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Abstract

In this paper we propose the first model for multiword expression (MWE) compositionality pre-
diction based on character-level neural network language models. Experimental results on two
kinds of MWEs (noun compounds and verb-particle constructions) and two languages (English
and German) suggest that character-level neural network language models capture knowledge of
multiword expression compositionality, in particular for English noun compounds and the par-
ticle component of English verb-particle constructions. In contrast to many other approaches
to MWE compositionality prediction, this character-level approach does not require token-level
identification of MWEs in a training corpus, and can potentially predict the compositionality of
out-of-vocabulary MWEs.

1 Introduction

Multiword expressions (MWEs) are lexical items that are composed of multiple words, and exhibit some
degree of idiomaticity (Baldwin and Kim, 2010), for example semantic idiomaticity, in which the mean-
ing of an MWE is not entirely transparent from the meanings of its component words, as in spill the
beans, which has an idiomatic meaning of ‘reveal a secret’. Compositionality is the degree to which the
meaning of an MWE is predictable from the meanings of its component words. It is typically viewed as
lying on a continuum, with expressions such as speed limit and gravy train lying towards the composi-
tional and non-compositional ends of the spectrum, respectively, and expressions such as rush hour and
fine line falling somewhere in between as semi-compositional.1 Compositionality can also be viewed
with respect to an individual component word of an MWE, where an MWE component word is com-
positional if its meaning is reflected in the meaning of the expression. For example, in spelling bee
and grandfather clock, the first and second component words, respectively, are compositional, while the
others are not.

Knowledge of multiword expressions is important for natural language processing (NLP) tasks such
as parsing (Korkontzelos and Manandhar, 2010) and machine translation (Carpuat and Diab, 2010). In
the case of translation, compositionality is particularly important because a word-for-word translation
would typically be incorrect for a non-compositional expression. Much research has therefore focused
on compositionality prediction of MWEs, primarily at the type level. One common approach to measur-
ing compositionality is to compare distributional representations of an MWE and its component words
(e.g., Schone and Jurafsky, 2001; Baldwin et al., 2003; Katz and Giesbrecht, 2006; Reddy et al., 2011;
Schulte im Walde et al., 2013; Salehi et al., 2015). The hypothesis behind this line of work is that the
representation of a compositional MWE will be more similar to the representations of its component
words than the representation of a non-compositional MWE will be to those of its component words.
One issue faced by such approaches is that token-level instances of MWEs must be identified in a corpus
in order to form distributional representations of them. Token-level MWE identification has been stud-
ied for specific types of MWEs such as verb-particle constructions (e.g., Kim and Baldwin, 2010) and

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1These expressions and compositionality judgements are taken from Reddy et al. (2011).
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verb–noun idioms (e.g., Salton et al., 2016). Broad coverage MWE identification has also been studied,
and remains a challenge (Schneider et al., 2014; Gharbieh et al., 2017).

Language models are common throughout NLP in tasks including machine translation (Brants et al.,
2007), speech recognition (Collins et al., 2005), and question answering (Chen et al., 2006). Although
word-level language models are widely used, and their performance can be higher than character-level
language models, character-level models have the advantage that they can model out-of-vocabulary
words (Mikolov et al., 2012). Owing to this advantage, character-level language models have been
applied in a range of NLP tasks, including authorship attribution, (Peng et al., 2003), part-of-speech
tagging (Santos and Zadrozny, 2014), case restoration (Susanto et al., 2016), and stock price prediction
(dos Santos Pinheiro and Dras, 2017). Moreover, character-level information can be composed to form
representations of words (Ling et al., 2015).

In this paper we consider whether character-level neural network language models capture knowledge
of MWE compositionality. We train character-level language models based on recurrent neural networks
— including long short-term memory (LSTM, Hochreiter and Schmidhuber, 1997) and gated recurrent
unit (GRU, Cho et al., 2014). We then use these language models to form continuous vector representa-
tions of MWEs and their component words. Following prior work, we then use these representations to
predict the compositionality of MWEs. This method overcomes the limitation of previous work in this
vein of having to identify token instances of MWEs in a corpus in order to form a distributional represen-
tation of them. Moreover, this approach could potentially be applied to predict the compositionality of
out-of-vocabulary expressions that were not seen in the corpus on which the language model was trained.
To the best of our knowledge, this is the first work to apply character-level neural network language mod-
els to predict MWE compositionality. Our experiments on two kinds of MWEs (noun compounds and
verb-particle constructions) and two languages (English and German) produce mixed results, but suggest
that character-level neural network language models do indeed capture some knowledge of multiword
expression compositionality, in particular for English noun compounds and the particle component of
English verb-particle constructions.

2 A Character-level Model for MWE Compositionality

If an MWE is compositional, it is expected to be similar in meaning to its component words. Since
the vector representation of a word/MWE is taken as a proxy for its meaning, we expect the vector
representation of a compositional MWE to be similar to its component words’ vectors. In order to obtain
vectors representing each of an MWE and its component words through a character-level neural network
language model, each of the MWE and its component words are considered as a sequence of characters.
Each of these character sequences includes a special end-of-sequence character. In the case of an MWE,
the character sequence includes a space character between the component words. For example, the
MWE ivory tower is represented as the sequence < i, v, o, r, y, , t, o, w, e, r,END >. These character
sequences are fed to the neural network language model, and the hidden state of the neural network at
the end of the sequence is taken as the vector representation for that sequence.2

Once vector representations of an MWE and its component words are obtained, following Salehi et al.
(2015), the following equations are then used to compute the compositionality of an MWE:

comp1(MWE) = αsim(MWE,C1) + (1− α)sim(MWE,C2) (1)

comp2(MWE) = sim(MWE,C1 +C2) (2)

where MWE is the vector representation of the MWE, and C1 and C2 are vector representations for the

2This approach does have the limitation that it is not immediately clear how to input a “gappy” MWE, such as give X a
chance, to the language model. A possible solution would be to attempt to select a prototypical slot filler. However, this issue
does not arise in this study because the evaluation datasets used — English and German noun compounds, and English verb-
particle constructions — do not consist of gappy expressions. (Although English verb-particle constructions can appear in the
split configuration, we input them to the language model in the joined configuration.)
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Language Number of Characters Number of Tokens Size
English 102M 16.5M 103 MB
German 102M 14.2M 102 MB

Table 1: The size of the English and German training corpora in terms of characters, tokens, and
megabytes.

first and second components of the MWE, respectively.3 In both cases, we use cosine as the similarity
measure. comp1 is based on Reddy et al. (2011). As shown in equation (1), the compositionality of an
MWE is computed based on measuring the similarity of the MWE and each of its component words, and
then combining these two similarities into an overall compositionality score. comp2 is based on Mitchell
and Lapata (2010) and measures compositionality by considering the similarity between the MWE and
the summation of its component words’ vectors.

3 Materials and Methods

In this section, we describe the language model and corpus it was trained on, as well as the evaluation
dataset and methodology.

3.1 Language Model

We use a publicly available TensorFlow implementation of a character-level RNN language model.4 We
use the following parameter settings as defaults: a two-layer LSTM with one-hot character embeddings
and a hidden layer size of 128 dimensions. The batch size, learning rate, and dropout are set 20, 0.002,
and 0, respectively.5 We consider some alternative parameter settings to these defaults in section §4.

3.2 Training Corpus

We train language models over a portion of English and German Wikipedia dumps — following Salehi
et al. (2015) — from 20 January 2018. The raw dumps are preprocessed using WP2TXT6 to remove
wikimarkup, metadata, and XML and HTML tags.

The text from Wikipedia contains many characters that are not typically found in MWEs, for example,
non-ASCII characters. Such characters drastically increase the size of the vocabulary of the language
model, which leads to very long training times. We therefore remove all non-ASCII characters from the
English dump, and all non-ASCII characters other than ä, Ä, ö, Ö, ü, Ü, ß from the German dump.

Training the character-level language model over the Wikipedia dumps in their entirety would take a
prohibitively long time due to their size. We therefore instead carry out experiments training on a 1%
sample of the English dump, and a 2% sample of the German dump (to give a corpus of similar size to
the English one). Details of the resulting training corpora are provided in table 1.

3.3 Evaluation Data

The proposed model is evaluated over the same three datasets as Salehi et al. (2015), which cover two
languages (English and German) and two kinds of MWEs (noun compounds and verb-particle construc-
tions).

ENC This dataset contains 90 English noun compounds (e.g., game plan, gravy train) which are anno-
tated on a scale of [0,5] for both their overall compositionality, and the compositionality of each of
their component words (Reddy et al., 2011).

3Although comp1 and comp2 are formulated for MWEs with two component words, they could be extended to handle
MWEs with more than two component words.

4https://github.com/crazydonkey200/tensorflow-char-rnn
5These settings were used for a pre-trained language model that is distributed with this implementation, and so we adopted

them as our defaults.
6https://github.com/yohasebe/wp2txt



188

Dataset Comp1 Comp2 Salehi et al. (2015)
ENC *0.239 *0.286 0.717
EVPC: verb 0.012 0.019 0.289
EVPC: particle *0.313 *0.301 -
GNC −0.033 −0.096 0.400

Table 2: Pearson’s correlation (r) for each dataset, using comp1 and comp2. Significant correlations (p <
0.05) are indicated with *. The best results from Salehi et al. (2015) using comp1 with representations
of the MWE and component words obtained from word2vec (Mikolov et al., 2013), are also shown.

EVPC This dataset consists of 160 English verb-particle constructions (e.g., add up, figure out) which
are rated on a binary scale for the compositionality of each of the verb and particle component words
(Bannard, 2006) by multiple annotators; no ratings for the overall compositionality of MWEs are
provided in this dataset. The binary compositionality judgements are converted to continuous values
as in Salehi et al. (2015) by dividing the number of judgements that an expression is compositional
by the total number of judgements.

GNC This dataset contains 244 German noun compounds (e.g., Ahornblatt ‘maple leaf’, Knoblauch
‘garlic’) which are annotated on a scale of [1,7] for their overall compositionality, and the compo-
sitionality of each component word (von der Heide and Borgwaldt, 2009).

3.4 Evaluation Methodology
We evaluate our proposed approach following Salehi et al. (2015) by computing Pearson’s correlation
between the predicted compositionality (i.e., from either comp1 or comp2) and human ratings for overall
compositionality. For EVPC, no overall compositionality ratings are provided. In this case we report the
correlation between the predicted compositionality scores and both the verb and particle compositionality
judgements.7

4 Results

We begin by considering results using the default settings (described in section §3.1) using both comp1
and comp2. For comp1, we set α to 0.7 for ENC and GNC following Salehi et al. (2015); for EVPC we
set α to 0.5. Results are shown in table 2. For ENC, and the particle component of EVPC, both comp1
and comp2 achieve significant correlations (i.e., p < 0.05). However, for GNC, and the verb component
of EVPC, neither approach to predicting compositionality gives significant correlations. These corre-
lations are well below those of previous work. For example, using comp1 with representations of the
MWE and component words obtained from word2vec (Mikolov et al., 2013), Salehi et al. (2015) achieve
correlations of 0.717, 0.289, and 0.400 for ENC, the verb component of EVPC, and GNC, respectively.8

Nevertheless, the results in table 2, and in particular the significant correlations for ENC and the parti-
cle component of EVPC, indicate that character-level neural network language models do capture some
information about the compositionality of MWEs, at least for certain types of expressions.

We now consider the compositionality of individual component words. Because of the low correlations
on GNC in the previous experiments, we do not consider it further here. In this case, we compute
the compositionality of a specific component word as below, where C is the vector representation of a
component word.

comp(C) = sim(MWE,C) (3)

Note that this corresponds to comp1 with α = 1 or 0, in the case of the first and second component
words, respectively. We compare these compositionality predictions with the human judgements for

7In this case Salehi et al. (2015) took the verb compositionality as a proxy for the overall compositionality, and did not
consider particle compositionality.

8Salehi et al. (2015) did not consider the compositionality of the particle component for EVPC.
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Dataset word 1 word 2
ENC 0.135 *0.335
EVPC 0.019 *0.200

Table 3: Pearson’s correlation (r) for the ENC and EVPC datasets for each of component word 1 and 2.
Significant correlations (p < 0.05) are indicated with *.

Dataset Number of MWEs Comp1 Comp2

ENC
Attested 66 *0.296 *0.372

Unattested 24 0.040 0.049

EVPC: verb
Attested 147 0.019 0.010

Unattested 13 0.034 *−0.208

EVPC: particle
Attested 147 *0.313 *0.286

Unattested 13 0.366 0.385

GNC
Attested 167 0.009 −0.067

Unattested 77 −0.110 −0.154

Table 4: Pearson’s correlation (r) for MWEs that are attested, and unattested, in each dataset, using
comp1 and comp2. Significant correlations (p < 0.05) are indicated with *. The number of attested and
unattested MWEs in each dataset is also shown.

the compositionality of the corresponding component word. Results are shown in table 3. For EVPC,
the results are perhaps not surprising given the previous findings, with a significant correlation being
achieved for the particle (word 2) but not the verb (word 1). In the case of ENC, a significant correlation
is also achieved for the second component word, but not the first.

The above results suggests that the model is better able to predict the compositionality of the sec-
ond component word of an MWE than the first. To determine whether there is a relationship between
the directionality of a character-level language model and the compositionality information it can cap-
ture, we also consider a backward LSTM that was trained by reversing the training corpus. The MWE
and its component words were then reversed when computing compositionality. However, none of the
correlations from this approach were significant.

One interesting aspect of our proposed model is that it can potentially predict the compositionality of
out-of-vocabulary expressions that are not observed in the training corpus. In table 4 we present results
for each dataset, in the same setup as for table 2, but computing the correlation separately for MWEs that
are attested, and unattested, in the training corpus. For ENC, both compositionality measures achieve
significant correlations for attested expressions, but not for unattested ones, suggesting that the model
cannot predict the compositionality of unseen expressions. In the case of the compositionality of the par-
ticle component of EVPC, for both comp1 and comp2, the correlations for the unattested expressions are
higher than for the attested ones, although for unattested expressions the correlations are not significant.
The relatively small number of unattested expressions in EVPC (13) could play a role in this finding. To
further investigate this, we focused on expressions in EVPC with less than 5 usages in the training corpus.
There are 71 such expressions. For the compositionality of the particle component, comp1 and comp2
achieve correlations of 0.327 and 0.308, respectively. These correlations are significant (p < 0.05). Word
embedding models — such as that used in the approach to predicting compositionality of Salehi et al.
(2015) — typically do not learn representations for low frequency items.9 These results demonstrate
that the proposed model is able to predict the compositionality for low frequency items, that would not
typically be in-vocabulary for word embedding models, and for which compositionality models based
only on word embeddings would not be able to make predictions.10 For GNC, and the verb component

9Salehi et al. (2015) used a minimum frequency of 15, for example.
10Note, however, that Salehi et al. (2015) were able to make predictions for all items in EVPC because they trained on a

larger corpus (full Wikipedia dumps, as opposed to samples of them) and all items in this dataset were sufficiently frequent in
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of EVPC, in line with the previous results over the entire dataset, neither compositionality measure gives
significant correlations, with the exception of the verb component of EVPC using comp2 for unattested
expressions, although again the number of expressions here is relatively small.

In an effort to improve on the default setup we considered a range of model variations. In particular we
considered an RNN and GRU (instead of an LSTM), character embeddings of size 25 and 50 (instead of
a one-hot representation), increasing the batch size to 100 (from 20), using dropout between 0.2–0.6, and
using a bi-directional LSTM. None of these variations led to consistent improvements over the default
setup.

5 Conclusions

In this paper we proposed an approach to predicting the compositionality of multiword expressions based
on a character-level neural network language model. To the best of our knowledge, this is the first work to
consider such character-level models for this task. Our proposed character-level approach has an advan-
tage over prior approaches to compositionality prediction based on distributed representations of words
in that we do not require token-level identification of MWEs in order to form representations of them.
Our proposed approach can furthermore potentially predict the compositionality of out-of-vocabulary
MWEs that are not observed in the training corpus. We carried out experiments over three composi-
tionality datasets: English and German noun compounds, and English verb-particle constructions. Our
experimental results indicate that character-level neural network models do capture knowledge of mul-
tiword expression compositionality, at least in the case of English noun compounds and the particle
component of English verb-particle constructions. We further find that our proposed model captures
knowledge of the compositionality of the particle component of English verb-particle constructions that
are low frequency or not observed in the training corpus, but not of the compositionality of unobserved
English noun compounds.

In future work we intend to further explore the various parameter settings of the language model —
such as the batch size, learning rate, and dropout — to better understand their impact on MWE compo-
sitionality prediction. We also intend to train the language model on larger corpora. Finally, we intend
to combine our character-level approach to compositionality prediction with approaches based on other
sources of information, for example distributed representations of words and knowledge from translation
dictionaries (Salehi et al., 2014). Specifically, we intend to determine whether the compositionality in-
formation from character-level neural network language models is complementary to that in these other
approaches.
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