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Abstract

Inferences regarding Jane’s arrival in London from predications such as Jane is going to London
or Jane has gone to London depend on tense and aspect of the predications. Tense determines the
temporal location of the predication in the past, present or future of the time of utterance. The
aspectual auxiliaries on the other hand specify the internal constituency of the event, i.e. whether the
event of going to London is completed and whether its consequences hold at that time or not.

While tense and aspect are among the most important factors for determining natural language
inference, there has been very little work to show whether modern NLP models capture these seman-
tic concepts. In this paper we propose a novel entailment dataset and analyse the ability of a range
of recently proposed NLP models to perform inference on temporal predications. We show that the
models encode a substantial amount of morphosyntactic information relating to tense and aspect, but
fail to model inferences that require reasoning with these semantic properties.

1 Introduction

Tense and aspect are two of the main contributors to the semantics of a proposition, describing the
temporal location of a predication and its internal constituency, thereby considerably influencing the
entailment relations it licenses. For example, while arrive in LOC |= be in LOC is generally considered
a valid entailment rule, the case is complicated when different tenses and aspectual auxiliaries1 of a given
verb are considered as sentences (1) and (2) illustrate.

(1) Jane has arrived in London.

|= Jane is in London now.

(2) Jane will arrive in London.

6|= Jane is in London now.

Understanding the difference between an event that has happened and whose consequences hold at
the present moment, and an event that is currently happening or will happen in the future, is crucial for
answering questions such as Where is Jane? or Is Jane in London now? Inferring the consequences
of events is important for understanding the relation between entities in the world. For example, if we
read that Lady Catherine has bought Longbourn estate, the inference that the acquisition is completed,
and that the resulting consequence is that Lady Catherine now owns Longbourn estate, is paramount for
keeping knowledge bases up-to-date.

In this paper we propose a novel entailment dataset that requires models to correctly determine the
internal and external temporal structure of predications when performing natural language inference. To
the best of our knowledge, this is the first dataset that is primarily focused on assessing natural language
inference between temporally and aspectually modified predications.

1For brevity we will refer to predications with different tenses and aspectual auxiliaries as temporal predications.



As a first evaluation on our new dataset we compare to what extent five distributional embedding
models, word2vec (Mikolov et al., 2013), Anchored Packed Trees (Weir et al., 2016), fastText (Bo-
janowski et al., 2017), ELMo (Peters et al., 2018), and BERT (Devlin et al., 2018), and two bi-directional
LSTM (biLSTM) encoders, pre-trained on SNLI (Bowman et al., 2015) and DNC (Poliak et al., 2018),
respectively, are able to perform natural language inference on temporal predications. In our evaluation,
we refrain from fine-tuning any of the models as our goal is to assess to what extent tense and aspect
are captured in these models per se. As a pre-requisite diagnostic task for natural language inference
between temporal predications we analysed whether the models encode the morphosyntax of tense and
aspect and found that they capture a considerable amount of morphosyntactic information in their re-
spective embedding spaces. However, neither of the models outperforms a majority class baseline on our
proposed dataset due to their reliance on contextual similarity for performing inference, suggesting that
models based on distributional semantics struggle with the more latent nature of tense and aspect. Our
contributions in this paper are as follows:

• We assess the extent to which the models in our evaluation encode information about the agreement
between an inflected verb and its aspectual auxiliary, and whether a translation operation between
different tenses can be learnt from the embedding spaces.

• We propose a novel entailment dataset that requires models to perform inference with temporal
predications, and evaluate the five embedding models and two pre-trained biLSTM encoders.

• We analyse the performance of the models and show that their reliance on contextual similarity is
problematic for correctly modelling natural language inference governed by tense and aspect.

2 Tense, Aspect and Entailment

Tense is a grammatical category which is encoded in the morphology of the verb in English (e.g. past
loved vs. non-past loves). It establishes a point of reference that allows the temporal organisation of
events in a discourse. In English, tense interacts with aspectual auxiliaries such as the verbs be or have
that influence the internal constituency of a predication, and determine whether an event is completed
or ongoing. Tense and aspect therefore control the internal and external temporal structure of an event
and govern the inferences that a predication licenses (Reichenbach, 1947; Dahl, 1985; Steedman, 1997).
There is evidence that such morphology is represented in distributional embeddings (Mitchell and Steed-
man, 2015; Vylomova et al., 2016). In this paper we are concerned with perfect and progressive aspect,
but do not focus on any other types of aspect such as the Aktionsart of a predication (Vendler, 1957),
which we leave to future work.

2.1 The Interaction between Temporality and Entailment

Perfect aspect (typically) describes events as a completed whole, and licenses inferences regarding the
consequences of that event. The use of different tenses and aspects for past events influences their
relevance to the present moment and thereby their entailment behaviour. For example, the consequences
of an event in the present perfect hold at the time of utterance, whereas events in the simple past or the
past perfect do not (Comrie, 1985; Moens and Steedman, 1988; Depraetere, 1998; Katz, 2003). This
is shown in sentences (3) and (4), where only sentence (3) licenses the inference of Elizabeth being in
Meryton now.

(3) Elizabeth has gone to Meryton.

|= Elizabeth is in Meryton now.

(4) Elizabeth went / had gone to Meryton.

6|= Elizabeth is in Meryton now.

This property can be explained through a Reichenbachian view of the present perfect, where the point
of reference coincides with the point of speech, thereby indicating its current relevance (Reichenbach,



1947). On the other hand, events in the past simple or the past perfect license inferences for consequent
states in the past, as sentence (5) shows.

(5) Elizabeth went / had gone to Meryton.

|= Elizabeth was in Meryton.

(6) Mary is going to Netherfield now.

6|= Mary has arrived / is in Netherfield.

Progressive aspect describes ongoing events and therefore does not license inferences regarding their
consequences as sentence (6) shows. It furthermore gives rise to the imperfective paradox (Dowty, 1979),
which only seems to license inferences for non-culminated processes (Moens and Steedman, 1988), as
sentences (7) and (8) show.

(7) Catherine was walking in the woods.

|= Catherine walked in the woods.

(8) Jane was reaching London.

6|= Jane reached / was in London.

The modal future introduces an event whose realisation is uncertain, therefore any inferences about
its outcome are only licensed if common-sense knowledge suggests that this is almost always the course
of events as sentence (9) shows.

(9) Charles will meet with Jane.

|= Charles will see Jane.

The correct treatment of tense and aspect in a predication is crucial for inferring the consequences it
licenses, which is important for answering questions about a given paragraph, or creating and updating
knowledge bases.

3 Models

We analyse five distributional embedding models and two pre-trained biLSTM sentence encoders for
their ability to perform inference on temporal predications. Our choice of models is motivated by the
observation that modelling entailment between temporal predications requires a bespoke representation
of the inflected verb in the context of the given aspectual auxiliary and its arguments.

word2vec. We evaluate the ability of word2vec representations for performing inference with
temporal predications. Contextualisation2 can be achieved by averaging two word vectors, which has
been shown to be a strong baseline for a range of problems (Iyyer et al., 2015; Wieting et al., 2016).
Notably, adding or averaging word vectors approximates the intersection of their feature spaces (Tian
et al., 2017).

APTs. Anchored Packed Trees are a recently proposed vector space model that take distributional
composition to be a process of lexeme contextualisation. APTs are based on a higher-order dependency-
typed structure that gives rise to a weighted, directed and labelled graph. Contextualisation is achieved
through distributional composition, which requires aligning two lexemes according to their syntactic
relation, and then merging the aligned representations. APTs are the only count-based (i.e. non-neural)
model in our evaluation.

fastText. The fastText model represents each word as a sum of bag-of-character n-grams,
thereby making better use of subword information and therefore — potentially — providing a better
mechanism for encoding morphosyntactic relations. Contextualisation is achieved through averaging the
respective word vectors in a phrase.

ELMo. ELMo is based on a deep bidirectional LSTM language model that creates multiple layers
of representations for every token. Contextualised representations are obtained from the internal states
of the LSTMs, where Peters et al. (2018) showed that lower levels of the architecture capture syntactic
characteristics, and higher-levels capture semantic characteristics of words.

2We refer to expressing the meaning of a word in its context as contextualisation.



BERT. BERT uses multi-headed bi-directional self-attention and is based on the Transformer archi-
tecture (Vaswani et al., 2017). Devlin et al. (2018) observed that sequential language model architectures
are limited by the unidirectionality of the models. Therefore they proposed a novel training objective that
jointly conditions on left and right context in all layers. They showed that their training regime results in
substantial gains over serial language model-based architectures on numerous NLP tasks.

Pre-trained biLSTM. For our new entailment dataset, we pre-trained two bi-directional LSTM (Hochre-
iter and Schmidhuber, 1997) sentence encoders on SNLI (Bowman et al., 2015) and DNC (Poliak et al.,
2018), representing two recently released large-scale entailment datasets. Our choice of biLSTMs was
motivated by their strong performance in recent studies (Balazs et al., 2017; Conneau et al., 2017).

Word2vec, APTs and fastText follow the one representation per word paradigm (Kober et al.,
2017), where every lexeme is represented by one vector, and contextualisation is typically achieved
through distributional composition. ELMo, BERT and the pre-trained biLSTMs, on the other hand ,create
context-sensitive representations on the token level. This results in different representations for the same
word, depending on its current context.

4 Experiments

We created two experiments to assess the extent of morphosyntactic information relating to tense and
aspect that is encoded in the respective embedding spaces. Subsequently we propose a novel entailment
dataset and evaluate the capability of the embedding models and the pre-trained biLSTMs to perform
inference on temporal predications. All our resources are available from https://github.com/
tttthomasssss/iwcs2019.

4.1 Auxiliary-Verb Agreement

The first experiment evaluates whether the models are able to capture the agreement between an inflected
verb and its corresponding aspectual auxiliary. For example, the models should be able to determine
that will visit represents a correct combination whereas will visiting does not. We consider capturing
the morphosyntactic interplay between an inflected verb and its aspectual auxiliary a pre-requisite for
adequately modelling the semantics of tense and aspect.

We cast the problem as a classification task with the goal of distinguishing correct auxiliary-verb pairs
from incorrect ones with a diagnostic classifier. This methodology is similar to the approach of Linzen
et al. (2016) who assessed the ability of LSTMs to learn number agreement in English subject-verb
phrases. For the dataset, we extracted verbs from the One Billion Word Benchmark (OBWB) (Chelba
et al., 2013) where each inflected verb form occurred at least 50 times. We then paired the inflected verb
forms with their corresponding auxiliaries to form positive pairs, and subsequently paired each of the
different inflected verb forms with all incorrect auxiliaries to build the negative pairs. We filtered the
negative pairs for plausible combinations such as is eaten by removing valid passive constructions and
any invalid combination that occurred at least 5 times in the OBWB corpus. The final dataset consists of
almost 36k auxiliary-verb combinations with a positive : negative class distribution of 38 : 62.

4.2 Translation Operation

In the second experiment we assess whether it is possible to learn a translation operation between differ-
ent tenses in the embedding space. We consider learning a translation operation in two ways: firstly a
simple vector offset on the basis of the averaged difference between inflected verbs with their auxiliaries
and their respective lemmas. Secondly, we train a feedforward neural network to project the infinitive
representation of a verb to one of its inflected forms. The goal for both approaches is then to generate an
unseen inflected verb form from a given unseen lemma.

The averaged offset translation is shown in Equation 1, where the offset ot is calculated on the
basis of a set of seed verbs S of size n, and vector representations xt and x` of the inflected form, or
contextualised form if the tense requires an auxiliary, and lemma form of the verb x, respectively. At



prediction time, we are trying to create x′t by adding the offset ot to the lemma x′` (where x′ 6∈ S).
Equation 2 shows the setup where we use a neural network to learn a translation matrix from infinitive
forms to inflected forms, where f is a tense-specific neural network with a single hidden layer, that takes
an unseen lemma representation x′` as input and generates an inflected form x′t, and where Θt represent
the learnable parameters of the network.

ot =
1

n

∑
x∈S

xt − x` (1) x′t = f(x′`; Θt) (2)

We subsequently evaluate whether the correctly inflected verb is in the nearest neighbour list of the
generated verb. The inflected verb generation setup is inspired by Bolukbasi et al. (2016) and Shoemark
et al. (2017), who used a similar method in their respective works. For the dataset, we extracted verbs
from the OBWB corpus where each inflected verb form occurred at least 50 times, resulting in ≈2.8k
verbs per tense.

4.3 Entailment with Temporal Predications

Lastly, we propose TEA — the Temporal Entailment Assessment dataset. TEA contains pairs of short
sentences with the same argument structure that differ in tense and aspect of the main verb, and follows
a binary label annotation scheme (entailment vs. non-entailment). Example sentences from TEA are
shown in Table 1. The absence and infeasibility of creating a lexical resource for consequent state

John is visiting London. |= John has arrived in London.
John will visit London. 6|= John has arrived in London.
John is visiting London. 6|= John has left London.
John is visiting London. |= John will leave London.
George has acquired the house. |= George owns the house.
George is acquiring the house. 6|= George owns the house.

Table 1: Examples from TEA.

inference patterns creates the necessity for NLP systems to learn these rules from data. With TEA,
we cast the problem of determining when a new consequent state is licensed by an event as a natural
language inference task, thereby providing a first evaluation set for modern NLP models.

Data Collection. We sampled candidate pairs from the before-after category of VerbOcean (Chklovski
and Pantel, 2004), the WordNet verb entailment graph (Fellbaum, 1998), the entailment datasets of Weis-
man et al. (2012) and Vulić et al. (2017), and the relation inference dataset of Levy and Dagan (2016).
Subsequently, we manually filtered the list, and discarded candidate verb pairs without any temporal
relation to each other. For each pair we chose nouns as arguments to form full sentences. The arguments
further served the purpose of reducing ambiguity and avoiding habitual readings.

TEA covers entailments between an all-by-all combination of the present simple, present progres-
sive, present perfect, past simple, past progressive, past perfect and the modal future, covering perfect
and progressive aspect. The dataset contains 11138 sentence pairs with a class distribution of 22 : 78
(entailment : non-entailment). More detailed dataset statistics are presented in Appendix A.

Data Annotation. We interpreted entailment as common-sense inference (Dagan et al., 2006), and
considered a positive entailment relation between two temporal predications if a human annotator would
decide that sentence 2 is most likely true given sentence 1. We decided against a crowdsourced annotation
of TEA as our aim was to maximise the consistency of fine-grained entailment decisions. Therefore,
TEA was labelled by two annotators3, where the first round of annotation resulted in just under 20%
disagreement across the whole dataset. The relatively high level of disagreement suggests that even for
annotators who (more or less) know what they are looking for, assessing whether an entailment holds
between two temporal predications is a very challenging task.

3The first and second author of this paper.



Disagreements in TEA were resolved on a case-by-case basis and all sentence pairs with an initial
disagreement have been resolved and included in the dataset. We found that with temporality involved,
suddenly everything appeared to become uncertain. Hence we approached the disagreement resolution by
first discussing which of several possible readings is the strongest, and whether that reading is sufficiently
more likely than any other possible reading. Subsequently we discussed whether the strong reading is
above the almost always true threshold.

Often, disagreements resulted from different assumptions regarding the ordering of the events’ nu-
clei. For example, even if we accept that buys entails chooses, will buy does not necessarily entail will
choose. The reason is that this pair is ambiguous between two readings, a “has-just-chosen-and-now-
will-buy” reading on one hand, and a “will-choose-and-then-will-buy” reading on the other, which seem
to be equally likely in the absence of any further context4.

Even when ordering was clear, however, disagreements could arise over beliefs of when an utterance
becomes licensed. Saying will graduate, for example, can be considered reasonable at any time, or only
once graduation is sufficiently imminent and likely. In the latter case, is studying can be considered
sufficiently likely to be an entailment, while in the former case the entailment is less clear5. Overall,
world knowledge and intuition played into disagreements heavily, causing cases to fall just above or
below the common-sense inference threshold depending on the annotator.

We identified a possible annotation artefact in TEA due to our decision to annotate the dataset se-
quentially rather than randomly. While this greatly reduced the cognitive load, we were confronted with
possible contradictions between different tenses of entailed predicates (for example, a single event can-
not happen in the past and the future). This initially led to more conservative annotations, since some
pairs when viewed independently can sound very plausible. We tried to factor out this source of bias
when resolving the disagreements, and are confident that the annotations in TEA are robust.

An interesting avenue for future work would be adding temporal adverbials to further reduce am-
biguity for annotators — and to analyse whether models can handle them correctly. The addition of
temporal adverbials might alleviate the temporal ordering ambiguity, as for example reading will buy in
5 years might help us conclude the ordering with will choose, since choosing is probably near buying.

5 Results and Analysis

For our experiments we used the publicly available versions of each embedding model. For the evaluation
on TEA, we trained two biLSTMs on SNLI and DNC in addition to the embedding models, achieving
83% and 88% accuracy on the SNLI and DNC development sets, respectively. Appendix B lists further
details for all models.

5.1 Auxiliary-Verb Agreement

For assessing whether the auxiliary-verb agreement can be detected with a diagnostic classifier, we built
a binary classification task, using stratified J-K-fold cross-validation (Moss et al., 2018) and report aver-
aged accuracy. We used the scikit-learn (Pedregosa et al., 2011) logistic regression classifier with default
hyperparameter settings.

The results in Table 2 show that the representations of APTs and BERT are specific enough for a linear
classifier to distinguish plausible from implausible combinations. The reason for the strong performance
of APTs stems from its sparsity — plausible auxiliary-verb combinations result in representations with
numerous non-zero entries, whereas implausible combinations rarely contain more than a handful of
non-zero elements. While word2vec and fastText seem to capture the morphosyntactic relation
between an auxiliary and an inflected verb to some extent, their performance is substantially worse
than APTs and BERT. Somewhat surprisingly, the results for ELMo are worse than the majority class
baseline for all auxiliaries. One possible reason for the comparatively weak performance of word2vec,

4In this case we decided that if will buy is true, the choosing didn’t happen yet, so will buy |= will choose.
5We decided will graduate |= is studying.



Auxiliary word2vec APT fastText ELMo BERT Majority Class
is 0.65 (+/- 0.02) 0.88 (+/- 0.01) 0.67 (+/- 0.02) 0.52 (+/- 0.01) 0.90 (+/- 0.01) 0.53

will 0.48 (+/- 0.01) 0.94 (+/- 0.01) 0.58 (+/- 0.01) 0.63 (+/- 0.01) 0.89 (+/- 0.01) 0.67
has 0.84 (+/- 0.01) 0.94 (+/- 0.00) 0.77 (+/- 0.01) 0.63 (+/- 0.01) 0.91 (+/- 0.01) 0.66
had 0.84 (+/- 0.01) 0.95 (+/- 0.00) 0.78 (+/- 0.01) 0.62 (+/- 0.01) 0.93 (+/- 0.01) 0.66
was 0.72 (+/- 0.02) 0.86 (+/- 0.01) 0.74 (+/- 0.02) 0.52 (+/- 0.01) 0.92 (+/- 0.01) 0.53

Average 0.71 (+/- 0.01) 0.92 (+/- 0.00) 0.71 (+/- 0.01) 0.59 (+/- 0.00) 0.91 (+/- 0.00) 0.61

Table 2: Auxiliary-verb agreeement results. Results are averaged accuracies with standard deviations in brackets.

fastText and especially ELMo in comparison to BERT is the latter’s more global training objective
that does not rely on sequential input. For ELMo, we also tried running it with full sentence contexts for
all auxiliary-verb combinations, which, however, did not lead to improved performance (results omitted).

5.2 Translation Operation

For obtaining an averaged vector offset, we randomly sampled a seed set of verb types from our dataset
to learn an offset vector, and subsequently aimed to predict the inflected form for all remaining verb
types in the dataset. We sampled 10 different seed sets of size 10 for our experiments6.

For learning a translation operation with a neural network we used a simple feedforward architecture
with a single hidden layer and a tanh activation function, using Adam with a learning rate of 0.01 to
optimise the mean squared error between the generated inflected verb and the true inflected verb. Due to
the neural network requiring more training data than the averaged vector offset approach, we evaluated
the model using 10-fold cross-validation. For APTs we projected the explicit co-occurrence space down
to 100 dimensions using SVD before feeding the representations to the neural network.

Performance for both approaches is reported in terms of Mean Reciprocal Rank (MRR), averaged
over the 10 randomly sampled seed sets and the 10 cross-validation folds, for the averaged offset vector
and neural network approaches, respectively. For calculating MRR, the query space for retrieving an
inflected verb, given its lemma and the computed translation operation, is based on all contextualised
auxiliary-verb combinations, and all inflected forms of all verbs.

Creating translation operations in embedding space is primarily a word-type level task and thus
potentially puts BERT and ELMo at a disadvantage as they produce representations on the token level.
This is reflected in Figure 1, where both ELMo and BERT perform poorly in comparison to word2vec
and fastText. APTs also exhibit weak performance on this task, with this time the sparsity of its high-
dimensional representations being disadvantageous. Interestingly, performance generally dropped —
except for word2vec— when moving from the simple vector offset approach to a neural network based
translation operation, providing evidence that the morphosyntax of tense and aspect is well represented
as a linear offset in the embedding space. One of the main reasons for the poor performance of ELMo

Figure 1: Translation operation results based on averaged MRR.

and BERT was that the obtained offset vectors and learnt translation matrices varied substantially across
runs. Figure 2 shows the average cosine similarities (left) and average Euclidean distances (middle)
between the computed offset vectors for each subtask across all 10 runs. Figure 2 furthermore shows
the average Frobenius distances (right) between the learnt neural network translation matrices across
all 10 folds. Figure 2 mirrors the general performance trend in Figure 1, with vector offsets obtained

6In preliminary experiments we found that a seed set of 5-10 verbs is sufficient.



Figure 2: Average cosine similarities and Euclidean distances of averaged offset vectors and Frobenius distances
of the learnt neural network weight matrices.

from word2vec and fastText having high average cosine similarity and low average Euclidean
distance. Furthermore, the lower average Frobenius distance for word2vec is reflected in its improved
performance in comparison to fastText whose translation matrices exhibit a larger average Frobenius
distance. For ELMo in particular, the offset vectors and translation matrices differ considerably across
experimental runs. The large average Frobenius distances for ELMo and BERT also suggest that the
neural network struggled to find a good minimum during learning.

5.3 Entailment with Temporal Predications

The results in this section so far have shown that morphosyntactic information relating to tense and aspect
is encoded in the different embedding spaces. In the following we use TEA to analyse whether these
models are able to use that information for natural language inference. As our goal is to assess to what
extent tense and aspect are captured by the models, we refrain from fine-tuning them on TEA.

For evaluation we measure precision and recall over varying thresholds and report performance in
terms of average precision7. TEA can also serve as an additional evaluation set for sentence encoder
models trained on large-scale natural language inference datasets such as SNLI or DNC, which them-
selves include very little temporal information in their respective test sets. We therefore additionally
cast TEA as a binary classification task, and report accuracy and macro-averaged F1-score for the two
pre-trained biLSTM models.

Table 3 shows the average precision scores for the models and the accuracy and F1-scores for the two
pre-trained biLSTMs in comparison to a majority class baseline and a baseline predicting the majority
class per tense pair. We used cosine as similarity measure for the embedding models and the softmax pre-
diction scores for the biLSTMs. For APTs, we also tried the asymmetric inclusion score BInc (Szpektor
and Dagan, 2008), however found cosine working better. We furthermore experimented with distribu-
tional inference (Kober et al., 2016), and found a small positive impact on recall but a slightly larger
negative dip in precision, which overall led to slightly lower average precision scores. The results show

Model Avg. Precision Accuracy F1-Score
word2vec 0.31 - -
APT 0.28 - -
fastText 0.30 - -
ELMo 0.21 - -
BERT 0.27 - -
biLSTM-DNC 0.22 0.58 0.49
biLSTM-SNLI 0.21 0.51 0.47
Maj. class 0.22 0.78 0.44
Maj. class / tense pair 0.35 0.80 0.66

Table 3: TEA results. All model results are significantly worse at the p < 0.01 level w.r.t. the majority class /
tense pair baseline, using a randomised bootstrap test (Efron and Tibshirani, 1994).

that neither of the models are able to outperform the majority class / tense baseline. This highlights that
despite the use of short and simple sentences in the dataset, the latent nature of tense and aspect make
TEA a very challenging problem.

7Also known as the area under the precision-recall curve.



In order to analyse the causes for the low performance across models, we calculated the false positive
and false negative rates for different similarity threshold ranges for each of the models. Figure 3 shows
that even for high thresholds, the neural embedding models frequently predict entailment when there isn’t
one, thereby producing a high rate of false positives (highlighted at the top of Figure 3). Conversely, a
sparse model such as APTs, fails to predict entailment when there actually is one, resulting in a high
rate of false negatives (highlighted at the bottom of Figure 3). Our results show that natural language

Figure 3: False Positive (FP) and False Negative (FN) rates.

inference on temporal predications is a challenging problem, especially for distributional semantic ap-
proaches. One reason is that these models are primarily governed by contextual similarity which is a bad
proxy for inference in the case of a dataset such as TEA. For example, if Jane has arrived in London,
then she was going to London at some earlier point, but it is not the case that she currently is going to
London. Furthermore, when she has arrived in London, she is visiting London at the moment, and will
leave again at some point in the future.

The predications in the short narrative above are very diverse in terms of tense and aspect, however
the main verbs — or even the predications as a whole — typically have high distributional similarity,
which inevitably leads to numerous false entailment decisions as reflected in Figure 3.

In the following we briefly analyse the impact of distributional similarity and investigate to what
extent the similarity scores between two predications change when tense and aspect influence the entail-
ment. Table 4 shows that the cosine similarity between temporally and aspectually modified predications
is typically higher than for their respective lemmas. This further indicates that many false positives of
the neural network based models in our results are due to high distributional similarity scores between
predications. For APTs the cosine scores — even when normalised — are generally very low due to
their sparsity and high dimensionality, highlighting their bias towards false negatives. However, Table 4

Predication Pair w2v APT fT ELMo BERT DNC SNLI
visit |= leave 0.36 0.09 0.53 0.59 0.69 0.69 0.28

is visiting |= will leave 0.57 0.02 0.60 0.60 0.77 0.26 0.26
is visiting 6|= has left 0.58 0.03 0.71 0.65 0.72 0.32 0.20

visit |= arrive 0.45 0.07 0.55 0.49 0.71 0.58 0.45
is visiting |= has arrived 0.62 0.04 0.69 0.51 0.84 0.25 0.51
is visiting 6|= will arrive 0.57 0.01 0.60 0.50 0.81 0.32 0.25

win |= play 0.52 0.14 0.54 0.59 0.73 0.39 0.32
has won |= has played 0.75 0.25 0.88 0.60 0.85 0.55 0.23

has won 6|= will play 0.60 0.11 0.64 0.55 0.78 0.31 0.36

Table 4: Similarity scores between the example predicates. DNC and SNLI refer to the two biLSTMs pre-trained
on DNC and SNLI, respectively.

also shows that in most cases the distributional similarity between an entailed pair is higher than for a
non-entailed pair (boldfaced in Table 4). This indicates that the embedding models do appear to capture
some of the semantics of tense and aspect in their respective contextualised representations. However,
their high distributional similarity overwhelms any finer distinction that the models might have extracted.

While our analysis indicates that the embedding models are able to extract knowledge about tense
and aspect, the signal is not strong enough to reliably perform inference. A potential avenue for future
work would therefore be the development of models that are able to better represent tense and aspect,
while not being primarily governed by distributional similarity.



6 Related Work

Most previous work on inference between verbs was concerned with extracting inference rules from raw
text (Lin and Pantel, 2001; Szpektor et al., 2004, 2007; Hashimoto et al., 2009; Melamud et al., 2013).
As a next step, Berant et al. (2010) and Hosseini et al. (2018) leverage these rules to build entailment
graphs for modelling natural language inference. However in both cases the entailment graphs are built
on the basis of verb lemmas and do not take tense and aspect into account. One example of using
tense for inference is Pavlick and Callison-Burch (2016), who leverage implicative verbs to determine
that managed to solve X |= X is solved. Our proposed dataset TEA fills a gap in the natural language
inference evaluation repertoire by focusing on temporal and aspectual entailment. Recent years saw the
release of a number of large-scale datasets, such as SNLI (Bowman et al., 2015), MNLI (Williams et al.,
2017) or DNC (Poliak et al., 2018), but neither of these datasets focuses on, or includes a substantial
proportion of, inference examples between temporal predications.

TEA is related to work on causality (Mirza et al., 2014; Mirza and Tonelli, 2014), however our
dataset has been created from scratch rather than derived from TimeBank (Pustejovsky et al., 2003), as
for example explicit buys |= owns relations are rarely encountered in the same paragraph or connected by
explicit causal links. Therefore, TEA captures many consequent state inferences that are missing from
previous datasets. The most closely related task to TEA is the relation inference dataset of Levy and
Dagan (2016), which however, contains only very few examples where temporality is a governing factor.

7 Future Work

In future work we plan to leverage tense- and aspect-based information for constructing temporal entail-
ment graphs (Lewis and Steedman, 2014), where nodes represent tensed predicates (e.g. has visited),
and edges represent entailment relations. Temporal entailment graphs, together with knowledge about
the completedness or current relevance of an event, can be applied to procedural reasoning, such as
tracking the state of entities through text, similar to recent work of Bosselut et al. (2017), and Henaff
et al. (2017). We furthermore plan to focus on other types of aspect such as Aktionsart.

8 Conclusion

In this paper we highlighted that tense and aspect are two of the most important factors for perform-
ing natural language inference. We introduced a novel entailment dataset, TEA, that contains pairs of
short sentences and focuses on entailment relations between temporally and aspectually modified verbs.
We showed that distributional embedding models capture a considerable amount of the morphosyntactic
information relating to tense and aspect in their embedding spaces. However, neither the embedding
models, nor two pre-trained biLSTMs, were able to outperform a simple rule-based baseline on TEA,
primarily due to their reliance on contextual similarity for inference. In this sense, tense and aspect se-
mantically resemble logical operators like negation rather than distributional components. The challenge
will be to combine logical operator semantics with distributional representations of content words.
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A Supplemental Material

A.1 Dataset Details

Table 5 shows a detailed overview of the number of examples per tense and aspect pair, as well as their
class distribution.

Category Num. Examples Class distribution (entailment : non-entailment)
Present progressive - Present progressive 188 33 : 67
Present progressive - Past progressive 188 23 : 77
Present progressive - Present perfect 213 20 : 80
Present progressive - Past perfect 213 12 : 88
Present progressive - Future simple 216 28 : 72
Present progressive - Present simple 216 27 : 73
Present progressive - Past simple 216 26 : 74
Past progressive - Present progressive 188 0 : 100
Past progressive - Past progressive 188 55 : 45
Past progressive - Present perfect 213 7 : 93
Past progressive - Past perfect 213 46 : 54
Past progressive - Future simple 216 1 : 99
Past progressive - Present simple 216 0 : 100
Past progressive - Past simple 216 49 : 51
Present perfect - Present progressive 213 12 : 88
Present perfect - Past progressive 213 44 : 56
Present perfect - Present perfect 240 26 : 74
Present perfect - Past perfect 240 26 : 74
Present perfect - Future simple 243 16 : 84
Present perfect - Present simple 243 17 : 83
Present perfect - Past simple 243 42 : 58
Past perfect - Present progressive 213 0 : 100
Past perfect - Past progressive 213 58 : 42
Past perfect - Present perfect 240 3 : 97
Past perfect - Past perfect 240 59 : 41
Past perfect - Future simple 243 0 : 100
Past perfect - Present simple 243 0 : 100
Past perfect - Past simple 243 58 : 42
Future simple - Present progressive 216 3 : 97
Future simple - Past progressive 216 1 : 99
Future simple - Present perfect 243 1 : 99
Future simple - Past perfect 243 1 : 99
Future simple - Future simple 246 47 : 53
Future simple - Present simple 246 2 : 98
Future simple - Past simple 246 1 : 99
Present simple - Present progressive 216 21 : 79
Present simple - Past progressive 216 29 : 71
Present simple - Present perfect 243 15 : 85
Present simple - Past perfect 243 17 : 83
Present simple - Future simple 246 19 : 81
Present simple - Present simple 246 29 : 71
Present simple - Past simple 246 26 : 74
Past simple - Present progressive 216 0 : 100
Past simple - Past progressive 216 55 : 45
Past simple - Present perfect 243 5 : 95
Past simple - Past perfect 243 54 : 46
Past simple - Future simple 246 0 : 100
Past simple - Present simple 246 1 : 99
Past simple - Past simple 246 56 : 44
Progressive - Progressive 3464 20 : 80
Progressive - Perfect 2748 18 : 82
Perfect - Progressive 2748 16 : 84
Perfect - Perfect 2178 37 : 63
TOTAL 11138 22 : 78

Table 5: Detailed statistics of TEA.



B Supplemental Material

B.1 Model Details

word2vec. We used the 300-dimensional vectors trained on GoogleNews, available from https:
//code.google.com/archive/p/word2vec/.
APTs. We used order 2 APTs trained on Gigaword, with PPMI weighting and no negative SPPMI shift
which were used in Kober (2018). As composition function we used composition by intersection which
has previously been shown to work well for modelling the similarity of short phrases (Kober et al., 2016,
2017).
fastText. We used the 300-dimensional pre-trained vectors with subword information trained on
Wikipedia (Mikolov et al., 2018).
ELMo. We are using the pre-trained model released by Peters et al. (2018) and accessible via the
AllenNLP toolkit (Gardner et al., 2017).
BERT. We are using the BERT-big model released by Devlin et al. (2018) and available from https:
//github.com/google-research/bert.
Pre-trained biLSTM. We are using a bi-directional LSTM (Hochreiter and Schmidhuber, 1997) with
max pooling, but without an attention layer. We follow Balazs et al. (2017) in aggregating the embedded
and pooled premise and hypothesis representations before passing them to a single fully connected layer,
with a relu activation function and a dropout (Srivastava et al., 2014) probability of 0.3. The model is
optimised with Adam (Kingma and Ba, 2014) using a learning rate of 0.01. The model is implemented
in PyTorch (Paszke et al., 2017). Table 6 lists the accuracies on the SNLI and DNC development and test
sets for our model.

Dataset Dev Accuracy Test Accuracy
SNLI 0.83 0.82
DNC 0.88 0.87

Table 6: Accuracies on the development and test sets for the pre-trained biLSTMs on SNLI and DNC, respectively.


