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Abstract 

Inuktitut is a polysynthetic language spoken in Northern Canada and is one of the official lan-
guages of the Canadian territory of Nunavut.  As such, the Nunavut Legislature publishes all of 
its proceedings in parallel English and Inuktitut.  Several parallel English-Inuktitut corpora 
from these proceedings have been created from these data and are publically available.  The 
corpus used for current experiments is described.  Morphological processing of one of these 
corpora was carried out and details about the processing are provided. Then, the processed 
corpus was used in morphological analysis and machine translation (MT) experiments.  The 
morphological analysis experiments aimed to improve the coverage of morphological pro-
cessing of the corpus, and compare an additional experimental condition to previously pub-
lished results.  The machine translation experiments made use of the additional morphological-
ly analyzed word types in a statistical machine translation system designed to translate to and 
from Inuktitut morphemes.  Results are reported and next steps are defined.  

1 Introduction 

Inuktitut is a polysynthetic language spoken in all areas of Canada north of the treeline, and is one 
of a group of closely related Inuit languages that includes Inuinnaqtun, Inuvialuktun, Kalaallisut 
(Greenlandic) and others; there are about 35,000 speakers of these languages in Canada.  Inuktitut is of 
great interest to researchers in machine translation (MT) because it is one of the official languages of a 
bureaucracy, the government of the Canadian territory of Nunavut, which is continually generating 
parallel texts: Inuktitut in parallel with English. High-quality MT depends on the existence of large 
quantities of parallel text that can be used to train MT systems. While its elevated status as an official 
language has helped to maintain its use, because of the low number of speakers, it has not received a 
lot of attention by the natural language processing (NLP) research and development community. From 
a research point of view, the Inuktitut-English language pair is a best-case scenario for people inter-
ested in MT into and out of a polysynthetic language. If we eventually succeed in building high-
quality Inuktitut-to-English and English-to-Inuktitut MT systems, the lessons learned may be applica-
ble to other language pairs in which one of the languages is polysynthetic. From a practical point of 
view, good Inuktitut-to-English and English-to-Inuktitut MT systems could be used to generate first-
draft translations that would make translators working for the Nunavut government more productive, 
and thus assist the survival and revitalization of the Inuktitut language.  Furthermore, NLP tools such 
as spell checkers or machine translation would greatly benefit speakers of Inuktitut and help to main-
tain their language by enhancing the speakers’ use of the internet or mobile technologies, for example.  
Because Inuktitut has complex morphology, any such NLP or MT tools will require the development 
of an accurate morphological analyzer.  The purpose of this current line of research is to further devel-
op an existing morphological analyzer, the Uqailaut analyzer, and we report on progress and the use of 
this work in downstream machine translation experiments. 

The structure of this paper is as follows:  first, we describe the Inuktitut language in terms of mor-
phological complexity; second, we describe the Nunavut Hansard corpus and the processing that was 
applied to it; third we describe the existing morphological analyzer, the Uqailaut analyzer; fourth, we 
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present an extension of previous experiments on morphological analysis; fifth, we describe machine 
translation experiments; finally, we discuss future work envisioned. 

2 Background 

2.1 The Inuktitut Language 

The Inuktitut Language is polysynthetic, and is often used to demonstrate what is meant by 
polysynthesis.  Inuktitut words are very long: they often correspond to what is expressed in a full 
clause in other languages like English.  For example, the two words Qanniqlaunngikkalauqtuqlu 
aninngittunga mean “Even though it’s not snowing a lot, I’m not going out,” with each word corre-
sponding to one clause in English. 

2.2 Inuktitut Word Structure 

Inuktitut words generally consist of a root followed by zero or many lexical postbases, followed by 
a grammatical suffix and possibly a clitic (Dorais, 1990).  Lexical postbases can be added recursively, 
and this is what makes Inuktitut words so long.  It is also in the lexical affixes where incorporation is 
found, with a small set of adjectival and light verb postbases.   One of the example words above can be 
broken into component morphemes as follows: 

 
Qanniqlaunngikkalauqtuqlu 
qanniq  -lak        -uq                 -nngit    -galauq       -tuq          -lu   
snow    -a_little -frequently   -NOT      -although  -3.IND.S   -and  
“And even though it’s not snowing alot,” 

 
In this example, qannik is a root, lak, uq, nngit, galauq are lexical postbases, tuq is a grammatical suf-
fix, and lu is a clitic. 

 

2.3 Inuktitut Morphophonemics 

In addition to the ability of roots to be extended with postbases and suffixes, the morphophonemics 
of Inuktitut are quite complex.  Each morpheme in Inuktitut can surface differently depending on its 
context: this affect its own realization as well as the previous morpheme’s realization, and these 
changes are not phonologically conditioned, but must be learned for each morpheme.  As a result, 
morphological analysis cannot proceed as mere segmentation, but rather, each surface segmentation 
must map back to an underlying morpheme.  In this paper, we refer to these different morpheme forms 
as ‘surface’ morphemes and ‘deep’ morphemes.  The example below demonstrates some of the typical 
morphophonemic alternations that can occur in an Inuktitut word, using the word 
mivviliarumalauqturuuq, ‘he said he wanted to go to the landing strip’: 

 
Romanized Inuktitut word:        mivviliarumalauqturuuq 
Surface segmentation               miv   -vi          -lia        -ruma   -lauq   -tu             -ruuq 
Deep form segmentation          mit    -vik       -liaq      -juma   -lauq    -juq           -guuq 
Gloss    land   -place  -go_to   -want   -PAST   -3.IND.S   -he_says 
 
We proceed from the end to the beginning to explain the morphophonemic rules.  The morpheme 

‘guuq’ is a UVULAR ALTERNATOR1, which means the ‘g’ can be realized as different uvular conso-
nants depending on what precedes it.  So ‘guuq’ changes to ‘ruuq’ and it also deletes the preceding 
consonant ‘q’ of ‘juq.’  The morpheme ‘juq is a CONSONANT ALTERNATOR, which means it shows 
an alternation in its first consonant, which appears as ‘t’ after a consonant, and ‘j’ otherwise.  The 
morpheme ‘lauq’ is NEUTRAL after a vowel, so there is no change.  The morpheme ‘juma’ is like 
‘guuq’, a uvular alternator, and it deletes.  So ‘juma’ becomes ‘ruma,’ and the ‘q’ of the preceding 
morpheme is deleted.  Note, however, how this alternation differs from that found with ‘guuq,’ be-

                                                      
1 The names of the various morphophonological processes are those used in (Mallon, 2000) and are not meant to be general 
terms.  
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cause the underlying initial phoneme is different. The morpheme ‘liaq’ is a DELETER, so the preced-
ing ‘vik’ becomes ‘vi.’  Finally, ‘vik’ is a VOICER, which causes the preceding ‘k’ to assimilate com-
pletely, so ‘mik’ becomes ‘miv’ (Mallon, 2000)2. 

The combination of many morphemes and morphophonemic alternations not phonologically condi-
tioned, makes it absolutely necessary to have a good morphological analyzer for any downstream NLP 
application.  But before looking at the available analyzer, and current experimental results, however, 
we first discuss the available dataset. 

3 The Nunavut Hansard Corpus 

The Inuktitut-English corpus, referred to here as the Nunavut Hansard (NH) corpus, originated dur-
ing the ACL 2003 Workshop entitled “Building and Using Parallel Texts: Data-driven Machine Trans-
lation and Beyond3,” and was made available to researchers during this workshop.  The data was sub-
sequently used for a shared task on alignment that took place in the same workshop in 20054.  Partici-
pants were asked to develop methods of word alignment for this data set, which, at the time, was the 
only parallel data set containing English and a polysynthetic language, presenting a challenge to the 
state of the art in word alignment.   The dataset was assembled and sentence-aligned, and is described 
in Martin et al. (2003).  The data that was downloaded and used in the experiments described in this 
paper was version 1.1.  Note, the version 1.1 dataset is one file containing a line of Inuktitut, a separa-
tor line, a line of English, and another separator line.  This dataset was subsequently processed for use 
in the second workshop mentioned, and provided in the form of three zip files, one containing a “train-
ing” set, one a “trial” set, and one, a “test” set5.  The trial and test sets contained data held out from the 
training set, and used to develop and test the word alignment algorithms.  The data in the training set, 
however, contained two parallel English and Inuktitut files, and it was these files that were used as the 
starting point for subsequent pre-processing. 

3.1 Corpus Statistics 

The corpus that was processed and used in downstream MT experiments contains 340,526 lines of 
parallel text.  The English side contains 3,992,298 tokens, with 27,127 types.  The Inuktitut side con-
tains 2,153,034 tokens, with 417,406 types.  The type-token ratios of the two data sets are dramatically 
different: 0.0067 for English vs. 0.1938 for Inuktitut.  The percentage of singletons is also dramatically 
different, with 32.41% in English, vs. 80.93% in Inuktitut.  The average word length in characters is: 
4.26 in English and 9.31 in Inuktitut.  The average line length (number of words in line) is 11.72 in 
English and 6.22 in Inuktitut. 

 
 English Inuktitut  
Tokens  3,992,298 2,153,034  
Types 27,127 417,406 
Type-token ratio 0.0067 0.1938 
Percentage of singletons 32.41% 80.93% 
Average word length in 
characters 

4.26 9.31 

Average line length in 
words 

11.72 6.22 

 
Table 1: Nunavut Hansard Corpus Statistics 

3.2 Sample Text from the Corpus 

The corpus text is typical for legislative proceedings, containing many “Thank you, Mr. Speaker” or 
“Agreed” lines.  As such, the corpus is quite redundant.  The most frequent line is “Thank you, Mr. 
                                                      
2 Mallon lists this morpheme as ‘mit,’ however, the Uqailaut dictionary has ‘mik/1  to land or alight after flight’ so it appears 
the Mallon example contains an error. 
3 http://web.eecs.umich.edu/~mihalcea/wpt/ 
4 http://www.statmt.org/wpt05/ 
5 These files are no longer available.  The link to them is broken.  However, they can be reconstituted from the original ver-
sion 1.1 text file 
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Speaker,” appearing approximately 17,000 times.  Other than frequently occurring turns of phrase typ-
ical of legislative proceedings, the corpus covers various topics germane to the domain of legislature 
such as taxation, community projects, or committee reports.  Below we see some examples of text 
from the English side of the corpus : 

 
Many of the committees' general observations and comments will be reflected in the re-
ports of the other Standing Committees. 
The success of its' implementation depends upon people at all levels of government hav-
ing a clear understanding of the concept and its' critical importance. 
If there are no further questions on the motion, all those in favour to the motion? 
I wanted to return to a previous issue in regards to income tax. 
Mr. Speaker, decisions surrounding capital projects and which ones were to proceed this 
year were based on three criteria. 

4 Morphological Processing 

The current line of research detailed here concerns the processing of morphologically complex lan-
guages like Inuktitut for downstream applications such as MT. A crucial step in working with such 
data is to perform morphological analysis.  A hand-made Inuktitut morphological analyzer was devel-
oped at the Institute for Information Technology within the National Research Council of Canada 
(Farley, 2009)6.  The analyzer was used as downloaded, with no alterations to the source code whatso-
ever.  The analyzer takes an Inuktitut word as input and returns a morphological analysis or multiple 
morphological analyses if the word is ambiguous.  When multiple analyses are returned, they are re-
turned in multiple lines.  Each analysis consists of a string of morphemes and related analysis infor-
mation, enclosed in curly braces, in the form of: 

 
{<surface form>:<deep form>/<morphological analysis information>}{..}{..}..etc. 

 
For example, for the word “maligarmut,” meaning “bill, law; something that one follows,” in the 

dative case, the analyzer returns: 
 

{maligar:maligaq/1n}{mut:mut/tn-dat-s} 
{mali:malik/1v}{gar:gaq/1vn}{mut:mut/tn-dat-s} 

 
As the analyzer was written in Java, it can be run anywhere.  Upon initial investigation of the speed 

of the analyzer, running it on a standalone laptop, it was determined that certain strategies should be 
applied to minimize the time spent running the analyzer, since each word analyzed could take any-
where from less than a second to minutes to run.  Since the analyzer does not rely on context, we de-
cided to collect up each and every ‘type’ in the Inuktitut corpus, rather than running the analyzer on 
each and every ‘token’: there are a total of 2,153,034 tokens, in the corpus, represented by 417,406 
unique types.  A database (in multiple file format) of the analyses provided for each word type was 
created and used in later processing steps to assign the appropriate analysis to each token in the cor-
pus.  Types which consisted of alphanumeric characters mixed with numerals, which were often typo-
logical processing errors, were filtered out, since these types were shown to fail during morphological 
processing.  As a result, the final number of types for processing was reduced to 413,553. After run-
ning the analyzer, there were a total of 287,858 analyzed types, 124,189 types which the analyzer 
could not process, and a negligible number of types which caused processing errors (1,506).   

Comparing to previous work to analyze this corpus with this analyzer, Nicholson et al. (2012) report 
that the analyzer is able to provide at least a single analysis for approximately 218K Inuktitut types 
(65%) from the Nunavut Hansard corpus.  Their 218K number may be an error, since they report the 
number of types to be 416K. Nonetheless, their finding that the analyzer does not process each and 
                                                      
6 It is still currently available at http://www.inuktitutcomputing.ca/Uqailaut/ for downloading 
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every type is in line with the current work, with approximately 30% of the types from the corpus not 
having an analysis. 

4.1 Distribution of the Number of Analyses per Type 

The number of morphological analyses per type in the Nunavut Hansard corpus varies.  The range is 
from one to 14,596 (for the type, “piliriaksarijattinniittuni”), with a mean of 39.04, a median of nine 
and a mode of two.  So most types have at least two analyses, half of the types have up to nine anal-
yses, and there are some extreme cases. 

5 Morphological Analyzer Experiments and Downstream Machine Translation Exper-
iments  

The morphological analyses have been used in two sets of downstream experiments, and will be 
used in continued experiments in this line of research as it progresses. 

5.1 Morphological Analyzer Experiments 

One set of experiments involved learning a model from the analyzed data to perform morphological 
analysis of the remaining types which the Uqailaut analyzer could not analyze.  Micher (2017) used a 
segmental recurrent neural network (SRNN) (Kong, Dyer, & Smith, 2015) The results from that work 
are summarized and presented here for the reader’s convenience, and a new experimental condition is 
reported. 

The models in Micher (2017) were trained with approximately 23K types having a single analysis 
from the Uqailaut analyzer. The reason for using only those with a single analysis is that they can be 
argued as being the most accurate, according to the Uqailaut analyzer, i.e. there is no ambiguous out-
put to choose from.  Inputs to the model are sequences of characters, and outputs are labels with the 
number of characters that each label covers.  Three experimental conditions were designed, reported in 
(Micher, 2017) and summarized here.  The first condition (CG) used coarse-grained output labels (16 
total), identifying the general type of morpheme, similar to POS tags.  The second (FG) used fine-
grained output labels (1691 total) reflecting complete morphological information about each mor-
pheme.  The third (FG-SO, “fine-grained, suffixes only”) looked at whether the confusion produced by 
the model could be attributed at least somewhat to the root morphemes, likened to “open-class” vo-
cabulary with high variation, by measuring the precision, recall and F-scores over suffixes alone, with 
the fine-grained label output.  The rational for this experimental condition is the following: root mor-
phemes are similar to “open-class” words in that they represent objects and events.  The lexical 
postbases, grammatical suffixes, and clitics are similar to “closed class” words in that their number is 
fixed and the category cannot generally increase. There are far fewer suffixes in Inuktitut than roots 
(potentially unbounded), and for this reason, it was hypothesized that the analyzer would be able to 
analyze most of the suffixes but perhaps not all of the roots.   

Two held out sets (referred to as “dev” and “test”, although the “dev” set was merely an additional 
test set and not used for development purposes) were created.  Initially, 1000 items for each set were 
held out, but because the neural network could not process unseen labels occurring in the two held-out 
sets, these were reduced to 449 test items each (see (Micher, 2017) for details of the selection process). 
The two test sets were then run through the model and precision, recall, and F-scores for both segmen-
tation and segmentation+tagging were calculated on the output.  These measures are typical in this 
type of research. 

A fourth experimental condition (FG-UNK), not yet published, was devised to address the modeling 
problem of unseen labels.  As is typically currently done in computational modeling of language, data 
items with fewer than a preselected number of items are replaced with an unknown symbol label 
(<UNK>) to ensure that all items found in test and development sets are present in training.  As such, 
the <UNK>  label was added to the output vocabulary, and the two test sets were resampled, with 1000 
items each.  Any label in the test sets not appearing in the training data was then changed to <UNK> 
and the experiments were re-run.  Table 2 below summarizes the results from (Micher, 2017) and the 
new results with <UNK> labels. 

As can be seen, the CG output is the best, and this stands to reason, the model only has to decide be-
tween 16 labels, versus 1691 (or 1692 labels, in the case of FG-UNK).  The FG condition fares worse, 
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only reaching approximately 86% or 83% accuracy in the segmentation only task, and even worse in 
the segmentation plus tagging task. However, this condition can only fairly be compared to the third 
condition, FG-SO, in which the test sets are identical.  In this case, the accuracy measured on the suf-
fixes only is indeed better than that measured over the full words, which supports the idea that such an 
analyzer can at least do better on certain parts of the words it’s analyzing, the suffixes, because the 
decision space is smaller and better defined. Indeed, the tagging task, although still lower than the 
segmentation task, is much improved in FG-SO compared to FG.  The fourth condition (FG-UNK) can 
only fairly be compared to the first condition, CG.  We see lower segmentation and tagging scores, but 
the lower scores are not as dramatically low as in FG and FG-SO, which could partially be attributed 
to the lower number of test items in these sets.  Given that the FG-UNK model is choosing among 
1692 labels, as compared to the 16 labels in CG, the lower results should not be interpreted as a disap-
pointment. 

model  set  seg/ 
tag  

prec. recall  f-
measure  

CG  dev  seg  0.9627  0.9554  0.9591  
 1000  tag 0.9602  0.9529  0.9565  
 test  seg  0.9463  0.9456  0.9460  
 1000  tag  0.9430  0.9424  0.9427  

FG  dev  seg  0.8640  0.8647  0.8644  
 449  tag  0.7351  0.7357  0.7354  
 test  seg  0.8291  0.8450  0.8369  
 449  tag  0.7099  0.7235  0.7166  

FG-SO dev seg 0.8838 0.8860 0.8849 
 449 tag 0.8178 0.8199 0.8188 
 test seg 0.8560 0.8807 0.8682 
 449 tag 0.7922 0.8151 0.8035 

FG-UNK  dev 
1000  

seg  0.9229  0.9206  0.9218  
 tag  0.8649  0.8627  0.8638  
 test seg  0.9169  0.9167  0.9168  
 1000  tag  0.8582  0.8581  0.8582  

 
Table 2: SRNN Morphological Analysis Experimental Results : From (Micher, 2017) and new condition, FG-

UNK reported 

5.2 Downstream Machine Translation Experiments 

We report here on a set of machine translation experiments7 which made use of the morphologically 
analyzed corpus detailed earlier and the SRNN system details in the previous section.  We experiment-
ed with statistical machine translation from Inuktitut to English and English to Inuktitut, incorporating 
the results of the previously discussed neural morphological analyzer, into the Nunavut Hansard cor-
pus for words that do not have an analysis from the Uqailaut analyzer.  We used the segmentations ob-
tained from the coarse-grained analyzer previously discussed, as these have the best scores out of all 
of the conditions examined.  We compared three conditions: 1) full Inuktitut words 2) segmented Inuk-
titut words for those words that the Uqailaut analyzer provided an analysis for, choosing the first anal-
ysis provided when multiple analyses are available, and 3) full segmentation, incorporating the seg-
mentation from the SRNN described above for those words not having an analysis.  We ran the exper-
iments over two separate divisions of the data into training, dev and test sets, insuring no overlap be-
tween train/test or train/dev sets, and we computed statistical significance in each set according to the 
bootstrap resampling method presented in (Koehn P. , 2004). We used the Moses toolkit (Koehn, et al., 
2007) to create the models.  We report BLEU scores (Papineni, Roukos, Ward, & Zhu, 2002) for the 
full word systems, and m-BLEU scores (Luong, Nakov, & Kan, 2010) for the morpheme-based sys-
tems.  Table 3 displays the results. 

 
 

                                                      
7 “Machine Translation for a Low-Resource, Polysynthetic Language”  presentation at AMTA, 2016, October 31, 2016. 
https://amtaweb.org/wp-content/uploads/2016/09/AMTA2016Programv6.html 
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Set 1a  1b  2a  2b  

 
Direction IU->EN EN->IU IU->EN EN->IU 

Model     
Full Inuktitut words 25.6 14.18 22.74 12.54 
Morphed Uqailaut (70%) 
+ nothing 29.43  20.09 28.34 18.39 
Morphed Uqailaut (70%) 
+Neural Morph(30%) 30.35 19.61 *29.85 18.56 

 
Table 3: Statistical Machine Translation to and from English (*denotes statistical significance at p < 0.05) 

 
Admittedly, the results presented in Table 3 are problematic.  Upon first glance, it appears that the 

morphologically analyzed (morphed) Inuktitut systems are all better than the systems that translate full 
words.  However, it should be noted that the morphed scores are m-BLEU scores, whereas those over 
the full word systems are normal BLEU scores.  To make up for this mismatch, we recalculated the m-
BLEU scores to yield BLEU scores by rejoining, wherever possible, strings of morphemes back into 
full words.  While these scores do indeed come out higher, they are not shown to be significant, at ei-
ther the p < 0.05 or p < 0.1 levels.  For set 1b, we get a BLEU score of 14.89 with a range of [13.46, 
16.33] at 95% confidence and [13.76, 16.11] at 90% confidence, and for set 2b, we get a BLEU score 
of 13.39, with a range of [12.20, 14.59] at 95% and [12.34, 14.38] at 90%. 

 We do, however, get at least one significant result (at p < 0.05) when comparing the gains 
from having more words morphologically analyzed.  For set 2a, the 100% morphed 29.85 (95% confi-
dence interval of [28.63, 31.22]) is indeed significant over the 28.34 score from the 70% morphed cor-
pus. However we do not get the same significance for set 1.  Both sets 1 and 2 were randomly chosen 
from the full corpus, avoiding any duplicates between train and test, and tune and test sets.  This situa-
tion points to significant differences in the two sets of data. Indeed, we built the second set precisely 
because we did not measure significance on the first set and these results warrant further testing, by 
building additional sample sets, at a minimum. 

 

6 Future Work 

Future work with this morphologically analyzed corpus will entail further work to improve the cov-
erage of morphological analysis, using various neural network architectures ; improving the machine 
translation results thus far obtained by using alternate neural network architectures ; and increasing the 
amount of data available for this line of research by processing more of the available Nunavut Hansard 
data, and making use of the word types with ambiguous analyses. 

7 Related Work 

There is abundant work on computational approaches to morphological segmentation, and research-
ers currently are applying neural network models to the problem.. Few researchers, however, have 
looked at how to map the segmentations obtained to a meaningful unit. Kohonen et al. (2006) map 
surface segments (allomorphs) to common morphemes (deep morphemes) using character rewrite 
rules learned automatically for Finnish. However, they only treat roots and not suffixes.  To resolve 
cases of homography rather than collapse allomorphs to common morphemes, Bernhard (2007) exam-
ines whether surface forms can be labeled with stem/base, prefix, suffix, or linking element  Morpho-
logical inflexion generation is investigated in (Faruqui, Tsvetkov, Neubig, & Dyer, 2015), which mod-
els a mapping from a base form plus features to a surface form.  However, this is the opposite of what 
we are trying to accomplish here.  Specifically for Inuktitut, Johnson and Martin (2003) propose an 
unsupervised analysis technique which makes use of hubs in an automaton, but they do not carry out 
experiments with it and report on their findings.  No further work on morphological analysis of Inukti-
tut has been found. 
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