 2: the first column is the 
input, the second is the lemma, and the last is the 
MSD for each word. There may be a difference in 
the result if a lemma is used as an additional input 
for MSD tagging. Our experiments showed 
improved performance when a lemma was 
incorporated. 

The dataset consists of initial 98 datasets of 
more than 60 distinct languages, and additional 
nine surprise languages/datasets that were added 
later. Some of the datasets consist of languages 
that are not widespread in terms of their usage and 
amount of available training data. For example, 
Akkadian has only 80 sentences in training data, 
and other low-resource languages similarly have 
small numbers of sentences: Amharic has 859, 
Bambara 820, Buryat 741, Cantonese 520, etc. On 
the other hand, Russian SynTagRus and Czech 
PDT respectively have 49,511 and 70,330 
sentences in their training data. In addition to 
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 Word Lemma MSD 
1 these these PL;DET 
2 guys guy N;PL 
3 were be PST;IND;V;FIN 
4 fantastic fantastic ADJ 
5 ! ! _ 

Table 1: Sample data of SIGMORPHON 2019 
Shared Task 2 
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having less training data, some of the low-
resource languages also do not have pre-trained 
word vectors. In such cases, we use other related 
languages’ word vectors as a substitute, as will be 
discussed later. 

3 Model 

The baseline model (Malaviya et al., 2019) 
provided by the task organizers approaches task 2 
by first finding a MSD tag for a given word and 
incorporating that information in lemmatization. 
Given a sequence of words w, a sequence of 
morphological tags m, and a sequence of lemmas 
l, they define their model as: 

 
𝑝𝑝(𝑙𝑙,𝑚𝑚 | 𝑤𝑤) = 𝑝𝑝 (𝑙𝑙|𝑚𝑚,𝑤𝑤)𝑝𝑝(𝑚𝑚|𝑤𝑤)                (1) 

 
This illustrates the importance of MSD tags in 

the lemmatization process. However, 
lemmatization can be done effectively even 
without consideration of morphological tags. 
Therefore, our approach flips the order of 
operations: we first find the lemma for a given 
word and input the original sentence with the 
generated lemma to the MSD tagger. Equation 2 
summarizes this idea: 

 
𝑝𝑝(𝑚𝑚, 𝑙𝑙 | 𝑤𝑤) = 𝑝𝑝 (𝑚𝑚|𝑙𝑙,𝑤𝑤)𝑝𝑝(𝑙𝑙|𝑤𝑤)                (2) 
 
Overall, given the nature of the required tasks, 

an m-to-n sequence to sequence model for 
lemmatization and a label classifier model for 
morphological analysis are used. The two models 
are trained separately and pipelined as shown in 
Figure 1. As an example, when given an initial 
sentence “these guys are fantastic!”, we 
lemmatize each input word as “these guy be 
fantastic!” We then input the derived lemmas and 
the original input to the MSD tagger. At the end, 
we obtain MSD tag for each input word.  

 

3.1  Lemmatizer 

Our lemmatizer is a sequence to sequence 
model and is based on an encoder-decoder 
architecture using Google’s transformer (Vaswani 
et al., 2017). Lemmatization is a similar task to 
translation, where an input sequence is mapped to 
an output sequence of a different length. 
Therefore, our approach is justified by the 
model’s robust performance in neural machine 

translation, particularly for WMT 2014 English-
to-German and WMT 2014 EN-FR datasets. An 
informal leaderboard at http://nlpprogress.com 
demonstrates that the best performing teams use a 
transformer architecture for their encoder-decoder 
architecture (cf. Edunov et al., 2018, Wu et al., 
2019).  

A more formal leaderboard for the GLUE 
benchmark (Wang et al. 2018) consists of tasks 
that mainly use the encoder part of the encoder-
decoder architecture. Therefore, the tasks of the 
GLUE benchmark are not directly comparable 
with lemmatization, but even in this case, at least 
the top 10 performers use BERT (Devlin et al., 
2018), which uses a transformer encoder 
architecture (cf. Liu et al., 2019, Keskar et al., 
2019).  

The specific code for lemmatization is taken 
from the tensor2tensor library 1  version 1.13.4 
with some modification added for our task. We 
chose the built-in hyperparameter configuration of 
transformer_tiny. The input and the output is a 
sequence of characters and no pre-trained 
embedding is used. One word is input at a time, 
and thus no consideration is taken of context 
words. For instance, in the mentioned example, 
the encoder input is “t h e s e” as a sequence of 
characters and the decoder output is “t h e s e”.  
Likewise, “g u y s” and “g u y”, “w e r e” and “b 
e”, etc. are input and output one by one. Overall, 
the number of attention layers or heads is 4 as 
opposed to 8 in the original paper and hence it 
                                                           
1 https://github.com/tensorflow/tensor2tensor  

 

Figure 1: Pipeline Model 

http://nlpprogress.com/
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requires less computational power without 
substantial loss in the accuracy. The model 
performs quite well and with this basic setup was 
ranked fifth among 12 participating systems. 

3.2 MSD tagger 

The task of morphological analysis uses the 
output of lemmatization after pipelining it.  
Furthermore, MSD tagging is very similar to 
another well researched NLP task: head-
dependent relation labelling in dependency 
parsing. Like head-dependent relation labelling, 
an MSD tag of a word is dependent on the word 
itself and its position within the sentence. As an 
example, let’s consider two sentences: “I live in 
an apartment” and “I like live music”. Even 
though “live” occurs in both sentences, the label 
we attach is dependent on the context. In other 
words, context words and the word itself 
determine its MSD tag. Therefore, we use the 
modified dependency parser reported by Dozat et 
al. (2017), which is based on Kiperwasser et al. 
(2016). The original model won in the CoNLL 
2017 shared task (Nivre et al. 2017a, Nivre et al. 
2017b) and its subsequent modifications won in 
the CoNLL 2018 shared task (Zeman et al., 2018, 
Che et al., 2018). Unlike dependency parsing, for 
the morphological analysis it is not necessary to 
find the head of a word. Therefore, we amend the 
dependency parser by Dozat et al. (2017) and use 
only the model’s head-dependent relation labeling 
functionality for the MSD tagging.  

The model’s input is an elementwise addition 
of four embeddings for an input word. We then 
pass the vector representation for each input word 
through BiLSTM layers with subsequent 
multilayer perceptron (MLP) and biaffine 
attention layers. The MSD tagging assigns a tag to 
each word while the dependency parsing assigns a 
tag to a relation between a pair of words. In the 
latter case, even though we need to tag a relation 
between a pair of words, each word needs a label. 
Furthermore, information from two words only is 
not enough and the parser has to attend actually to 
the whole context to assign the correct label. 
Therefore, we need attention over all input words 
in the dependency parsing and we leave this 
feature for the MSD tagger too. 

The optimization is done by the Adam 
optimizer (Knigma and Ba 2014). We trained the 
model until there were no improvements after 
5000 steps. The number of BiLSTM layers was 

three and the dimension of each LSTM cell as 
well as the word vector was 100 (300 when 
fastText 2  is used). We mainly used pre-trained 
embeddings of words from the CoNLL 2017 
shared task (Nivre et al. 2017a, Nivre et al. 
2017b) trained on word2vec (Mikolov et al., 
2013). For Akkadian, Amharic, and Japanese we 
used fastText (Bojanowski et al., 2017). 
Interestingly, using the pre-trained word vector of 
Dutch from the CoNLL 2017 shared task 
demonstrates better performance than the 
Afrikaans pre-trained word vector of fastText for 
Afrikaans-AfriBooms treebank. Similar results 
were observed for some other datasets and 
therefore we used fastText only for the mentioned 
languages. At the same time, using the word 
vector for a related language is also in the spirit of 
cross-lingual learning transfer from a resource-
rich to a resource-lean language (Ruder et al., 
2017).  

For each word, there are four embeddings, 
which are summed elementwise: pre-trained, 
trainable, character level, and lemma. Trainable 
embeddings are vectors that are initialized 
randomly and then trained as the training 
proceeds. Likewise, lemma vectors are also 
initialized randomly. The process of character 
level embedding generation is more involved and 
is based on the character level word 
representation by Cao and Rei (2016). Character 
level embeddings are a sequence of characters 
that pass through unidirectional LSTM cells 
(Hochreiter and Schmidhuber, 1997) and are then 
                                                           
2 https://fasttext.cc/  

 

Figure 2: Character level embedding 
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summed after the conventional attention layer 
(Bahdanau et al., 2015). Figure 2 summarizes this 
process. 

4 Results 

After experiments with different 
hyperparameter settings, we were able to choose 

optimal settings, as was described earlier. Table 2 
summarizes the results of lemmatization and 
MSD tagging by the sequence to sequence 
transformer model and the biaffine attention based 
BiLSTM model. 

Our choice of lemmatization followed by an 
MSD tagging was an important step for increasing 
MSD tag accuracy. Although, a full-scale ablation 

Treebanks 
lemma 
acc. 

lemma 
Leven. 

morph 
acc. 

morph 
F1 

Afri. AfriBooms 98.49 0.03 98.45 98.66 
Akk.PISANDUB 67.82 0.89 82.18 81.77 
Amharic-ATT 99.91 0.00 88.19 92.41 
A. Greek-Perseus 94.48 0.14 81.75 91.58 
A. Greek-PROIEL 96.75 0.08 83.82 93.86 
Arabic-PADT 94.16 0.16 93.22 96.32 
Arabic-PUD 85.29 0.42 79.16 91.27 
Armenian-ArmTDP 94.34 0.11 76.80 84.91 
Bambara-CRB 83.90 0.30 92.79 94.74 
Basque-BDT 95.75 0.10 87.63 92.80 
Belarusian-HSE 89.81 0.19 58.67 65.26 
Breton-KEB 92.54 0.19 87.36 90.13 
Bulgarian-BTB 96.56 0.09 96.02 98.00 
Buryat-BDT 89.23 0.26 80.48 82.93 
Cantonese-HK 100 0.00 90.00 87.40 
Catalan-AnCora 97.20 0.05 96.19 97.71 
Chinese-CFL 99.76 0.00 91.49 90.37 
Chinese-GSD 99.98 0.00 94.60 94.42 
Coptic-Scriptorium 89.95 0.21 94.81 95.93 
Croatian-SET 95.14 0.09 88.64 94.64 
Czech-CAC 98.22 0.05 91.76 96.86 
Czech-CLTT 98.41 0.03 90.01 94.98 
Czech-FicTree 97.89 0.04 91.49 95.6 
Czech-PDT 98.08 0.03 89.88 95.84 
Czech-PUD 93.06 0.12 76.17 89.38 
Danish-DDT 94.86 0.08 95.52 96.96 
Dutch-Alpino 97.37 0.05 96.45 97.18 
Dutch-LassySmall 96.45 0.07 96.38 97.00 
English-EWT 97.31 0.08 95.82 97.01 
English-GUM 97.09 0.05 95.46 96.54 
English-LinES 97.87 0.04 96.34 97.16 
English-ParTUT 97.30 0.05 94.75 95.56 
English-PUD 94.90 0.07 93.43 94.95 
Estonian-EDT 95.76 0.09 93.08 96.45 
Faroese-OFT 88.28 0.22 81.08 88.28 
Finnish-FTB 95.87 0.09 92.55 95.59 
Finnish-PUD 89.09 0.23 88.52 93.32 
Finnish-TDT 95.68 0.10 93.62 96.22 
French-GSD 97.56 0.04 96.76 97.98 
French-ParTUT 95.81 0.07 93.10 96.54 
French-Sequoia 97.32 0.05 96.27 98.13 
French-Spoken 97.17 0.06 97.25 97.31 
Galician-CTG 97.00 0.04 97.94 97.73 
Galician-TreeGal 94.05 0.08 92.74 95.58 
German-GSD 97.11 0.06 86.05 93.73 
Gothic-PROIEL 96.62 0.09 82.33 91.77 
Greek-GDT 95.98 0.08 93.24 97.26 
Hebrew-HTB 96.83 0.06 95.84 97.22 
Hindi-HDTB 96.40 0.04 91.05 96.65 
Hungarian-Szeged 95.19 0.09 88.11 94.63 
Indonesian-GSD 99.50 0.01 90.17 93.15 
Irish-IDT 91.24 0.20 82.40 88.35 
Italian-ISDT 96.82 0.07 96.81 98.05 
Italian-ParTUT 96.34 0.09 96.08 97.59 
Italian-PoSTWITA 95.26 0.11 95.12 96.33 

 

Treebanks 
lemma 
acc. 

lemma 
Leven. 

morph 
acc. 

morph 
F1 

Italian-PUD 94.14 0.13 93.32 96.40 
Japanese-GSD 98.13 0.02 97.74 97.46 
Japanese-Modern 96.94 0.04 96.74 96.74 
Japanese-PUD 97.46 0.03 97.88 97.65 
Komi_Zyrian-IKDP 80.47 0.30 53.12 42.98 
Komi_Zyrian-Lattice 84.07 0.38 57.14 65.07 
Korean-GSD 93.19 0.12 95.87 95.25 
Korean-Kaist 95.57 0.07 96.71 96.30 
Korean-PUD 97.96 0.04 91.02 93.99 
Kurmanji-MG 91.40 0.17 79.48 87.13 
Latin-ITTB 97.44 0.06 93.32 96.62 
Latin-Perseus 91.16 0.19 78.68 88.54 
Latin-PROIEL 96.51 0.08 87.99 95.16 
Latvian-LVTB 95.77 0.07 91.60 95.10 
Lithuanian-HSE 86.42 0.30 56.03 57.49 
Marathi-UFAL 74.25 0.65 47.43 59.40 
Naija-NSC 99.93 0.00 94.94 93.17 
North_Sami-Giella 91.96 0.16 87.04 91.90 
Norwegian-Bokmaal 97.83 0.03 95.81 97.40 
Norwegian-Nynorsk 97.74 0.04 94.87 96.60 
N.NynorskLIA 97.51 0.04 93.03 94.29 
OCS-PROIEL 96.51 0.08 83.44 91.82 
Persian-Seraji 96.27 0.17 97.06 97.70 
Polish-LFG 95.66 0.08 92.19 96.23 
Polish-SZ 94.99 0.09 89.17 94.58 
Portuguese-Bosque 95.13 0.08 93.39 96.48 
Portuguese-GSD 87.82 0.25 96.91 97.14 
Rom.-Nonstandard 93.40 0.14 91.91 95.60 
Romanian-RRT 95.53 0.09 96.85 97.99 
Russian-GSD 95.89 0.07 88.91 94.20 
Russian-PUD 90.72 0.16 79.88 90.15 
Russian-SynTagRus 96.97 0.06 93.28 96.46 
Russian-Taiga 89.86 0.22 76.53 84.11 
Sanskrit-UFAL 61.81 0.92 33.17 46.19 
Serbian-SET 96.42 0.07 91.76 95.34 
Slovak-SNK 96.24 0.07 89.24 94.68 
Slovenian-SSJ 96.38 0.06 91.56 95.27 
Slovenian-SST 93.79 0.13 83.44 90.24 
Spanish-AnCora 97.69 0.04 96.64 97.98 
Spanish-GSD 98.31 0.03 93.97 96.78 
Swedish-LinES 95.37 0.08 92.57 96.24 
Swedish-PUD 91.65 0.12 92.66 95.43 
Swedish-Talbanken 96.56 0.05 96.66 98.16 
Tagalog-TRG 83.78 0.54 72.97 79.70 
Tamil-TTB 91.52 0.23 79.13 88.48 
Turkish-IMST 96.34 0.07 87.37 91.37 
Turkish-PUD 85.13 0.37 81.89 89.47 
Ukrainian-IU 95.42 0.09 88.70 94.23 
Upper_Sorbian-UFAL 90.66 0.14 66.95 76.85 
Urdu-UDTB 94.25 0.08 79.06 92.21 
Vietnamese-VTB 99.93 0.00 91.79 90.69 
Yoruba-YTB 98.84 0.01 91.47 92.05 
Mean 94.07 0.12 88.09 91.84 
Median 95.87 0.08 91.76 95.16 
Mean – baseline by 
the task organizers 94.17 0.13 72.18 86.25 
Median – baseline 
by the task 
organizers 95.92 0.08 76.40 89.45 

 

Table 2: Test set scores 
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study was not performed due to time constraints, 
an experiment for MSD tagging without lemma 
on English-PUD and Korean-Kaist treebanks 
were performed. On both datasets, a decrease in 
accuracy was observed. For English-PUD’s 
morph accuracy and F1 scores decreased by 1.18 
and 0.43 percentage points, while Korean-Kaist’s 
respective scores decreased by 7.50 and 8.41 
percentage points. We conjecture that the larger 
decrease in Korean is due to its higher 
morphological complexity than English; a lemma 
itself is more important to find MSD tags for 
morphological rich languages.  

In general, as more training data were 
available, higher scores were obtained in absolute 
terms. As an example, for Russian, among four 
available datasets (Russian-GSD, Russian-PUD, 
Russian-SynTagRus, and Russian-Taiga) Russian-
SynTagRus was the largest, and its accuracy was 
best by all four metrics used.  

Some languages have more MSD tags than 
others and therefore present another dimension for 
the task complexity. For instance, Czech-PDT 
treebank has 2895 unique MSD tags while 
English-EWT has only 179, i.e. 16 times less. 
This, therefore, partly affects the accuracy of the 
MSD tagger, where Czech-PDT treebank’s 
morphological accuracy is 89.88% while English-
EWT’s is 95.82%.  

While there is a lot of variance in the number 
of MSD tags among languages, most of the 
languages have around twenty to sixty characters 
in their alphabet. Hence, the number of characters 
in the alphabet does not seem to affect 
lemmatization. At the same time, Chinese uses 
distinct characters for each word and does not 
have word inflections. Despite having 3536 
unique characters, Chinese-GSD treebank’s 
lemma accuracy is 99.98%. It also has only 40 
MSD tags due to the absence of inflections.  

Overall, lemmatization appears to be a slightly 
easier task than MSD tagging, and in our case, 
incorporating lemma information in MSD tagging 
yielded more accurate results for the latter. 

 

5 Conclusion 

Our pipeline model has shown favorable results 
in SIGMORPHON Shared Task 2 and scored fifth 
and sixth place, respectively, for lemmatization 
and MSD tagging. For future work, it would be 
interesting to assess how incorporating the output 

of MSD tagging into lemmatization would affect 
lemma accuracy.  

 

Acknowledgments 
This research was supported by the Basic 

Science Research Program through the National 
Research Foundation of Korea (NRF) funded by 
the Ministry of Education (grant number: 
2017R1D1A3B03035676). 

References  
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua 

Bengio.  2015. Neural machine translation by 
jointly learning to align and translate. In 3rd 
International Conference on Learning 
Representations, ICLR 2015, San Diego, CA, 
USA. 

Piotr Bojanowski, Edouard Grave, Armand Joulin, 
and Tomas Mikolov. 2017. Enriching word vectors 
with subword information. Transactions of the 
Association for Computational Linguistics, 5:135–
146 

Kris Cao and Marek Rei. A joint model for word 
embedding and word morphology. 2016. In 
Proceedings of the 1st Workshop on 
Representation Learning for NLP, pages 18–26, 
Berlin, Germany. Association for Computational 
Linguistics. 

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng, 
and Ting Liu. Towards better UD parsing:  Deep 
contextualized word embeddings, ensemble, and 
treebank concatenation. 2018. In Proceedings of 
the CoNLL 2018 Shared Task: Multilingual 
Parsing from Raw Text to Universal Dependencies, 
pages 55–64, Brussels, Belgium. Association for 
Computational Linguistics. 

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 
Kristina Toutanova. 2018. BERT: pre-training of 
deep bidirectional transformers for language 
understanding. CoRR, abs/1810.04805. 

Timothy Dozat, Peng Qi, and Christopher D. 
Manning. Stanford’s graph-based neural de-
pendency parser at the CoNLL 2017 shared task. 
2017. In Proceedings of the CoNLL 2017 Shared 
Task: Multilingual Parsing from Raw Text to 
Universal Dependencies, pages 20–30, Vancouver, 
Canada. Association for Computational 
Linguistics. 

Sergey Edunov, Myle Ott, Michael Auli, and David 
Grangier. 2018. Understanding back-translation at 
scale. In Proceedings of the 2018 Conference on 
Empirical Methods in Natural Language 



24

 
 

Processing, pages 489–500, Brussels, Belgium. 
Association for Computational Linguistics. 

Sepp Hochreiter and Jurgen Schmidhuber. 1997.  
Long short-term memory. Neural 
Comput.,9(8):1735–1780. 

Nivre Joakim, Agić Željko, Ahrenberg Lars, et al., 
2017a, Universal Dependencies 2.0, 
LINDAT/CLARIN digital library at the Institute of 
Formal and Applied Linguistics (ÚFAL), Faculty 
of Mathematics and Physics, Charles University, 
http://hdl.handle.net/11234/1-1983. 

Nivre Joakim, Agić Željko, Ahrenberg Lars, et al., 
2017b, Universal Dependencies 2.0 – CoNLL 2017 
Shared Task Development and Test Data, 
LINDAT/CLARIN digital library at the Institute of 
Formal and Applied Linguistics (ÚFAL), Faculty 
of Mathematics and Physics, Charles University, 
http://hdl.handle.net/11234/1-2184. 

Eliyahu Kiperwasser and Yoav Goldberg. 2016. 
Simple and accurate dependency parsing using 
bidirectional LSTM feature representations. 
Transactions of the Association for Computational 
Linguistics, 4:313–327. 

Xiaodong Liu, Pengcheng He, Weizhu Chen, and 
Jianfeng Gao. 2019. Multi-task deep neural 
networks for natural language understanding. 
CoRR, abs/1901.11504. 

Chaitanya Malaviya, Shijie Wu, and Ryan Cotterell.  
2019. A simple joint model for improved 
contextual neural lemmatization. arXiv preprint 
arXiv:1904.02306v2. 

Arya D. McCarthy, Ekaterina Vylomova, Shijie Wu, 
Chaitanya Malaviya, Lawrence Wolf-Sonkin, 
Garrett Nicolai, Christo Kirov, Miikka Silfverberg, 
Sebastian Mielke, Jeffrey Heinz, Ryan Cotterell, 
and Mans Hulden. 2019. The SIGMORPHON 
2019 shared task: Crosslinguality and context in 
morphology. In Proceedings of the 16th 
SIGMORPHON Workshop on Computational 
Research in Phonetics, Phonology, and 
Morphology, Florence, Italy. Association for 
Computational Linguistics. 

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey 
Dean. 2013. Efficient estimation of word 
representations in vector space. CoRR, 
abs/1301.3781. 

Diederik P. Kingma and Jimmy Ba. 2015.  Adam:  A 
method for stochastic optimization.  In 3rd 
International Conference on Learning 
Representations, ICLR 2015, San Diego, CA, 
USA. 

Sebastian Ruder, Ivan Vulic, and Anders Sogaard. 
2017. A survey of cross-lingual word embedding 
models. cite arxiv:1706.04902. 

Nitish Shirish Keskar, Bryan McCann, Caiming 
Xiong, and Richard Socher. 2019. Unifying 
question answering and text classification via span 
extraction. CoRR, abs/1904.09286. 

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz 
Kaiser, and Illia Polosukhin. 2017. Attention is all 
you need. In Advances in Neural Information 
Processing Systems 30, pages 5998–6008. Curran 
Associates, Inc. 

Alex Wang, Amanpreet Singh, Julian Michael, Felix 
Hill, Omer Levy, and Samuel Bowman. GLUE: A 
multi-task benchmark and analysis platform for 
natural language understanding. 2018. In 
Proceedings of the 2018 EMNLP Workshop 
Blackbox NLP: Analyzing and Interpreting Neural 
Networks for NLP, pages 353–355, Brussels, 
Belgium. Association for Computational 
Linguistics. 

Felix Wu, Angela Fan, Alexei Baevski, Yann 
Dauphin, and Michael Auli. 2019. Pay less 
attention with lightweight and dynamic 
convolutions.  In International Conference on 
Learning Representations. 

Daniel Zeman, Jan Hajic, Martin Popel, Martin 
Potthast, Milan Straka, Filip Ginter, Joakim Nivre,  
and  Slav  Petrov. 2018. CoNLL  2018 shared task:  
Multilingual parsing from raw text to universal 
dependencies. In Proceedings of the CoNLL 2018 
Shared Task: Multilingual Parsing from Raw Text 
to Universal Dependencies, pages 1–21, Brussels, 
Belgium, Association for Computational 
Linguistics. 

 

http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-2184

	1 Introduction
	2 Task and Dataset
	3 Model
	3.1  Lemmatizer
	3.2 MSD tagger

	4 Results
	5 Conclusion
	Acknowledgments
	References

