
Proceedings of the Workshop on Deep Learning and Formal Languages: Building Bridges, pages 14–23
Florence, Italy, August, 2nd 2019. c©2019 Association for Computational Linguistics

14

Grammatical Sequence Prediction for
Real-Time Neural Semantic Parsing

Chunyang Xiao
Bloomberg

London
United Kingdom

cxiao35@bloomberg.net

Christoph Teichmann
Bloomberg

London
United Kingdom

cteichmann1@bloomberg.net

Konstantine Arkoudas
Bloomberg
New York

USA
karkoudas@bloomberg.net

Abstract

While sequence-to-sequence (seq2seq) mod-
els achieve state-of-the-art performance in
many natural language processing tasks, they
can be too slow for real-time applications.
One performance bottleneck is predicting the
most likely next token over a large vocabulary;
methods to circumvent this bottleneck are a
current research topic. We focus specifically
on using seq2seq models for semantic parsing,
where we observe that grammars often exist
which specify valid formal representations of
utterance semantics. By developing a generic
approach for restricting the predictions of a
seq2seq model to grammatically permissible
continuations, we arrive at a widely applica-
ble technique for speeding up semantic pars-
ing. The technique leads to a 74% speed-up
on an in-house dataset with a large vocabulary,
compared to the same neural model without
grammatical restrictions.

1 Introduction

Executable semantic parsing is the task of map-
ping an utterance to a logical form (LF) that can
be executed against a data store (such as a SQL
database or a knowledge graph), or interpreted by
a computer program in some other way.1 Vari-
ous authors have tackled this task via sequence-
to-sequence (seq2seq) models, which have already
led to substantial advances in machine transla-
tion. These models learn to directly map the in-
put utterance into a linearised representation of
the corresponding LF, predicting it token by to-
ken. Seq2seq approaches have yielded state-of-
the-art accuracy on both classic (e.g., Geoquery
(Zelle and Mooney, 1996) and Atis (Dahl et al.,
1994)) and more recent semantic parsing datasets
(e.g., WebQuestions, WikiSQL and Spider) (Liang

1From here on we will refer to executable semantic pars-
ing simply as semantic parsing.

et al., 2017; Dong and Lapata, 2016, 2018; Yin and
Neubig, 2018; Yu et al., 2018). The recent datasets
are of much larger scale, which not only enables
the use of more data-hungry models, such as deep
neural networks, but also provides more complex
challenges for semantic parsing.

The material presented in this paper was mo-
tivated by a question-answering dataset for eq-
uity search in a financial data and analytics sys-
tem. We will refer to this dataset as “the EQS
dataset” going forward (and we will refer to “eq-
uity search” as EQS for short). The queries in the
dataset pertain to equity stocks; they are usually
of the form Show me companies that satisfy such-
and-such criteria, or What are the top 10 compa-
nies that · · ·?, and so on. The dataset pairs such
queries with logical forms that capture their se-
mantics. These logical forms are designed to be
readily translatable into an executable query lan-
guage in order to retrieve the corresponding an-
swers from a data store in the back end. Questions
can involve a large number of diverse search cri-
teria, such as price, earnings per share, country of
domicile, membership in indices, trading in spe-
cific exchanges, etc., applied to a large set of equi-
ties for which the system offers information.

The large number of search criteria and entities
is reflected in the LFs, leading to a problem com-
mon with newer, more complex semantic-parsing
datasets: having to deal with a large LF vocabulary
size. In the EQS dataset the LF vocabulary has a
size that exceeds 50,000. Since seq2seq models
apply some operation over the whole vocabulary
– usually the softmax operation – when deciding
what symbol to output next, large LF vocabularies
can slow them down considerably. For example,
we observe in our EQS experiments with seq2seq
models that it takes on average between 250 and
300 milliseconds to parse a query, which is too
slow for one single component in a larger, real-
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time question-answering pipeline. This is consis-
tent with observations made previously in the neu-
ral language modelling literature; see for example
Bengio et al. (2003); Mikolov et al. (2010), where
the authors show that when the vocabulary size ex-
ceeds a certain threshold, the softmax calculation
becomes the computational bottleneck.

Our proposal for tackling this bottleneck is
based on the fact that there generally exist gram-
mars, which we call LF grammars, specifying
the concrete syntax of valid logical forms (LFs).
This is usually the case because LFs need to be
machine-readable. We further note that, for a
given LF prefix, one can usually use the LF gram-
mar to look up the next grammatically permissible
tokens (i.e., tokens that are part of a grammatically
valid completion of the prefix). For example, if
the language of valid LFs can be expressed by a
context-free grammar (CFG), as is almost always
the case, then look-ups could be performed with an
online version of the Earley parser (Earley, 1970).
If it is possible to efficiently look up the permissi-
ble next tokens for a given prefix, then restricting
the softmax operation to those permissible tokens
should improve efficiency, and because only non-
permissible tokens are ruled out, this will only ever
prevent the system from producing invalid LFs.

If the number of grammatically permissible
tokens at some prediction step is substantially
smaller than the LF’s vocabulary size, the inte-
gration of the LF grammar may reduce prediction
time for that step significantly. In semantic parsing
problems a grammar can naturally lead to predic-
tion steps with few choices. To see why this might
be the case, consider our LFs in Figure 1, which
involve atomic constraints of the form:

(field operator value).

While there are many grammatically permissi-
ble choices for field and value, the choices for
operator are rather limited.2 LFs for many appli-
cations will contain “structural” elements with a
limited number of choices in grammatically pre-
dictable positions, and we can use grammars to
exploit this fact.

In order to make the computation of permissible
next tokens efficient, we propose to use a finite-
state automaton (FSA) approximation of the LF
grammar. Finite-state automata can capture local

2Equality, less than and so on.

Query: return on capital sp500
LF: (AND

(FLD INDEX EQ enumValue(IDX SP500))

(display FLD RETURN ON CAP))

Query: steel western europe not german
LF: (AND

(NOT (FLD DOMICILE EQ enumValue(COU GERMANY)))

(FLD DOMICILE EQ enumValue(COU WESTERN EUROPE))

(FLD EQS SECTOR EQ enumValue(SEC GICS STEEL)))

Figure 1: Two (query, LF) pairs in the EQS dataset.

relations that are often quite predictive of the ad-
missible tokens in a given context, and can there-
fore lead to considerable speed improvements for
our setting, even if we use an approximate gram-
mar. Moreover, approximations can be designed
in such a way that a FSA accepts a superset of the
actual LF language, preserving the guarantee that
only ill-formed LFs will ever be ruled out.

In this paper we therefore work with a grammar
for which the next permissible tokens can be com-
puted efficiently, and show how such a grammar
can be combined with a seq2seq model in order to
substantially improve the efficiency of inference.
While we focus on using FSAs to restrict a re-
current neural network with attention in the EQS
dataset, our approach is generic and could be used
to speed up any sequential prediction model with
any grammar that allows for efficient computation
of next-token sets. Our experiments show that in
our domain of interest we obtain a reduction in
parsing time by up to 74%.

2 Logical Forms and their Grammar

2.1 Equity search

The domain of interest is that of equity search,
or EQS for short, in which queries are intended
to screen for companies3 that satisfy certain crite-
ria, such as being domiciled in a certain country
or region (such as France or North America), be-
ing in a certain sector (such as the automobile or
technology sectors), being members of a certain
index (such as the S&P 500), being traded in cer-
tain exchanges (such as the London or Oslo stock
exchanges), or their fundamental financial indica-
tors (such as market capitalization or earnings per
share) satisfying certain simple numeric criteria.

3Or more precisely, for tradeable equity tickers such as
IBM or FB.
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Some sample queries:

• What are the top five Asian tech companies?

• Show me all auto firms traded in Nysex whose
market cap last quarter was over $1 billion

• Top 10 European non-German tech firms
sorted by p/b ratio

Queries may also be expressed in much more tele-
graphic style, e.g., the second query could also be
phrased as auto nysex last quarter mcap > $1bn.
The two queries in Figure 1 are additional exam-
ples of tersely formulated queries, the first one
asking to display the return-on-capital for all com-
panies in the S&P 500 index, and the second one
asking for all Western European companies in the
steel sector except for German companies.

The LF language we use was designed to ex-
press the search intent of a query in a clear and
non-ambiguous way. In the following section we
describe the abstract grammar and concrete syn-
tax of a subset of this LF (we cannot treat every
construct due to space limitations).

2.2 LF Abstract Grammar and Concrete
Syntax

As with many formal logical languages, the ab-
stract grammar of our LF naturally falls into two
classes: atomic LFs corresponding to individual
logical or operational constraints; and complex
LFs that contain other LFs as proper parts. The
former constitute the basis case of the inductive
definition of the LF grammar, while the latter cor-
respond to the recursive clauses.

Relational Atomic Constraints The main
atomic constraints of interest in this domain are
relational, of the form

(field(t) op value)

where typically field is either a numeric field (such
as price); or a so-called “enum field,” that is, an
enumerated type. An example here would be a
field such as a credit rating (say, long-term Fitch
ratings), which has a a finite number of values
(such as B+, AAA, etc.); or country of domicile,
which also has a a finite number of values (algeria,
belgium, and so on); or an index field, whose val-
ues are the major stock indices (such as the S&P
500). The value is a numeric value if the corre-
sponding field is numeric, though it may be a com-
plex numeric value, e.g., one that has currencies

or denominations attached to it (such as “5 bil-
lion dollars”). The operator op is either equality
(EQ), inequality (NEQ), less-than (LS), greater-
than (GR), less-than-or-equal (LE), etc.4 Note that
all fields, both numeric and enum, are indexed
by a time expression t, representing the value of
that field at that particular time. For example, the
atomic constraint

(price(June 23, 2018) = $100)

states that the (closing) price on June 23, 2018 was
100 USD. We drop the time t when it is either im-
material or the respective field is not time sensi-
tive. We omit the specification of the grammar
and semantics of time expressions, since we will
not be using times in what follows in order to sim-
plify the discussion.

Display Atomic Constraints Some of our
atomic constraints are operational in the sense
that they represent directives about what fields to
display as the query result, possibly along with
auxiliary presentation information such as sort-
ing order. For instance, for the query Show
me the market caps and revenues of asian tech
firms, two of the resulting constraints would be the
display directives (display FLD MKT CAP) and
(display FLD SALES REV TURN).

Complex Constraints Complex constraints are
boolean combinations of other constraints, ob-
tained by applying one of the operations NOT,
OR, AND, resulting in recursively built constraints
of the form (NOT c), (AND c1 c2 · · · cn), and
(OR c1 c2).5

3 Encoding LF grammar in FSAs

For efficient incremental parsing and computation
of the next permissible tokens, we encode our
grammar using finite state automata (FSAs). As
FSAs can only produce regular languages that are
strictly less expressive than context free languages
such as the one recognized by our LF grammar,
our strategy is to use automata to build a super-
set for our LF language. Some of the automata

4If the field is an enum, then comparison operators such
as GR or LE make sense only if the field is ordered. Credit
ratings are naturally ordered, but countries, for example,
are not. Nevertheless, the syntax of constraints allows for
(france GE 2); such a constraint is weeded out by type
judgments, not by the LF grammar.

5We model the OR operation as binary operation and the
AND operation as n-ary to make them close to the natural
language syntax we observe in the dataset.
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Figure 2: Some automata involved in building the supersert of the LF grammar.

involved in building this superset are shown in
Figure 2. Note that, while we defined our FSA
approximation manually, there exist general tech-
niques to construct an automaton whose language
is a superset of a CFG’s language for any given
CFG (Nederhof, 2000). This means that the ap-
proach could easily be used for any LF language
that can be described by a CFG.

For all automata, we take the start states to be
0 and indicate the final states with double circles.
The “|” stands for the union operation over au-
tomata. On each arc, we either specify as labels
LF tokens that the FSA can consume in order to
transition to its next state(s); or else we specify
a previously defined machine (automaton) noted
with “M :machine name”6 where the source state
of the arc coincides with the start state of the au-
tomaton and its target state coincides with the final
state(s) of the automaton.7

Relational Atomic Constraint machines The
automaton RCM (“Relational Constraint Ma-
chine”) in the top part of Figure 2 gener-
ates relational atomic constraints of the form

6In that case the “arc” is just a concise representation of
the entire automaton that goes by machine name.

7In the case of multiple final states, one simply replicates
the target state to coincide with each of the final states.

(field op value); the FPNM ( floating point num-
ber machine) is an automaton recognizing re-
stricted floating point numbers. Note that some
extra-syntactic information about fields is explic-
itly built into the machine. For example, if a con-
straint begins with an unordered enum field that
only admits equality, such as FLD DOMICILE,
then the operator (on the arc from state 2 to state
3) is always EQ, whereas if the field is ordered (as
all numeric fields are, and some enum fields such
as ratings), then any operator may follow (such as
LE, GR, etc.). The automaton constrains what fol-
lows a num field in a similar fashion.

Complex Constraint machines Unlike their
atomic counterparts, logically complex constraints
can be arbitrarily nested, thereby forming a non-
regular context-free language that cannot be char-
acterized by FSAs. We get around this limita-
tion by constructing FSAs for such complex con-
straints that accept a regular language forming a
superset of the proper context-free LF language.
The automaton “OR Machine” in Figure 2 illus-
trates such a construction. This machine recog-
nizes LFs of the form (OR RCM RCM) along the
topmost horizontal path of the automaton (state se-
quence 0-1-2-3-4-5). But if one or two of these re-
lational constraints are replaced by logically com-
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plex constraints, the automaton can recognize the
result by taking one or two of the vertical paths
(state sequences 2-6-7 and 3-8-9, respectively).
These paths can also accept strings that are not
syntactically valid LFs. However, we are only us-
ing these automata to restrict the softmax applica-
tion to a subset of the LF vocabulary, and for that
purpose these automata are conservative approxi-
mations. An alternative approach would be to use
FSAs for logically complex constraints that essen-
tially unroll nested applications of logical opera-
tors up to some fixed depth k, e.g., say k = 2 or 3,
as logically complex constraints with more than 3
nested logical operations are exceedingly uncom-
mon, though possible in principle. But the present
approach is simple and already leads to consider-
able reductions in the number of permissible to-
kens at each prediction step, thereby significantly
accelerating our neural semantic parser.

The final automaton representing the entire LF
language, which we write as MLF, is the union of
atomic machines such as RCM with three “approx-
imation” machines for the three logical operators
(negation, conjunction and disjunction).

4 Combining Grammar and Neural
Model

4.1 Grammatical continuations by Automata

We now show how to use the automaton MLF that
represents the LF grammar in order to (a) com-
pute the set of valid next tokens, and (b) update
the current prefix by appending an RNN-predicted
token. We present very simple algorithms for both
operations, nextTokens and passToken, which can
be used with any grammar that is represented as a
DFA.8

nextTokens: This function returns a list of the
permissible next tokens based on the current au-
tomaton state, which corresponds to the current LF
prefix (note that because the grammar is a DFA,
there is a unique resulting state for any prefix ac-
cepted by the automaton). The function simply
enumerates all the outgoing arcs from the current
state and returns the corresponding labels in a list.
This function is called before the token prediction
model (RNN + softmax), so that its result can be

8For convenience, of course, the grammar could be rep-
resented by non-deterministic automata (NFAs). The algo-
rithms we present here would still be applicable via a simple
preprocessing step that would convert the NFAs to DFAs us-
ing standard algorithms for that purpose (Rabin and Scott,
1959).

used to restrict the application of softmax; the ac-
tual integration model is discussed in detail in sub-
section 4.2.

passToken: For any model that predicts the out-
put in an incremental and sequential manner (e.g.,
RNN), we want to compute the DFA state cor-
responding to a partial output in a similar and
lock-step fashion, so that computations in previous
steps do not need to be repeated. We achieve this
by maintaining a global state, called current state,
which is the state reached after reading the prefix
that has been produced by the neural model up to
this point. To update the global state, the function
passToken is called, which simply searches for the
arc (‘the’ again due to the DFA property) that has
the currently predicted token as a label, and then
transitions to the next state via that arc. Once this
is done, the new global state will represent all the
predictions made so far.

Time Efficiency Concerns The functions next-
Tokens and passToken need to be called on every
step of the output’s generation, and therefore need
to be efficient, so that the reduction of prediction
space for the token-prediction model (e.g., RNN +
softmax) can lead to runtime gains. In our case,
nextTokens returns the labels of all outgoing arcs
and passToken performs a simple label search in
addition to carrying out a state transition. All of
these operations can be performed with O(1) time
complexity.

4.2 Integrating Grammar into Neural
Models

After calculating the permissible next tokens, we
can restrict predictions in order to improve both
prediction time and accuracy. We apply this
general strategy to the prediction layer of our
RNN-based neural network (a linear layer + soft-
max operation, which can be seen as a log-linear
model (Dymetman and Xiao, 2016)), although
it should be applicable to other prediction mod-
els, such as multi-class SVMs (Duan and Keerthi,
2005) or random forests (Ho, 1995).

Figure 3 illustrates a concrete example of inte-
grating the grammar (represented as an automaton
in our case) into the token prediction model at a
particular prediction step. We focus on the predic-
tion layer of the model, which consists of one lin-
ear layer followed by the softmax operation. The
linear layer involves a matrix of size |V |×d, where
V is the LF vocabulary and d is the dimension of
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Figure 3: Integrating grammatical continuations into a log-linear model at one prediction step; rows selected by
nextTokens are shadowed in blue.

the vector passed from the previous layer; the lin-
ear layer predicts scores for each of the V tokens
before they are passed to softmax operation.

To integrate the grammar, first, the function
nextTokens is called to return a list of tokens al-
lowed by the grammar at this prediction step; the
valid tokens are then translated into a list of in-
dices, denoted by lc, which is passed to the log-
linear model. Supposing there are k indices in the
list lc, we can dynamically construct another ma-
trix of size k × d where the ith row in the new
matrix corresponds to the j th row in the original
matrix, for j = lc[i]. Figure 3 illustrates this pro-
cess of choosing rows from the original matrix to
construct the new matrix.

Then the new matrix-vector product will result
in scores only for those k LF tokens that are per-
missible, and will then be passed to the softmax
operation. The decision function (e.g., argmax in
Figure 3) will then be applied based on the soft-
max score, whose results will finally be passed
to passToken function to update the current DFA
state.

Time Efficiency Concerns

We implement nextTokens to directly return a list
of indices to avoid the cost of converting tokens
to indices. We implemented our token prediction
model in PyTorch, which supports slicing oper-
ations so that our on-the-fly matrix construction
does not need to copy the original matrix data, but
can instead just point to it. However, we find in
our experiments that even matrix construction us-
ing slicing tends to be costly (see section 5).

To overcome this, we observe that we can enu-
merate the lists returned by nextTokens for every
DFA state, and then cache the corresponding ma-
trices. For example, consider RCM (the Relational
Constraint Machine) in 2. We can cache the value

of nextTokens for state 1 by precomputing the ma-
trix corresponding to all the enum/num fields. Do-
ing this caching for every DFA state can be ex-
pensive in memory; in practice, one may consider
tradeoffs between memory consumption and pre-
diction time.

5 Model and Experiments

5.1 EQS Dataset

Our experiments are conducted on the EQS
dataset. The dataset consists of queries paired
with their LFs, which were obtained in a semi-
automated manner. The dataset contains 1981
(NL, LF) pairs as training data and 331 (NL, LF)
pairs as test data. The LF vocabulary size is 56209,
most of which consists of enum field names and
values. All the LFs can be accepted by the FSA
discussed in Section 3.

The dataset is too small to effectively learn a
model that can reliably predict rare fields or val-
ues. However, as most of the queries involve only
common fields and entities, we find in our exper-
iments that our neural semantic parser is able to
parse a large number of those queries correctly;
orthogonal research is being conducted on how to
handle more rare fields or entities.

5.2 Baseline Neural Model

We use a seq2seq neural architecture as our base-
line. For our encoder, we initialize the word em-
beddings using Glove vectors (Pennington et al.,
2014); then a Bi-LSTM is run over the question
where the last output is used to represent the mean-
ing of the question. For the decoder, we again use
an LSTM that runs over LF prefixes, where the
LF token embeddings are learned during training.
Our decoder is equipped with an attention mecha-
nism (Luong et al., 2015) used to attend over the
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output of the Bi-LSTM encoder. We use greedy
decoding to predict the LFs.

We choose hyperparameters based on our pre-
vious experience with this dataset. The word and
LF token embeddings have 150 dimensions. The
Bi-LSTM encoder is of dimension 150 for its hid-
den vector in each direction, therefore the decod-
ing LSTM is of dimension 300 for its hidden vec-
tor. We train the model with RMSprop (Tieleman
and Hinton, 2012) for 50 epochs.

Our baseline neural model achieves 80.33% ac-
curacy on the test set. Most of the errors made
by our model are due to unseen fields or values;
we observe that our model also fails on queries
involving compositionality patterns that have not
been seen in training, a problem similar to those
reported by (Lake and Baroni, 2018).

5.3 Experimental Setups
All our experiments were conducted on a server
with 40 Intel Xeon@3.00GHz CPUs and 380 GB
of RAM. We monitor the server state closely while
conducting the experiments.

Our models are implemented in Py-
Torch (Paszke et al., 2017), which is able to
exploit the server’s multi-core architecture. The
peak usage for both CPU load and memory
consumption for all our models is far below the
server’s capacity.

We run all the models over the entire test dataset
(331 sentences) and report the average prediction
time for each sentence. For each model, we con-
duct 5 such runs to calculate the standard devia-
tions of different runs. The standard deviations are
small in absolute and relative value.

5.4 Results
Integrating the LF grammar into prediction at de-
coding time eliminates all grammatical errors and
can therefore improve accuracy. This has been
shown, for example, by Xiao et al. (2016); Yin
and Neubig (2018), and indeed we obtain simi-
lar accuracy improvements. By incorporating the
grammar at decoding time at all decoding steps
(using its superset represented as an automaton),
our parser is able to eliminate some grammatical
errors, achieving 80.67% accuracy on the test set,
which improves our baseline model by 0.30%.

Table 1 shows the main results of our experi-
ments. Our baseline neural semantic parser (NSP)
takes on average 0.260 seconds to predict the LF
for a given query. When we use the model that

Model Avg. time Avg. tokens
NSP 0.260 ±0.002 56209

NSP-G(500) 0.079± 0.000 9643
NSP-G(104) 0.252± 0.000 6981
NSP-G(all) 4.416± 0.029 6336

NSP-GC(500) 0.074± 0.000 9643
NSP-GC(104) 0.069± 0.000 6981
NSP-GC(all) 0.067± 0.000 6336

Table 1: Prediction time (in seconds) and number of
permissible tokens per query on average, for our base-
line neural semantic parser (NSP) and various models
using grammar integration with caching (NSP-GC) or
without (NSP-G).

integrates the LF grammar but constructs the re-
duced matrices on the fly (GSP-G), we find that
despite the reduction of average permissible to-
kens (from 56209 to 6336), the prediction time ac-
tually increases drastically to 4.416 seconds.

To shed some light on this, we integrate the
grammatically permissible next tokens only when
their number is (a) less than 500 and (b) less than
104. We observe that when the number of per-
missible next tokens is small, as in case (a), inte-
grating the grammar can indeed reduce prediction
time, indicating that the slowing is due to the dy-
namic matrix construction that uses the PyTorch
slicing operation, as nextTokens and passToken are
called at every prediction step in all cases.

To avoid this, we cache the reduced matrices
(subsection 4.2, NSP-GC in Table 1) and ob-
serve that prediction time decreases in this case
when more grammar integration is applied. The
best prediction time (0.067 second per query) is
achieved by NSP-GC when the grammar is used at
every step. But similar speed-ups can be achieved
when we are using cached matrices only for states
with a small nextTokens set.

6 Related Work

Speeding up neural models that have a softmax
bottleneck is an ongoing research problem in NLP.
In machine translation, some approaches tackle
the problem by moving from the prediction of
word-level units to sub-word units (Sennrich et al.,
2016) or characters (Chung et al., 2016). This ap-
proach can reduce the dimensionality of the soft-
max significantly, at the price of increasing the
number of output steps and thus requiring the
model to learn more long-distance dependencies
between its outputs. The technique could easily
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be combined with the one described here; the only
adaptation required would be to change the gram-
mar so that it uses smaller units to define its lan-
guage. In a finite-state context, this would mean
replacing transitions corresponding to a single LF
token with a sequence of transitions that construct
the token from characters. This creates potential
for memory savings as well, if states in these ex-
panded transitions can be shared in a trie structure.

Another approach for ameliorating a softmax
bottleneck is the use of a hierarchical softmax
(Morin and Bengio, 2005), which is based on or-
ganizing all possible output values into a hierarchy
or tree of clusters. A token to be emitted is chosen
by starting at the root cluster and then picking a
child cluster until a leaf is reached. A token in this
leaf cluster is then selected. Our approach could
be combined with the hierarchical softmax method
by creating a specific version of the cluster hierar-
chy to be associated with every state. We would
filter all impossible tokens for a state from the leaf
clusters and then prune away empty clusters in a
bottom-up fashion to obtain a specific cluster.

While they have not been used in order to speed
up predictions, grammars describing possible out-
put structures have been combined with neural
models in a number of recent papers on seman-
tic parsing (Yin and Neubig, 2017, 2018; Krish-
namurthy et al., 2017; Xiao et al., 2016, 2017).
These papers use grammars to guide the training
of the neural network model and to restrict the de-
cisions the model can make at training and predic-
tion time in order to obtain more accurate results
with less data. Our approach is focused on speed
improvements and does not require any changes to
the underlying model or training protocols.

Like our approach, the one presented by
L’Hostis et al. (2016) for machine translation tries
to limit the decoding vocabulary. Their approach
relies on limiting the tokens allowed during de-
coding to those that co-occurred frequently with
the tokens in the input. Because this might rule
out tokens that are needed to construct the cor-
rect output, this may decrease model performance.
Our approach is guaranteed to never rule out cor-
rect outputs. For additional performance gains it
should be possible to combine both approaches.

7 Future Work

We have used superset approximations based on
finite-state automata instead of directly using the

grammar of the LF language, which will usu-
ally be context-free. This choice is driven by the
need for an efficient implementation of passTo-
ken and nextTokens, which could be expensive for
longer sequences when using a general context-
free grammar. However, for those context-free
grammars that are LR (Knuth, 1965), recognition
can be performed in linear time, and it is easy to
see that both passToken and nextTokens can then
be implemented with O(1) time complexity on av-
erage. Furthermore, the caching mechanism we
have proposed for nextTokens in this work is ap-
plicable in the case of LR grammars. Therefore, it
would be possible to implement the methods pro-
posed here for any LR grammar, and such gram-
mars cover most LF languages in practical use.9

For most LF languages there will be restrictions
on the logical types of expressions that can occur
in certain positions. We can detect some of these
restrictions in our finite-state automata, but in gen-
eral a type system could capture well-formedness
conditions that cannot be easily expressed with
FSAs, or even in context-free grammars. It would
be interesting to investigate how more expressive
type checking can be integrated into our present
framework in a more general setting.

8 Conclusion

We propose a method to improve the time effi-
ciency of seq2seq models for semantic parsing us-
ing a large vocabulary. We show that one can
leverage a finite-state approximation to the LF lan-
guage in order to speed up neural parsing signifi-
cantly. Given a context-free grammar for the LF
language, our strategy is general and can be ap-
plied to any model that predicts the output in a se-
quential manner.

In the future we will explore alternatives to
finite-state automata, which potentially character-
ize the relevant LF languages exactly while still
allowing for efficient computation of admissible
next tokens. We also plan to experiment with ad-
ditional datasets.
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