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Abstract

We present our experiments in the scope of the
news translation task in WMT 2018, in direc-
tions: English→German. The core of our sys-
tems is the encoder-decoder based neural ma-
chine translation models using the transformer
architecture. We enhanced the model with
a deeper architecture. By using techniques
to limit the memory consumption, we were
able to train models that are 4 times larger
on one GPU and improve the performance
by 1.2 BLEU points. Furthermore, we per-
formed sentence selection for the newly avail-
able ParaCrawl corpus. Thereby, we could im-
prove the effectiveness of the corpus by 0.5
BLEU points.

1 Introduction

This manuscript provides the technical details re-
garding our submission in the WMT18 shared
task on English→German news translation. Our
submission has two major research contributions:
Firstly, the development of a deep, efficient neural
architectures and secondly, the cleaning and data
selection of web crawled data.

We developed a efficient approach to train a
deep transformer model on a single GPU. This
allows use to train a 4 times deeper model than
state-of-the-art models on one GPUs. In the ex-
periments we are able to show that these models
perform 1.2 BLEU points better than the baseline
model using already 8 layers.

Secondly, we performed additional filtering on
the ParaCrawl corpus. We are using the log-
probabilities of a baseline NMT system to filter
the low quality translations. While we are only
able to improve the translation quality slightly by
0.3 BLUE points using all ParaCrawl data, the in-
tegration of the clean cropus improved the transla-
tion quality of 0.8 BLEU points.

2 Data

This section describes the preprocessing steps for
the parallel and monolingual corpora for the lan-
guage pairs involved in the systems as well as the
data selection methods investigated.

2.1 English↔German

As parallel data for our German↔English sys-
tems, we used Europarl v7 (EPPS), News Com-
mentary v12 (NC), Rapid corpus of EU press
releases, Common Crawl corpus, the ParaCrawl
corpus and simulated data. The preprocessing
includes tokenization, removing very long sen-
tences and the sentence pairs which are length-
mismatched, normalizing special symbols and dif-
ferent writing rules and smart-casing the first word
of each sentence. Those tools are provided in the
Moses Toolkit 1.

We integrated the monolingual news data by
generating synthetic data as motivated by Sennrich
et al. (2016a). We used the translated data pro-
vided by University of Edinburgh.

Once the data is preprocessed, we applied byte-
pair encoding (BPE) (Sennrich et al., 2016b) on
the corpus. In this work, we deploy an operation
size of 40K (shared between English and German
languages) and applied vocabulary filtering in a
way that every token occurs at least 50 times.

2.1.1 ParaCrawl data selection
This year, in addition to the data provided in the
last years, also the ParaCrawl corpus was pro-
vided. Since this data is collected by a web-
crawler it differs in several ways from the other
corpus. Firstly, it is significantly larger than all
other available corpora. But the corpus is also
more noisy. Therefore, we did not directly use this
corpus, but filtered it prior to training.

1http://www.statmt.org/moses/
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In this use case, an NMT system trained on the
clean parallel data was evaluated. Therefore, we
investigate the usage of this system to select clean
translations from the training data.

In a first step, we performed the same prepro-
cessing as for the other corpora. In addition, we
removed short sentences. We noticed that these
were often only keywords or numbers and there-
fore would not be helpful to train the system. In
our experiments, we removed all sentences shorter
than n = 10 words.

In the second step, we use the NMT sys-
tem to calculate the translation probability of the
ParaCrawl data. We used the length normalized
log probability to select the sentences used for
training. An inspection on a tiny subset of the
data showed that the sentences with a low length-
normalized probability seem to be bad transla-
tions. Examples are shown in the top of Table 1.
Often the they are even not sentences in the source
and target language. Furthermore, we noticed that
the sentences with a very high probability seem
not to be very useful. As shown in the last exam-
ple in 1, in these cases, we often have a one-to-one
word correspondence between the source and tar-
get sentence. But the input are often no real sen-
tences and therefore, we might learn to generate
no longer fluent output.

Due to computation time, we were not able to
train model on different selected parts of the cor-
pus. In contrast, we select reasonable thresholds
based on the ordering on a small subset. We re-
moved all sentences, where the length-normalized
log-probability is smaller then a = 0.8 and all sen-
tences where this score is higher than b = 3.6.

3 Deep Transformer

The research in Machine Translation has observed
rapid advancement in terms of modeling in the
past three years. While recurrent neural networks
remain the core component in many strong sys-
tems (Wu et al., 2016), various works incremen-
tally discovered that other architectures can also
outperform RNNs in terms of translation quality or
training efficiency, such as Convolutional Neural
Networks (CNNs) (Gehring et al., 2017) or Self-
Attention Networks, or Transformer (Vaswani
et al., 2017). Due to the success of the self-
attention networks, we will concentrate in this
work on this type of architecture.

While other areas of deep learning use very

deep neural networks, the networks used for NMT
are still shallow compared to these areas. Moti-
vated by the success of deep models in other ar-
eas, we analyzed the effectiveness of depth of the
Transformer network. This is only possible trough
the development of a very efficient implementa-
tion. This enables us to training very deep net-
works on a single device in a reasonable amount
of time.

3.1 Sequence-to-Sequence models

Neural machine translation (NMT) consists of an
encoder and a decoder (Sutskever et al., 2014;
Cho et al., 2014) that directly approximate the
conditional probability of a target sequence Y =
y1, y2, · · · , yT given a source sequence X =
x1, x2, · · · , xM . The basic concept of the model is
to encode the source sequence with a neural net-
work to capture the neural representation of the
source sentence, which is then referred multiple
times during a decoding process, in which another
neural network auto-regressively generates tokens
in the target language.

The architectural choice is important in building
neural machine translation systems. While Recur-
rent Neural Networks (RNN) have become the de-
facto model to represent sequences and were ap-
plied very successfully in NMT (Sutskever et al.,
2014; Luong and Manning, 2015), self-attention
networks (or Transformer) arose as a potentially
better alternative (Vaswani et al., 2017).

3.2 Transformer overview

The transformer architecture was previously intro-
duced with the following novel features:

• Long range dependency is modeled using the
self-attention mechanism instead of recurrent
connections used in recurrent networks, like
the Long-Short Term Memories. The mech-
anism allows direct connection between two
different two arbitrary positions in the se-
quences, which in turns alleviates the gra-
dient flow problem existing in recurrent net-
works.

• Residual block design: similar to the infa-
mous residual networks consisting of deep
convolutional neural networks, Transformer
networks are built on residual blocks in
which the lower level states are directly car-
ried to the top level by addiction. In the
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German: offener Teilnahmewettbewerb : Grafikdesign fr Musikprojekt
English: DAS Hotel
German: anderen Gewinnen .
English: Anyway , I will repeat that I sincerely hope you weren ’t referring to me
German: Christijan Albers 2 : 2 ( 3 : 2 im Elfmeterschieen )
English: Christijan Albers 2 : 2 ( 3 : 2 in penalty shootout )

Table 1: Filtered examples

Transformer networks, the input of every
sub-block is added directly to the output (He
et al., 2016), as a result the final layer receives
a large sum of inputs from below, including
the embeddings.

• Multi-head attention being proposed as a
variation of the attention network (Bahdanau
et al., 2014) improves attention power by per-
forming attention in multiple dimensions of
the input, which are projected using linear
transformation.

• Additional neural network training utilities:
layer normalization (Ba et al., 2016) prevents
network state values from exploding; label
smoothing regularizes the cross entropy loss
function to improves the models’ generaliza-
tion;

3.3 Efficient memory usage

NMT models in general are very memory consum-
ing due to the fact that they need to apply transfor-
mation on a sequence of states instead of single
states in feed-forward neural networks. For other
architectures, like feed-forward neural networks,
convolution neural networks and recurrent neu-
ral networks, recently techniques have been pro-
posed to significantly reduce the memory footprint
during training (Chen et al., 2016; Gruslys et al.,
2016). The main idea is to recalculate intermedi-
ate results instead of caching them. In this work,
we adopted this idea to transformer models. We
apply the method for a layer basis, by specifying
the number of layers (Transformer Encoder or De-
coder block) to be checkpointed during training.
Such layer’s forward pass needs to be recomputed
during the backward pass, as a result the interme-
diate buffers created during training can be dis-
carded, resulting in smaller memory requirement
and bigger batch size.

3.4 Training

We followed the original work for the general hy-
per parameters including batch size and learning
rate. We instead focus on several methods to in-
crease training efficiency of the Transformer mod-
els.

Emulated Multi-GPU setup: It is notable
that the Noam learning rate schedule proposed
in (Vaswani et al., 2017) was designed for bigger
batch sizes (≈ 25000 words per mini-batch update
which is not feasible for a single-GPU setup). In
order to apply the same learning schedule without
a multi-GPU system, we simply divide the large
mini-batch into smaller ones, and accumulate (by
summing) the gradients computed by each mini-
batch forward and backward pass.

4 Results

4.1 Baseline System

Our baseline system uses the openNMT-py
Toolkit2 and uses an RNN based translation model
with 4 layers in both decoders and encoders (bidi-
rectional RNN on the encoder side). The model is
equipped with dropout= 0.2 following the work
of (Zaremba et al., 2014) for better regularization
and label smoothing improving the cross-entropy
loss. The training details and hyper-parameters are
replicated from (Pham, 2017). In all of our ex-
periments, we use the concatenation of test sets
from 2013 to 2016 as our development set for
model/checkpoint selection. While we use per-
plexity for model selection, the BLEU score on
newstest2017 calculated by mteval-v13a.pl is used
to report the models’ performance.

4.2 Training hyper parameters

For RNN models, we use 4-layer-models with
Long-Short Term Memory (Hochreiter and
Schmidhuber, 1997). The bi-directional LSTM is
used in the Encoder for all 4 layers. We use batch

2http://opennmt.net
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size of 128 sentences (notably, the measurement
of batch size in Transformer is denoted by the
number of tokens, not sentences) and simply
trained with Stochastic Gradient Descent with
learning rate decay when the validation perplexity
does not improve (Luong et al., 2015).

For Transformer models, we set the base layer
size to 512, while the hidden layer in each Posi-
tion Wise Feed Forward network has 2048 neu-
rons, which matches the Base model in (Vaswani
et al., 2017).

The learning method is Adam (Kingma and Ba,
2014) with the learning rate schedule similar to the
original paper, with a minor difference that we in-
crease the number of warm up steps to 8192 and
double the base learning rate. If Dropout is ap-
plied, we use dropout at each Position Wise Feed
Forward hidden layer and the attention weights.

4.3 Model comparison
In a first series of experiment we compared dif-
ferent architectures (RNNs and Transformers) and
the influence of the deeps of the network. The
transformer-based models are implemented using
PyTorch (Paszke et al., 2017) and the source codes
are open sourced. 3. We provided our starting
point as a reference to our participation to the last
year’s shared task. Thus, we use the corpus con-
sisting of the Europarl, News Commentary, Rapid
Corpus and the cleaned Common Crawl, which is
then boosted with the back translation data pro-
vided by University of Edinburgh. The total data
size is around 9 million sentence pairs.

Model BLEU (newstest2017)
Baseline (RNN) 27.4
Transformer-4 27.8
Transformer-12 29.2
Transformer-24 29.7

Table 2: RNNs vs Transformers (various depths)
trained without paraCrawl.

As the results in Table 2 suggest, the baseline
model despite having larger model size (1024) and
being improved with dropout and label smoothing
is not able to outperform a base Transformer (hid-
den size 512 for every layer) with only 4 layers.
More importantly, the result scales over the Trans-
former’s depth, such subject will be covered in the
subsequent section. We managed to outperform

3https://github.com/isl-mt/NMTGMinor

the RNN baseline by 2.3 BLEU points just by in-
creasing the depth to 24 layers.

Though we do not provide any comparison with
respect to depth in Recurrent Neural Networks,
previous work (Britz et al., 2017) explores differ-
ent depths during training NMT models with sim-
ilar architectures to our baseline discovering that
it is not trivial to improve Recurrent NMT models
just by increasing depth even with residual con-
nections. It is notable that recent work (Chen et al.,
2018) empirically proved that RNN models with
hyper parameter tuning and layer normalization
strategy can perform on par with the Transformer.

4.4 Data Size

As illustrated above, the Transformer models pro-
duced strong results which can outperform the best
system of last year which is an ensemble of RNN
models (Sennrich et al., 2017). We proceed to im-
prove the system further by providing additional
training data. Table 3 shows that a naive addiction
of the paraCrawl data yields only a boost of 0.3
BLEU points, while our filtering method impres-
sively improves the result by 0.8.

Data News2017
Transformer-12 29.2
+paraCrawl 29.5
+ filtered paraCrawl 30.0

Table 3: Experiments using different data sizes

4.5 When do we need regularization

Deeper models are more likely to overfit, which
can be alleviated by using Dropout, specifically
in the Position-wise feed forward network in each
transformer block. We apply dropout at the the
embeddings, residual connections (the output of
the transformations before addiction) and at the at-
tention matrices with the same probability of 0.1)
The results in table 4 shows that Dropout started to
be effective when the model becomes deeper than
12, even though the difference in the 16 config-
uration is rather subtle. At 12 layers and below,
dropout seems to be unnecessary, possibly because
our corpus size has reach 40 million sentences (in-
cluded the filtered paraCrawl corpus).

Since we used the training regime which stops
after 100K steps (each updates the parameter
based on the batch size of about 25000 words), it
is possible that Dropout models requires training
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for more than such threshold, due to the fact that
a side effect of Dropout is to prolong the training
progress.

4.6 Deeper networks

To answer the empirical question if very deep net-
works can improve the translation performance
given abundant training data (as we have three
times more data than the first experiment w.r.t
depth), we managed to train networks as deep
as 32 layers. The results are shown in Table 5.
We observe significance improvement (0.7 BLEU
points) in the first incremental steps from 4 to 12.
The progress becomes stagnant from 16, and not
until reaching 32 layers did we manage to ob-
tain an additional 0.4 increase. The Transformer
network clearly benefits from depth, which was
not observed in Recurrent Network (Britz et al.,
2017), however the effect is diminishing at 12 lay-
ers, while training models as deep as 32 is not sim-
ple. To the best of our knowledge, our model con-
sists of totally 96+48+2 sub-blocks (encoders, de-
coders and input/output layers) which is the first
attempt to explore a network with this depth in
Neural Machine Translation.

Our training time ranges from 1 week with the
12-layer models to maximum of 2 weeks for the
32-layer models using single GTX 1080Ti graph-
ics cards.

4.7 Final submission

The final submission of KIT is the ensemble of 5
models using different layer sizes and switching
on and of dropout. Each of the models is already
an average of different checkpoints. The results
are summarized in Table 6. We found that the an
ensemble of 5 models is only able to increase the
score by 0.3, which shows that the 32-layer model
dominates others.

5 Conclusion

In conclusion, we described our experiments in the
news translation task in WMT 2018. The main fo-
cus of our submission was on data selection and
techniques to efficient train deep transformer mod-
els . While we were only able to improve the trans-
lation performance slightly by using the whole
ParaCrawl corpus, we could improve the transla-
tion performance by 0.8 BLEU points when using
a filtered version of the corpus. We successfully
filtered the data by using the translation probabili-

ties of a baseline NMT system. Secondly, we were
successfully in training a deep transformer model
on a single GPU. By increasing the depth of the
network by a factor of 4, we were able to gain ad-
ditional 1.2 BLEU points. This was only possible
by caching less data during training and recalcu-
lating them if needed.
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