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Abstract

Understanding procedural text requires track-
ing entities, actions and effects as the narra-
tive unfolds. We focus on the challenging real-
world problem of action-graph extraction from
materials science papers, where language is
highly specialized and data annotation is ex-
pensive and scarce. We propose a novel ap-
proach, TEXT2QUEST, where procedural text
is interpreted as instructions for an interactive
game. A learning agent completes the game
by executing the procedure correctly in a text-
based simulated lab environment. The frame-
work can complement existing approaches and
enables richer forms of learning compared to
static texts. We discuss potential limitations
and advantages of the approach, and release a
prototype proof-of-concept, hoping to encour-
age research in this direction.

1 Introduction

Materials science literature includes a vast amount
of synthesis procedures described in natural lan-
guage. The ability to automatically parse these
texts into a structured form could allow for data-
driven synthesis planning, a key enabler in the de-
sign and discovery of novel materials (Kim et al.,
2018; Mysore et al., 2017). A particularly useful
parsing is action graph extraction, which maps
a passage describing a procedure to a symbolic
action-graph representation of the core entities, op-
erations and their accompanying arguments, as they
unfold throughout the text (Fig. 1).

Procedural text understanding is a highly chal-
lenging task for today’s learning algorithms (Lucy
and Gauthier, 2017; Levy et al., 2017). Synthesis
procedures are especially challenging, as they are
written in difficult and highly technical language
assuming prior knowledge. Some texts are long,

∗Work was begun while author was an intern at RIKEN
and continued at the Hebrew University.

many follow a non-linear narrative, or include logi-
cal quantifiers (“all synthesis steps were performed
in an argon atmosphere...”). Furthermore, anno-
tated data is scarce and expensive to obtain.

Two related research areas are grounded
semantic parsing and state-tracking reading-
comprehension. Grounded (or executable) seman-
tic parsers map natural language to a symbolic
representation which can also be thought of as a
sequence of instructions in some pre-defined pro-
gramming language. Such “neural-programing” ar-
chitectures offer strong symbolic reasoning capabil-
ities, compositionality modelling, and strong gen-
eralization (Reed and de Freitas, 2015), but are typ-
ically applied to simple texts due to prohibitive an-
notation costs (Liang et al., 2016). State-tracking
models (Bosselut et al., 2018; Das et al., 2018;
Bansal et al., 2017) can model complex relations
between entities as they unfold, with easier training
but less symbolic reasoning abilities. Their appli-
cability to longer texts is hindered as well by the
lack of fine-grained annotated data.

In this work we describe an approach,
TEXT2QUEST, that attempts to combine the
strengths of both methods. Instead of trying to
learn from static text, we propose to treat proce-
dural text as instructions for an interactive game
(or “quest”). The learning agent interacts with en-
tities defined in the text by executing symbolic
actions (Fig. 2). A text-based symbolic interpreter
handles execution and tracking of the agent’s state
and actions. The game is completed by “simulating”
the instructions correctly; i.e., mapping instructions
to a sequence of actions. Correct simulation thus
directly yields the desired action graph.

While there is some engineering overhead re-
quired for the simulator, we demonstrate that it
is relatively straightforward to convert an annota-
tion schema to a text-based game. We believe that
the benefits make it worth pursuing: the game for-
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Figure 1: Sample surface text (left) and possible corresponding action-graph (right) for typical partial material
synthesis procedure. Operation numbers in parentheses are added for clarity. Nodes are entities, edges are relations
linking them, equivalent to actions in the text-based game.

mat allows applying powerful neural programming
methods, with a significantly richer training envi-
ronment, including advances such as curriculum
learning, common-sense and domain-specific con-
straints, and full state tracking. Such “friendly”
environments that assist the learning agent have
been shown to be valuable (Liang et al., 2016) and
enable learning of patterns that are often hard to
learn from surface annotations alone, such as im-
plicit effects of operations (i.e., filtering a mixture
splits it into two entities).

Interestingly, understanding by simulation aligns
well with models of human cognition; mental sim-
ulation, the ability to construct and manipulate an
internal world model, is a cornerstone of human
intelligence involved in many unique behaviors,
including language comprehension (Marblestone
et al., 2016; Hamrick, 2019). In this work we take
first steps towards this idea. Our contributions are:
• We propose a novel formulation of the prob-

lem of procedural text understanding as a text-
based game, enabling the use of neural pro-
gramming and text-based reinforcement learn-
ing (RL) methods.
• We present and release TEXTLABS1, an in-

stance of TEXT2QUEST designed for interac-
tion with synthesis procedure texts. We fo-
cus on the material-science setting, but the
approach is intended to be more generally ap-
plicable.
• We propose to address the problem of obtain-

ing full-graph annotations at scale by cou-
pling the simulator with controllable natural
language generation (NLG) to generate syn-
thetic data, also enabling curriculum learning.

1Code and experiments available at https://github.
com/ronentk/TextLabs

Figure 2: Excerpt from an actual “material synthe-
sis quest” generated by our system with example in-
put/outputs.

While this work is preliminary in nature, neural
programming and text-based reinforcement learn-
ing approaches are attracting significant and grow-
ing interest, and we expect advances in these areas
to directly benefit future versions of the system.

2 Related Work

Procedure understanding: Many recent works
have focused on tracking entities and relations in
long texts, such as cooking recipes and scientific
processes (Bosselut et al., 2018; Das et al., 2018).
However, these methods do not directly extract a
full action graph. For action graph extraction, ear-
lier works use sequence tagging methods (Mysore
et al., 2017). Feng et al. (2018) have applied deep-
RL to the problem of extracting action sequences,
but assume explicit procedural instruction texts. In
Johnson (2017), a graph is constructed from simple
generated stories, using state tracking at each time
step as supervision.

Semantic parsing & Neural Programming:
Research to-date has focused mainly on shorter

https://github.com/ronentk/TextLabs
https://github.com/ronentk/TextLabs
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and simpler texts which may require complex sym-
bolic reasoning, such as mapping natural language
to queries over knowledge graphs (Liang et al.,
2016). In the case of narrative parsing, the text
itself may be complex while the programs are rel-
atively simple (creating and linking between enti-
ties present in the text). Recent work (Lu et al.,
2018) frames narrative understanding as neural-
programming, the learner converts a document into
a structured form, using a predefined set of data-
structures. This approach is similar to ours, though
with simpler texts and without a simulated environ-
ment. In our approach, the learning architecture is
decoupled from the symbolic interpreter environ-
ment, enabling greater architectural flexibility.

Text-RL: Text-based games are used to study
language grounding and understanding and RL for
combinatorical action spaces (Zahavy et al., 2018;
Narasimhan, 2017) but have not yet been applied
to real world problems. TextWorld (Côté et al.,
2018) is a recently released reinforcement learning
sandbox environment for creation of custom text-
based games, upon which we base TEXTLABS.

3 Problem Formulation

Entities, Relations & Rules (E ,R,Λ): Assume
two vocabularies defining types of entities E =
{e1, ..., eN} and relations R = {r1, ..., rK}. A
fact f is a grounded predicate of the form f =
r (h, t) , h, t ∈ E , r ∈ R (single or double argu-
ment predicate relations are allowed). We define
the set of valid world-states S, where a state s ∈ S
is a set of facts, and validity is decided by a world-
model Λ defined using linear logic. Λ is comprised
of production rules (or transition rules) over enti-
ties and relations governing which new facts can
be produced from a given state. Following the
schema used in the Synthesis Project2 (see for ex-
ample MSP), entity types include materials, opera-
tions, and relevant descriptors (like operation condi-
tions, etc.). Relations link between entities (like in-
put(material,operation) or denote single predicate
relations (entity properties such as solid(material)).
We currently use a simplified version of the schema
to ease the learning problem. See appendix A.1
for a mapping of relations and entities. Pro-
duction rules correspond to the actions available
to the learner, in our domain these include for
example link-descriptor(descriptor,entity), input-
assign(material, operation). While not currently

2https://www.synthesisproject.org/

included, actions such as co-reference linking and
generation of entities can also be incorporated.

Action-Graph (K): An action sequence is de-
fined to be a sequence of valid actions (or produc-
tion rules) rooted at some initial state s0: K =
(s0, λ0, λ1, ..., λn) (applying λi to si results in
si+1, intermediate states are left out for brevity).
Note that actions may apply to implicit entities
not present in the surface text (for example, the
result of an operation). Construction of an action
graph corresponding to K is straightforward (en-
tities as nodes, actions connecting them as edges),
and henceforth we use K to denote either the se-
quence or the graph. Note that there can be multiple
possible action sequences resulting in the same ac-
tion graph, equivalent w.r.t the topological ordering
of operations induced by their dependencies.

Surface (X): A surface is simply a text in natu-
ral language describing a process.

Learning Task: Our objective is to learn a map-
ping Ψ : X → K. As this mapping may be highly
complex, we convert the problem to a structured
prediction setting. As an intermediate step we map
an input X to an enriched text-based-game G
representation (details below), where the solution
of G is the required action graph K. The game is
modelled as a partially observable Markov Deci-
sion Process (POMDP) G = (S,A, T,Ω, O,R, γ).

We refer the reader to Côté et al. (2018) for a
detailed exposition, and focus here on mapping
the game-setting to our approach: S are states,
A are actions, T are conditional state transition
probabilities, where all are constant per domain
and defined by E ,R,Λ. Ω are observations, and
O are conditional observations probabilities. R :
S×A→ R is the reward function, γ ∈ [0, 1] is the
discount factor. As γ,Ω, O are also preset (with
actual observations dependent on agent actions),
mapping a surface X to game G boils down to
providing a list of entities for initializing s0. For
training and evaluation, a reward function must also
be provided (not necessary for applying a trained
model on un-annotated text “in the wild”).

If a fully annotated action graph is available
(whether synthetic or real), this mapping is simple:
the initial game state s0 is a room where the agent
is placed alongside all entities. Each edge corre-
sponds to an action in the game. Given an action
sequence K, a reward function R can be automat-
ically computed, giving intermediate rewards and
penalizing wrong actions. A quest in TextWorld
can be defined via a final goal state, thus allowing

https://www.synthesisproject.org/
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Figure 3: Proposed solution architecture of
TEXT2QUEST. (i) Flow for training agent on games
from real annotated data. (ii) Flow for training agent
on synthetic games. (iii) Extracting action graph from
un-annotated real data.

multiple possible winning action sequences. See
appendices A.2, A.3 for examples.

For data “in the wild”, entities can be identi-
fied using named entity recognition (NER) as pre-
processing. Future directions include end-to-end
learning to reduce cascading initialization errors.

By default, the TextWorld environment is par-
tially observable. The agent observes the surface
X at time t = 0 and other textual descriptions
upon executing an “examine” action. Unlike clas-
sic text-based games where partial observability is
part of the challenge, in our case we can adopt the
“friendly-environment” perspective and assist the
learner with information such as state-tracking or
action pruning (Liang et al., 2016; Johnson, 2017).

4 Proposed Solution Architecture

Our system consists of 6 core modules (Fig. 3): a
Knowledge Base defines entity, relation and action
vocabularies. This is used by the Surface Genera-
tor and Quest Generator modules to generate pairs
(X̃, K̃) of synthetic surfaces and their correspond-
ing action graphs for training. For un-annotated
text, a pre-trained domain specific NER tagger3

is used to extract an initial game state s0 by iden-
tifying the mentioned entities. A learning agent
extracts K from a generated game.

The TEXT2QUEST architecture supports three
central modes of operation: (i) Enrich existing real
world annotated pairs (X,K) by converting them

3For the materials synthesis domain we use the tagger
available at https://github.com/olivettigroup/
materials-synthesis-generative-models

to game instances for training the game-solving
agent. (ii) Produce synthetic training pairs (X̃, K̃).
(iii) Convert un-annotated texts to game instances
for action graph extraction “in the wild”.

The current version of TEXTLABS supports
mode (ii). We implemented simple prototypes of
the domain-specific Knowledge Base, plus Quest
and Surface Generators. See Sec. A.1 for details
about converting the entity and relation annotation
schema into TextWorld. TextWorld is easily ex-
tensible and can support a variety of interaction
semantics. Aside from adding a domain specific
entity type-tree and actions, most of the underlying
logic engine and interface is handled automatically.
For the game environment, we use Inform7, a pro-
gramming language and interpreter for text-based
games. For quest generation, we currently use sim-
ple forward chaining and heuristic search strategies
to create plausible quests (for example, all start
materials must be incorporated into the synthesis
route). Combining these with a simple rule-based
Surface Generator already allows for creating sim-
ple synthetic training game instances (Fig. 2).

5 Preliminary Evaluation

As a very preliminary sanity check for the TEXT-
LABS environment, we train a simple text-based
RL agent on synthetic games in increasingly dif-
ficult environments. Difficulty is measured by
maximum quest length, and the number of en-
tities in the target action graph. See Sec. A.2
for representative examples. We use the basic
LSTM-DQN agent of Narasimhan (2017) adapted
to the TEXTLABS setting. The action space is
A = {Wv ×Wo1 ×Wo2}, where Wv consists of
8 action-verbs corresponding to the entity relations
tracked and additional native TextWorld actions
like take (see Sec. A.1 for details). Wo1 ,Wo2 are
(identical) sets of potential arguments correspond-
ing to the active entities which can be interacted
with in the game (single and double argument ac-
tions allowed). As this basic agent is not condi-
tioned on previous actions, we further concatenate
the last four commands taken to the current obser-
vation. For the same reason, we also append the
full quest instructions at every timestep’s observa-
tion. All illegal actions are pruned at each state to
reduce search space size.

We train the agent on 100 games per level and
test on 10 games. Evaluation is measured by avg.
normalized reward per game: 1

|K|
∑T

t=1 ri, where
K is the true action sequence, T is the episode

https://github.com/olivettigroup/materials-synthesis-generative-models
https://github.com/olivettigroup/materials-synthesis-generative-models
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Figure 4: Preliminary evaluation results for a basic
LSTM-DQN text-RL agent on synthetic quests. Dot-
ted line shows average generated quest lengths.

length (set to 50) and ri = 1 for each action in K
and−1 for otherwise (and 0 for neutral actions like
examine). A normalized score of 1 means the agent
performed the required actions exactly.

As can be seen in Fig. 4, the agent learns to suc-
cessfully perform the required actions only for the
easiest levels. Examining longer games the agent
did not complete, we note that the lack of condi-
tioning on previous states is a serious limitation.
Equipping agents with better sequence encoding
(e.g., attention), recurrent memory, and utilizing
state information is expected to significantly im-
prove performance. Furthermore, due to technical
limitations of the current implementation, some
actions cannot be reversed. This adds to the diffi-
culty of the task, and will be addressed in future
versions. Finally, learning good initial policies for
semantic parsers is known to be a hard problem
with RL alone, and related approaches commonly
use hybrid RL/supervised training methods (Liang
et al., 2016; Jiang et al., 2012).

6 Discussion

Our approach faces tough challenges. However, we
are encouraged by the significant recent advances
towards these challenges in related areas, and plan
to leverage this progress for our framework.

Programming semantics and rewards for
instruction-following agents is known to be no-
toriously difficult (Winograd, 1972) as language
and environments grow increasingly complex. Re-
search on learned instruction-conditional re-
ward models (Bahdanau et al., 2018) is a promis-
ing approach towards reducing the amount of “en-
vironment engineering” required.

Another critical open question in our framework
is whether the surface generator will be able to
generate surfaces representative enough to allow
for generalization to real examples. Current NLG
systems are increasingly capable of structured text
generation (Marcheggiani and Perez, 2018), and
though they produce relatively short surfaces, we
believe that coupling them with the generated ac-
tion graphs is a promising approach to scaling
up to longer sequences while maintaining coher-
ence. Such systems can use sentence-level se-
mantic parses as training data, meaning they can
leverage existing weakly-supervised shallow pars-
ing techniques. Encouraging for our modelling
paradigm, recent work (Peng et al., 2018) extend-
ing the Dyna-Q (DQ) framework (Sutton, 1990)
demonstrates a real-world application of structured
NLG with a simulated RL training environment.

Given sufficient text generation capabilities, one
may question the added utility of the game en-
vironment (as opposed to learning a direct map-
ping X → K). Recent research suggests that
for stronger generalization, data alone may not
be enough, and symbolic reasoning capabilities
are necessary (Khashabi et al., 2018; Yi et al.,
2018). Given the compositional complexity and
difficulty of the language involved, we believe they
will prove necessary in our setting as well.

7 Conclusions

There is a growing need for combining neuro-
symbolic reasoning with advanced language repre-
sentation methods. In the case of procedural text
understanding, key obstacles are suitable training
environments, as well as the lack of fully annotated
action graphs. Motivated by this, we proposed
TEXT2QUEST, an approach intended to enhance
learning by turning raw text inputs into a struc-
tured text-based game environment, as well as aug-
menting data with synthetic fully annotated action
graphs. To encourage further research in this direc-
tion, we publicly release TEXTLABS, an instance
of TEXT2QUEST for the materials synthesis task.
We implemented prototype modules for basic game
generation and solving. Future work will focus on
designing learning agents to solve the games, as
well as improving text generation capabilities. We
hope that the proposed approach will lead to devel-
oping useful systems for action graph extraction as
well as other language understanding tasks.
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A Appendices

A.1 Entity & Relation Types
We have claimed that converting an annotation
schema to a game for TEXTLABS was relatively
straightforward. In this section, we provide de-
tails of the mapping between the Synthesis Project
annotation schema of (denoted with “SP” in the
tables) to the TEXTLABS implementation (denoted
“TL”). A mapping between the central entity types
is presented in Figure 5, as well as the TEXTLABS

actions and representative corresponding relations
in the schema. All current TEXTLABS entities and
actions are shown here, though not all of the orig-
inal entities and relations are listed. For the full
mapping, refer to the project source repository.

A.2 Synthetic Action-Graphs
Figure 6 displays sample representative generated
quests for the various difficulty levels evaluated in
Sec. 5, demonstrating the controllable complexity.
As can be seen by comparison with the real text in
Fig. 7 (which is only one sentence), these graphs
correspond to short real-world surfaces, where even
the hardest could by covered by a 2-3 sentence-long
procedure.

A.3 Action-Graphs from Real Annotated
Graphs

We now provide further details on how the origi-
nal Synthesis Project (SP) annotated graphs can be
converted to a TEXTLABS action graph K. There
are some minor differences between the formats,
primarily in the handling of the SP “next-operation”
relation. Rather than use a “next-operation” re-
lation, we currently opt to explicitly model in-
puts/outputs to operations, as can be seen in Fig.
7. This is a natural abstraction away from the sur-
face text enabled by the grounded environment,
and helps in tracking which materials participated
in each operation, which is useful information for
later analysis. Also, as noted, we currently use a
simplified mapping (for example, many descriptor
annotations such “Amount-Unit”, “Property-Misc”,
etc. are chunked together as generic descriptors).
In Fig. 7 we show K both in action graph and ac-
tion sequence form to demonstrate the equivalence.
Also, we note that the “next-operation” annotations
in MSP are currently just placeholders and not the
true labels. For the purpose of demonstration, in
Fig. 7 we manually add the correct annotation to
our example (center and bottom).
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Entity Type (SP) Entity Type (TL) Notes
Material Material
Number Descriptor
Operation Operation
Amount-Unit Descriptor
Condition-Unit Operation-Descriptor
Material-Descriptor Material-Descriptor
Condition-Misc Operation-Descriptor
Synthesis-Apparatus Synthesis-Apparatus
Nonrecipe-Material Null Currently ignored, not part of synthesis
Brand Descriptor
Apparatus-Descriptor Synthesis-Apparatus-Descriptor
- Mixture Internal entity, represents a mixture

Relation Type (SP) Action (TL)
Participant-Material input-assign
Apparatus-of locate
Recipe-Target obtain
Descriptor-of link-descriptor
- run-op Internal, used for simulating actions
- take/drop/examine Native TextWorld actions on entities

Figure 5: Central entity/relation types from the Synthesis Project schema (“SP”), and the corresponding TEXT-
LABS version (“TL”).



70

Figure 6: Sample representative generated quests for various difficulty levels (listed in parentheses by each graph).
Each edge corresponds to an action in the text-based game.
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Figure 7: Comparisons of the equivalent action graph representations. Top: Action graph section from Synthesis
Project (MSP). Center: TEXTLABS, showing same section with K in graph form. Dashed borders indicate
operation result entities which may be implicit in the text. Bottom: TEXTLABS with same K as list of actions
from initial state s0.


