
Proceedings of the IWCS 2019 Workshop on Computing Semantics with Types, Frames and Related Structures, pages 55–64
Gothenburg, Sweden, May 24, 2019. c©2019 Association for Computational Linguistics

55

ImageTTR: Grounding Type Theory with Records in Image
Classification for Visual Question Answering

Arild Matsson
Språkbanken, Department of Swedish

University of Gothenburg
arild.matsson@gu.se

Simon Dobnik Staffan Larsson
CLASP and FLoV

University of Gothenburg
simon.dobnik@gu.se

sl@ling.gu.se

Abstract
We present ImageTTR, an extension to the Python implementation of Type Theory with Records

(pyTTR) which connects formal record type representation with image classifiers implemented as
deep neural networks. The Type Theory with Records framework serves as a knowledge representa-
tion system for natural language the representations of which are grounded in perceptual information
of neural networks. We demonstrate the benefits of this symbolic and data-driven hybrid approach
on the task of visual question answering.

1 Introduction

A situated artificial conversational agent must be able to interact with its environment through perception
and action, as well as with other agents through language. The key challenge for building situated
agents is how to represent and reason with both linguistic and non-linguistic information in some formal
system that can be modelled on a computer (the question of information fusion). This is challenging
because linguistic and perceptual domains are not of the same kind. Perceptional information is typically
represented by abundance of sensory readings that are typically represented as real numbers. On the
other hand, language is a symbolic system. The two domains are typically bridged through classification
(Harnad, 1990).

Several approaches have dealt with information fusion by combining machine learning classification
with some kind of formal representation (Kruijff et al., 2006, 2007; Roy, 2005). Recently, using deep
learning architectures such associations are learned automatically (Xu et al., 2015; Lu et al., 2016). While
they are highly effective, they are not interpretable and directly portable to domains where one would
like to combine them with logic-like formal representations.

Among formal representations, first-order logic (FOL) have long been of choice, but it has its lim-
itations. A recent contribution that combines several branches in formal systems is Type Theory with
Records (TTR) (Cooper, 2005b, fthc).

The goal of this paper is a model, which is formulated in TTR and connects machine-learning clas-
sification of perceptual information on one hand with language on the other, as well as an executable
implementation of this model. TTR is expected to represent semantics of perceptual and linguistic con-
tent in a single framework. The connection is realised in a visual question answering (VQA) application,
where questions are interpreted in the context of an image.

2 Background

2.1 Type Theory with Records (TTR)

Type Theory with Records (TTR) is a formal semantic framework that represents the semantics of lan-
guage, action and perception (Cooper, fthc). The types in type theory are employed to represent words

56

and semantic units within a sentence or discourse (Cooper, 2005b). A brief introduction to TTR is given
in this section. For further reference, see Cooper (2005a) and Cooper (2012).

To begin with, a : T is the judgement that a is of type T . Some basic types in TTR are Ind , the type
of an individual, and Int , the type of integers.

Given that T1 and T2 are types, T1 → T2 is a functional type whose domain is objects of type T1 and
whose range is objects of type T2.

Next, we introduce records and record types. If a1 : T1, a2 : T2(a1), . . . , an : Tn(a1, a2, . . . , an−1),
where T (a1, . . . , an) represents a type T which depends on the objects a1, . . . , an, the record to the
left in Equation 1 is of the record type to the right. In Equation 1, `1, . . . , `n are labels which can be
used elsewhere to refer to the values associated with them. A sample record and record type is shown
in Equation 2. If r is a record and ` is a label in r, we can use a path r.` to refer to the value of ` in r.
Similarly, if T is a record type and ` is a label in T , T .` refers to the type of ` in T . Records (and record
types) can be nested, so that the value of a label is itself a record (or record type).

r =

`1 = a1
`2 = a2
. . .
`n = an
. . .

 :

`1 : T1

`2 : T2(`1)
. . .
`n : Tn(`1, `2, . . . , `n−1)

 (1)

 ref = obj123
cman = prf(man(obj123))
crun = prf(run(obj123))

 :

 ref : Ind
cman : man(ref)
crun : run(ref)

 (2)

As can be seen in Equation 2, types can be constructed from predicates, e.g., “run” or “man”. Such
types are called ptypes and correspond roughly to predicate formulas in first order logic. Ptypes may be
dependent, which is represented by the fact that arguments to the predicate may be represented by labels
used elsewhere. In Equation 2, the type of cman is dependent on ref (as is the type of crun).

A fundamental type-theoretical intuition is that something of a ptype P (a1, . . . , an) is whatever it
is that counts as a proof of P (a1, . . . , an). One way of putting this is that “propositions are types of
proofs”. In Equation 2, we simply use prf(P) as a placeholder for proofs of P ; below, we will show how
perceptual input can be included in proofs1.

A singleton type Ta is a subtype of T restricted so that only a can be a witness of it. In a record type,
a singleton-typed field can be written as a manifest field:

[
x : Ta

]
=

[
x = a : T

]
Types are sorted into orders, where types of one order may be witnesses of a type in a higher order.

Typen, n > 0 is the type of all types of order n − 1. In this paper, most types will be of order 0, so we
will skip the order superscript and use Type to denote Type1. Similar to Type , RecType is the type of
all record types and PType is the type of all ptypes.

The re-labelling η of a record type T is a set of tuples where the first element is a label in T and the
second is another, new label. Tη is the record type which has the same fields as T but where the first item
in each element of η has been replaced with the second item. Thus, if T =

[
x : T ′

]
and η = [〈x, y〉],

then Tη =
[

y : T ′
]
.

A list of objects of type T is a witness of the list type list(T): If L is a list and ∀a ∈ L, a : T , then
L : list(T). In this paper, the list containing a, b and c will be written as [a, b, c].

2.2 Visual Question Answering (VQA)

Antol et al. (2017) suggest visual question answering (VQA) as a challenge for multi-modal semantic
systems. A VQA system is presented an image and a natural-language question about the image, and is
expected to produce a natural-language answer. The initiative includes datasets and a series of annual
competitions since 2016.

1Note that TTR is not proof-theoretic like may other type theories. TTR proofs are more like witnesses in situation semantics
(Barwise and Perry, 1983) or the proof objects in intuitionistic type theory (Martin-Löf and Sambin, 1984).

57

This task has been defined within the deep learning approach to vision and language. However, a
purely end-to-end approach faces challenges like opacity and ignorance of developed models of per-
ception. We choose a hybrid approach to VQA and provide a proof of concept of its strengths in this
domain.

Many VQA problems are formulated with open-domain questions. In this paper, however, we are
limited to polar (yes/no) questions, because those are, arguably, the easiest to model and answer.

It is important to note that the presented model is not an attempt at scoring high in the VQA task. A
comparison to dedicated VQA models would place this model low in most aspects: limitations in lan-
guage domain and syntax, and computation speed, just to name a couple. Rather, this is an exploration
of a multimodal representation model (or paradigm), with VQA used as an evaluation context. Ad-
vantages of the model include modularity, transparency and reversibility, as provided by the underlying
formal-semantic framework.

2.3 Tools

PyTTR (Cooper, 2017) is a Python implementation of TTR. It supports the modelling of TTR types
and operations such as judgement and type checking. As a Python library it also enables other features
and peripheral procedures to be written in Python. PyTTR allows, in turn, the implementation of TTR
models. By implementing a theoretical model as a computer program, it can “come alive” and be tested
on real problems and data. When implemented, the model can be evaluated in practical settings.

You Only Look Once (YOLO) (Redmon et al., 2016) is a neural network model for image recognition.
Given an image, it will detect objects and classify them. Each detection consists of a bounding box in
pixel coordinates, a class label and a confidence score. YOLO is written in C, using the Darknet neural
network library (Redmon, 2013). It can be used in Python with the Darkflow library (Trieu, 2018).
Development within this thesis has been using the YOLOv2 configuration (Redmon, 2018) trained on
the COCO dataset (Lin et al., 2014).

Natural Language Toolkit (NLTK) (Bird et al., 2009) is a Python library facilitating various natu-
ral language processing operations. It features a semantically augmented context-free grammar (CFG)
framework which enables parsing language into first-order logic (FOL) formulas.

3 A grounded PyTTR

The Python implementation of the model described here is published as a Jupyter notebook file at
https://github.com/arildm/imagettr/releases/tag/1.1 under the open-source MIT
license. This section contains references to numbered cells of the notebook file.

3.1 Object detection

The perception of objects in this model is largely based on (Dobnik and Cooper, 2017, Section 5.1). The
name and definitions of some of the types have been slightly modified here, for better alignment with the
names used in the implementation within this project.

Let the world be of some type World , and any portion of the world of some type Segment . These
types are left undefined for now, as they differ significantly between (Dobnik and Cooper, 2017) and
this project. An object detector function fobjdetector : ObjDetector (Equation 3) maps the world to a
collection of perceptual objects of the type Obj (Equation 4). A perceptual object contains a segment
of the world as well as a field of the type Ppty (Equation 5). A Ppty function can be applied to an
individual and return a type, for example λv : Ind . kite(v) : Ppty . The type PType is defined as the
type of all ptypes (Definition 1).

Definition 1 For any ptype T = pred(v1, ..., vn), T v PType .

https://github.com/arildm/imagettr/releases/tag/1.1

58

ObjDetector = (World → list(Obj)) (3)

Obj =

[
seg : Segment

pfun : Ppty

]
(4)

Ppty = (Ind → PType) (5)

The perceptual object is evidence that a certain segment of the perceptual input is associated with
a certain property (such as being a kite). Going further, an individuation function findfun : IndFun
(Equation 6) generates an individuated object from each perceptual object. The individuated object is
a record type and a subtype of IndObj (Equation 7). Here, the ‘x’ field refers to a specific individual
which was only implied by the existence of the perceptual object. The ‘cl’ field specifies that the position
of ‘x’ is the content of the field ‘loc’, which has the same type as ‘seg’ in Obj . Through the ‘cp’ field,
the property can be explicitly associated with the individual.

IndFun = (Obj → RecType) (6) IndObj =

x : Ind

loc : Segment
cp : PType
cl : location(x, loc)

 (7)

Note that the step from the perceptual to the conceptual domain is made by generating a record type
(not a record), namely the type of situations where a certain individual is at a certain location.

3.1.1 Model

This section applies the theory outlined above to the case at hand. The main difference against (Dobnik
and Cooper, 2017) is that the world is now an image (Equation 8), rather than a 3D point space. A
Segment (Equation 9) is now defined as a record type describing a rectangular bounding box within an
image. Its fields contain the centre coordinates of the box (‘cx’ and ‘cy’) and the width (‘w’) and height
(‘h’) of the box.

World = Image (8) Segment =

cx : Int
cy : Int
w : Int
h : Int

 (9)

The object detection function is a Python function which takes an image as input and invokes YOLO
(the implementation of this procedure is in the notebook cells 11, 12 and 14). The return value from
YOLO is a collection of dictionary objects, which are converted to perceptual objects of the type Obj
which are the output of the object detection function (cell 14, see example in Equation 11).

The individuation function findfun is defined in Equation 10 (cell 15). Here, the ‘x’ field is specified
as a newly instantiated Ind object an, and ‘loc’ is specified as the perceptual object’s ‘seg’. The type of
the ‘cp’ field applies the perceptual object’s ‘pfun’ to ‘x’. An example output from the function is shown
in Equation 12.

findfun = λr : Obj .

x = an : Ind

cp : r.pfun(x)
cl : location(x, loc)

loc = r.seg : Segment

 (10)

 seg =

cx = 102
cy = 156
w = 204
h = 84

pfun = λv : Ind . kite(v)

 : Obj (11)

x = a0 : Ind
cp : kite(x)
cl : location(x, loc)

loc =

cx = 102
cy = 156
w = 204
h = 84

 : Segment

v IndObj

(12)

59

3.2 Spatial relations

(Dobnik and Cooper, 2013, Section 3) provides a TTR model of the classification of spatial relations
between a located object, a reference object and a viewpoint. The classifier for a given spatial relation
may be equal to a geometric classifier κ or this can be combined with functional classifiers to encompass
functional aspects of objects on spatial relations (Coventry et al., 2001).

In this project, spatial relation classification is less sophisticated, ignoring the viewpoint as well as
the functional aspects of a spatial relation. The reference frame is implicit in the frame of an image,
rather than given by a viewpoint object.

A tuple-like record of the type LocTup (Equation 13) groups a located object ‘lo’ and a reference
object ‘refo’. A classifier of the type RelClf (Equation 14) takes a LocTup record and returns a new
record type which describes the relation.

LocTup =

[
lo : IndObj

refo : IndObj

]
(13) RelClf = (LocTup → RecType) (14)

A pattern for a RelClf classifier is given in Equation 15, where rel is to be replaced with a predicate
and κrel with a boolean classifier.

λr : LocTup .

 x : r.lo.x

y : r.refo.x
cr : rel(x, y)

 , if κrel(r.lo.loc, r.refo.loc)

[], otherwise

(15)

The boolean classifiers are implemented as Python functions, one for each of the relations ‘left’,
‘right’, ‘above’ and ‘below’. Each returns true or false after comparing the ‘cx’ or ‘cy’ fields of the two
Segment inputs, i.e. the centre points of the bounding boxes of the objects.

The whole procedure described in this section is implemented in notebook cell 16.

3.3 Beliefs

The set of individuated objects and the set of relation classification results form a set of beliefs. They
contain information that the agent has grounded about its perceptual environment. Each of these types
is a situation held to be true, by virtue of resulting from perception mechanisms. The belief types are
combined into one scene record type S which describes the full scene.

3.3.1 Combining situation types

In TTR literature, the combination of multiple record types into one typically follows one of two methods.
The first method uses the merge operation ∧· or the asymmetric merge operation ∧· . The reliance
on field labels in the (asymmetric) merge operation is a problem in this case, where labels have been
automatically generated and sometimes clash. Another method is iteratively nesting one record type as a
field of the next, and then flattening the result to avoid the nesting. This method avoids label clashes.

However, a third method is used in this project for the purpose of computational speed (cell 18).
Each belief record type is re-labelled to only have unique labels, and they are then merged. The resulting
type is essentially the same as in the case when nesting and flattening.

3.3.2 De-duplication

Among the belief record types, the same individuals occur more than once. For instance, one belief may
hold that a1 is a kite and another that a1 is above some other individual. Both beliefs will have a field
like xi = a1 : Ind , with different labels xi but the same specification to a1. De-duplicating these is
necessary for the subtype check that will follow. This process involves first finding which fields have the
same type as another field. Subsequently, simply removing duplicates is not an option, as there may be
other fields that depend on the duplicate field. These dependent fields must also first be updated to use
the remaining field. This algorithm is implemented in cell 7.

60

3.4 Parsing user questions

The VQA setting requires the model to understand not only the visual input, but also a natural language
question. Parsing natural language is a complex task, ambiguity in syntax as well as semantics being one
significant source of difficulties. Within this project, this task has been drastically reduced by focusing
on a tiny language domain, with only a handful grammatical constructions and a small, customised
vocabulary.

Theoretical formulations of syntactic parsing to TTR have been given in Cooper (2005a,b, 2012,
fthc). Applying them in this project is however considered out of scope. Instead, we make use of parsing
tools from NLTK (Bird et al., 2009), as follows (cell 20).

A small context-free grammar (CFG) is composed and used to parse natural language into a rep-
resentation of first-order logic (FOL). The parsing process is visualised in Figure 1. The FOL is then
“translated” into a TTR representation by traversing the FOL expression tree and gradually building a
TTR record type, according to the following rules: For an Exists expression, an Ind field is added to the
type. For an Application expression, a ptype field is added, copying the predicate and variable names.
An And expression simply triggers recursion into each of the two terms.

QS
tNP(tPP)

∃x.[kite(x) ∧ ∃y.[person(y) ∧ above(x, y)]

NP
tDet(tN)

λQ.∃x.[kite(x) ∧ Q(x)]

Det
λP.λQ.∃x.[P(x) ∧ Q(x)]

N
kite

PP
λx.tNP(λy.tPrep(x, y))

λx.∃y.[person(y) ∧ above(x, y)]

Prep
above

NP
tDet(tN)

λQ.∃y.[person(y) ∧ Q(y)]

Det
λP.λQ.∃y.[P(y) ∧ Q(y)]

N
person

is there a kite above a person

Figure 1: Syntactic-semantic parsing of an utterance into first-order logic. Each node in the tree has
a bold-faced constituent label and the FOL lambda expression associated with it. Parent constituents
additionally have a third line containing the formula resulting from substitution and β-reduction.

The question sentence in Figure 1 is now translated to the record type Q in Equation 16.

Q =

x : Ind
y : Ind

c0 : kite(x)
c1 : person(y)
c2 : above(x, y)

 (16)

3.5 Question answering

As a limitation of scope, this project focuses on polar questions. Thus, the language is first limited in
domain, to various nouns and geometric spatial relations, and then grammatically, to polar questions.

Object detection and spatial relation classification result in a collection of situation types, which are
combined to one, the scene type S (Section 3.3). Aside from that, the language parsing results in a type
representing the question Q (Section 3.4).

The scene type is considered true by virtue of being generated by mechanisms of perceptual clas-
sification. The situation described by the question type, on the other hand, will be true if there exists
a witness of that type, r : Q. It follows that the question type is true if it is a super-type of the scene
type, S v Q. Thus, rather than looking for a witness to the question type, we formulate the problem as
subtype checking, and answer the question with “yes” or “no” depending on the truth of that check.

61

An important problem, however, stems from the fact that TTR record types are labelled. In general,
fields in the scene type and question type will not share labels in a way that enables direct subtype
checking to be useful. Field labels in the scene type will generally not agree with those in the question
type. The remedy to this is an alternative subtype relation vrlb which is insensitive to label names (cell
21).

Definition 2 A record type S is a re-label-subtype of the record type Q, S vrlb Q, if there is a re-
labelling η of Q such that S v Qη.

An intuitive way to implement this would be to perform all re-labellings η from labels of Q to labels
of S and check whether the subtype relation holds. However, this approach is practically impossible,
as the number quickly grows very large. An alternative algorithm is developed for the purpose of this
project, where fast computation is enabled by making a few assumptions about the input record types2.

The algorithm handles non-dependent and dependent fields separately. First, when considering re-
labellings η of Q, only the non-dependent fields are included. This drastically limits the number of re-
labellings to try. Then, for each re-labellingQη′ being tried, the remaining, dependent fields are subtype-
checked individually, in order to avoid more re-labelling. This means checking person(x) v person(x)
(true) instead of

[
c : person(x)

]
v

[
f : person(x)

]
(false). For each dependent field in Qη′ where

there is a field in S that passes this check, the corresponding label pair is added to η′. If, for some Qη′
field, there is no matching S field, it is concluded that S ��v Qη′ , and the algorithm proceeds to the next
η.

When a re-labelling η is found which enables the subtype check for all dependent fields to pass, the
algorithm returns η, which can be interpreted as S vrlb Q being true. If all non-dependent-field re-
labellings have been evaluated without successful dependent-field subtype checks, the algorithm returns
nothing, which is interpreted as the relation not holding.

4 The agent structure

The perceptual-conceptual pieces described above are now connected in an agent record type (Equa-
tion 17 and Equation 18, cell 21) with associated manipulation algorithms (cell 25). Upon receiving an
image, it will carry out object detection, individuation and spatial relation classification, in order to form
its beliefs. It may also receive a parsed natural-language utterance, which will then be verified against
the beliefs. A construction like this provides a means to answer natural-language questions about the
image.

Agent =

objdetector : ObjDetector

indfun : IndFun
relclfs : list(RelClf)

state : AgentState

 (17) AgentState =

img : Image
perc : list(Obj)
bel : list(RecType)
utt : String

que : RecType

 (18)

The fields ‘objdetector’, ‘indfun’ and ‘relclfs’ of Agent are to be statically defined for a specific
agent. The AgentState record in ‘state’ will be modified by the agent algorithm while running. The
‘perc’ field will contain a list of perceptual objects. The ‘bel’ field will be a list of beliefs modelled as
situation types: individuated objects and spatial relations between individuals.

For an agent record ag : Agent , the perception and question-answering procedure is carried out as
follows. Visual input in the form of an image is received, and object detection returns a collection of
perceptual objects, for which individuated objects are generated and added as beliefs (Section 3.1). For
each pair of individuated objects, spatial relation classifications are generated and also added to beliefs
(Section 3.2). Natural-language input is parsed to a type representing the situation hypothesised in the

2The algorithm presupposes a certain conformity between S andQ, in that it is not aware of the equivalence between a record
type and its flattened version. For instance, it will fail to acknowledge

[
x1 :

[
x2 : T

]]
vrlb

[
x3 : T

]
. However, this

problem is not encountered in this application, due to the the way that S and Q are constructed.

62

question (Section 3.4). Finally, a re-label-subtype check is performed against the beliefs, and the answer
“Yes” or “No” is emitted (Section 3.5).

5 Discussion

Within this project, the foundations of visual question answering (VQA) have been implemented in Type
Theory with Records (TTR). The result is an executable application powered by PyTTR.

The application is a practical example that TTR can be used to connect existing vision and language
systems. TTR is the single framework that serves as a knowledge representation system that glues
together the various parts of the pipeline – perception, language and grounding – and provides reasoning
qualified for a simple VQA application.

PyTTR This is one of the few applications of the recently developed PyTTR library. A few extensions
were needed in order to realise the present project. Simple and general operations, like copying a record
type, could be implemented directly in the PyTTR library. Others, like the combination of record types
(Section 3.3.1), should remain in the project-specific source code.

Inference The use of formal frameworks for question-answering tasks, as opposed to statistical or neu-
ral methods, especially invites techniques for logical inference. Consider an image of a person wearing
glasses, and the question “Does this person have 20/20 vision?” It is reasonable to assume that a person
is wearing glasses because they do not have perfect eyesight, to which “20/20 vision” is synonymous.
Logical inference, in connection with a database of real-world knowledge encoded in TTR, could help
to achieve the synonymity as well as the relationship between eyesight and wearing glasses.

Theorem prover approach to subtype check The re-label-subtypevrlb check, currently implemented
as an iterative algorithm, could likely be made more efficient and generalised if instead cast as a problem
of theorem proving (Plaisted, 2014).

5.1 Future work

Non-polar questions Extending the language domain should be an interesting topic for further re-
search. Keeping within the problem domain of geometric spatial relations, allowing other question types
than polar questions is one direction to explore. (Dobnik, 2009, p. 156) lists four basic question types:
“Where is the chair?”, “Is the table to the left of the chair?” (this is the focus of this project), “What is to
the left of the chair?” and “What is the chair to the left of?”

Inference first The algorithm of perception performs classification of spatial relations on all pairs
of individuated objects. In other words, all of the agent’s beliefs are inferred at once. Later, when
attempting to answer the given question, the beliefs can be queried directly in the subtype check. This
means spending more effort than sometimes necessary. A more viable alternative is to first parse the
question and then perform inference as needed to arrive to an answer. If the question is about the spatial
relation between a kite and a person, it will probably be enough to find a kite and a person in the scene,
and check that the spatial relation between them matches the one expressed in the question.

Sophisticated spatial relation classification The implementation of spatial relation classification in
this project compares the horizontal or vertical coordinates of the centre points of two objects, a simpli-
fied geometric representation that does not correspond well to human judgements. A more sophisticated
geometric method is the statistical spatial templates model (Logan and Sadler, 1996). Another is the
attentional vector-sum (AVS) model, a mathematical formula which respects object shape (Regier and
Carlson, 2001).

63

References

Antol, S., A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh (2017, May). VQA:
Visual Question Answering. International Journal of Computer Vision 123(1), 4–31.

Barwise, J. and J. Perry (1983). Situations and Attitudes. The MIT Press.

Bird, S., E. Klein, and E. Loper (2009). Natural Language Processing with Python (1st ed.). O’Reilly
Media, Inc.

Cooper, R. (2005a). Austinian truth, attitudes and type theory. Research on Language and Computa-
tion 3, 333–362.

Cooper, R. (2005b, April). Records and Record Types in Semantic Theory. Journal of Logic and
Computation 15(2), 99–112.

Cooper, R. (2012). Type theory and semantics in flux. In R. Kempson, N. Asher, and T. Fernando (Eds.),
Handbook of the Philosophy of Science, Volume 14: Philosophy of Linguistics. Elsevier BV. General
editors: Dov M. Gabbay, Paul Thagard and John Woods.

Cooper, R. (2017). PyTTR. https://github.com/GU-CLASP/pyttr.

Cooper, R. (fthc). Type Theory and Language: From Perception to Linguistic Commu-
nication. Draft of book chapters available from https://sites.google.com/site/
typetheorywithrecords/drafts (accessed on 2018-01-17), University of Gothenburg.

Coventry, K., M. Prat-Sala, and L. Richards (2001, April). The Interplay between Geometry and Function
in the Comprehension of Over, Under, Above, and Below. Journal of Memory and Language 44, 376–
398.

Dobnik, S. (2009). Teaching Mobile Robots to Use Spatial Words. Ph. D. thesis, The Queen’s College,
University of Oxford.

Dobnik, S. and R. Cooper (2013, March). Spatial Descriptions in Type Theory with Records. In Pro-
ceedings of IWCS 2013 Workshop on Computational Models of Spatial Language Interpretation and
Generation (CoSLI-3), Potsdam, Germany, pp. 1–6. Association for Computational Linguistics.

Dobnik, S. and R. Cooper (2017). Interfacing Language, Spatial Perception and Cognition in Type
Theory with Records. Journal of Language Modelling 5(2), 273–301.

Harnad, S. (1990, June). The symbol grounding problem. Physica D 42(1–3), 335–346.

Kruijff, G.-J. M., J. D. Kelleher, and N. Hawes (2006). Information fusion for visual reference resolution
in dynamic situated dialogue. In E. André, L. Dybkjær, W. Minker, H. Neumann, and M. Weber
(Eds.), Perception and Interactive Technologies. International Tutorial and Research Workshop, PIT
2006 Kloster Irsee, Germany, pp. 117–128. Berlin, Heidelberg: Springer.

Kruijff, G.-J. M., H. Zender, P. Jensfelt, and H. I. Christensen (2007). Situated dialogue and spatial
organization: what, where... and why? International Journal of Advanced Robotic Systems 4(1),
125–138.

Lin, T.-Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick (2014).
Microsoft COCO: Common Objects in Context. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars
(Eds.), Computer Vision – ECCV 2014, Volume 8693, pp. 740–755. Cham: Springer International
Publishing.

https://github.com/GU-CLASP/pyttr
https://sites.google.com/site/typetheorywithrecords/drafts
https://sites.google.com/site/typetheorywithrecords/drafts

64

Logan, G. D. and D. D. Sadler (1996). A computational analysis of the apprehension of spatial relations.
In Language and Space., Language, speech, and communication., pp. 493–529. Cambridge, MA, US:
The MIT Press.

Lu, J., C. Xiong, D. Parikh, and R. Socher (2016). Knowing when to look: Adaptive attention via a
visual sentinel for image captioning. arXiv arXiv:1612.01887 [cs.CV], 1–10.

Martin-Löf, P. and G. Sambin (1984). Intuitionistic type theory. Studies in proof theory. Bibliopolis.

Plaisted, D. A. (2014, March). Automated theorem proving: Automated theorem proving. Wiley Inter-
disciplinary Reviews: Cognitive Science 5(2), 115–128.

Redmon, J. (2013). Darknet: Open Source Neural Networks in C. https://pjreddie.com/
darknet/ (accessed on 2018-09-21).

Redmon, J. (2018, September). YOLO: Real-Time Object Detection. https://pjreddie.com/
darknet/yolov2/ (accessed on 2018-09-21).

Redmon, J., S. Divvala, R. Girshick, and A. Farhadi (2016, June). You Only Look Once: Unified,
Real-Time Object Detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA, pp. 779–788. IEEE.

Regier, T. and L. A. Carlson (2001, June). Grounding Spatial Language in Perception: An Empirical and
Computational Investigation. Journal of Experimental Psychology: General 130(2), 273–298.

Roy, D. (2005, September). Semiotic schemas: a framework for grounding language in action and
perception. Artificial Intelligence 167(1-2), 170–205.

Trieu, T. H. (2018, March). Darkflow. https://github.com/thtrieu/darkflow (accessed
on 2018-09-21).

Xu, K., J. Ba, R. Kiros, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Bengio (2015, February 11).
Show, attend and tell: Neural image caption generation with visual attention. arXiv arXiv:1502.03044
[cs.LG], 1–22.

https://pjreddie.com/darknet/
https://pjreddie.com/darknet/
https://pjreddie.com/darknet/yolov2/
https://pjreddie.com/darknet/yolov2/
https://github.com/thtrieu/darkflow

	Introduction
	Background
	Type Theory with Records (TTR)
	Visual Question Answering (VQA)
	Tools

	A grounded PyTTR
	Object detection
	Model

	Spatial relations
	Beliefs
	Combining situation types
	De-duplication

	Parsing user questions
	Question answering

	The agent structure
	Discussion
	Future work

