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Abstract 

We investigate the quality of task specific 
word embeddings created with relatively 
small, targeted corpora. We present a 
comprehensive evaluation framework 
including both intrinsic and extrinsic 
evaluation that can be expanded to named 
entities beyond drug name. Intrinsic 
evaluation results tell that drug name 
embeddings created with a domain 
specific document corpus outperformed 
the previously published versions that 
derived from a very large general text 
corpus. Extrinsic evaluation uses word 
embedding for the task of drug name 
recognition with Bi-LSTM model and the 
results demonstrate the advantage of using 
domain-specific word embeddings as the 
only input feature for drug name 
recognition with F1-score achieving 0.91. 
This work suggests that it may be 
advantageous to derive domain specific 
embeddings for certain tasks even when 
the domain specific corpus is of limited 
size. 

1     Introduction 

The ability of word embeddings to capture 
latent, contextual information has proven useful 
to a variety of NLP tasks, such as named entity 
recognition (Santos & Guimarães, 2015), 
syntactic parsing (Levy & Goldberg, 2014), and 
question answering (Iyyer et al., 2014). Within 
biomedical research, word embeddings 
developed in most previous studies were 
generated from very large, generic corpora (e.g. 
news articles). This is appropriate for 
generalized language models. However, for 
specialized domains and tasks, it may be 
beneficial to generate word embeddings from a 
targeted corpus. We propose a biomedical 
domain-specific word embedding model and a 
novel evaluation framework, which mainly 
focus on representing drug names in the current 

stage. This framework can be expanded to other 
biomedical entities such as protein, gene, and 
chemical compound names in the future. We 
evaluate the developed word embeddings with a 
comprehensive intrinsic evaluation framework 
that includes relatedness, coherence, and outlier 
detection assessment, as well as an extrinsic 
evaluation that focuses on the task of drug name 
recognition and classification with a 
bidirectional long short-term memory (Bi-
LSTM) RNN model. 

2     Related Work 

In the biomedical domain, word embeddings are 
primarily used for biomedical named entity 
recognition (BNER) with evaluations conducted 
on tasks such as JNLPBA (Kim et al., 2004), 
BioCreAtIvE (Hirschman et al., 2005), and 
BioNLP Shared Tasks. Tang et al. (2014) 
explored the impact of three different types of 
word representations (WR) on clustering-based 
representation, distributional representation and 
word embedding. Segura-Bedmar et al. (2015) 
generated word embeddings with word2vec and 
a combined Wikipedia and MedLine corpus. The 
results were evaluated on the SemEval-2013 
Task 9.1 Drug Name Recognition dataset 
(Segura-Bedmar et al., 2013). Wang et al. (2015, 
November) used word embeddings for bio-event 
trigger detection. Li et al. (2015) incorporated 
word embedding features with bag-of-words 
(BOW) features for bio-event extraction and 
evaluated results on the BioNLP 2013 GENIA 
task (Nédellec et al., 2013). 
Drug name recognition (DNR) in biomedical 
literature and clinical notes is essential for many 
medical information and relation extraction tasks 
(e.g. drug-drug interaction). Significant effort 
has been devoted to DNR and the common 
methods can be categorized as (Lu et al., 2015): 
(1) dictionary-based approaches (Rindflesch et 
al., 2000; Sanchez-Cisneros et al., 2013), (2) 
rule-based/ontology-based approaches (Hamon 
& Grabar, 2010; Coden et al., 2012), (3) 
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machine learning-based approaches (Lamurias et 
al., 2013; Lu et al., 2015), and (4) hybrid 
approaches (Korkontzelos et al., 2015). 

3 Word Embeddings Training 

We extracted text from PubMed and DrugBank 
to construct our corpus. For PubMed, we used 
“drug” as the keyword of query to broadly select 
drug related abstracts, which yielded 474,273 
abstracts. From DrugBank 1  Release Version 
5.0.5 we extracted the fields: “description” 
“indication” “pharmacodynamics” “mechanism-
of-action” “toxicity” for 8,226 drugs.  
We employed the skip-gram model in word2vec 
to generate word embeddings. Moreover, as 
studies have found that word embeddings have a 
consistent relationship with word frequencies, 
even after the interception of frequency-based 
effects by algorithms and vector length 
normalization (Schnabel et al., 2015), we 
employed correlation analysis between vectors 
and frequencies as the evaluation metric to tune 
the parameters for the word embedding model. 
For our final result, we trained the word 
embedding model in word2vec with parameters: 
size = 420, window = 5, min_count = 2. 

4     Intrinsic Evaluation 

4.1    Relatedness assessment 

Relatedness evaluation is the most popular and 
direct intrinsic word embedding evaluation 
method. It is expected that high quality word 
embeddings will display significant correlation 
(e.g. Pearson’s, Spearman’s) between the cosine 
similarity of the embedding vectors for related 
word pairs and the human scores. 
We evaluated the results on two biomedical 
domain inventories: UMNSRS-Rel and 
UMNSRS-Sim (Pakhomov et al., 2010). These 
datasets provide human-annotated scores of 
relatedness and similarity between clinical term 
pairs. We measured the correlation between the 
scores provided by the UMNSRS datasets and 
calculated by our model, using Spearman’s 
correlation coefficient. We also compared our 
model to a publicly available word embedding 
set trained on about 100 billion words from 
Google News samples2. 
 

                                                        
1 www.drugbank.ca/releases/latest 
2 https://code.google.com/archive/p/word2vec/ 

Corpora PubMed+ 
DrugBank  

Google 
News  

drug-drug 0.737 0.430 
drug-X 0.530 0.293 

drug-nonDrug 0.492 0.245 
whole dataset 0.555 0.345 

nonDrug-nonDrug 0.565 0.368 
 

Table 1: Relatedness assessment on UMNSRS-Rel 
dataset 
 

Corpora PubMed+ 
DrugBank  

Google 
News  

drug-drug 0.764 0.495 
drug-X 0.529 0.435 

drug-nonDrug 0.449 0.385 
whole  dataset 0.597 0.402 

nonDrug-nonDrug 0.601 0.381 
 

Table 2: Similarity assessment on UMNSRS-Sim 
dataset 
 

As shown in Table 1 and 2, our model and 
UMNSRS show positive correlations in both 
relatedness and similarity assessment, with most 
of the correlation coefficients higher than 0.5, 
which means the relationship represented in 
vector space is consistent with human 
annotations. In particular, the highest 
consistency is achieved for the relationship of 
drug-drug pairs, where coefficients reach 0.737 
and 0.764 for relatedness and similarity, 
respectively. In addition, the proposed model 
trained on PubMed+DrugBank shows 
significantly higher correlations with human 
scores than the model trained on a Google News 
corpus in all word pair types. This is important 
because the Google News based embeddings 
were trained on an extremely large dataset 
compared to our corpus.  

4.2    Coherence assessment 

Conceptually, we expect that a good word 
embedding should be surrounded by a coherent 
neighborhood of similar words. From this 
concept, we propose a novel intrinsic evaluation 
metric as a supplement to current relatedness 
analysis (Schnabel et al., 2015). In coherence 
assessment, we assess whether a given word 
embedding is mutually related to the word 
embeddings in its local neighborhood. Here we 
created a neighborhood for each drug name and 
explored the relation with the closest neighbor 
terms. We expect that other drug entities should 
be preferentially represented in the 
neighborhood. Setting the neighborhood size 
from 3 to 10, we calculated the percentage of 
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drug names within the neighborhood of each 
drug, with selected results shown in Table 3. 
 

Size of 
neighborhood 3 5 7 9 10 
Percentage of 

drug/all_neighbors 
(%) 

61.1 58.8 56.9 55.2 54.6 

Table 3: Percentage of drug entities within a 
drug’s neighborhood across all drugs. 
 

From Table 3, we see that the percentage of 
drug entities declines with the expansion of 
neighborhood size. Noting that neighbors were 
arranged by the cosine similarity relative to the 
target word, such decline implies that drug 
entities tend to be the closest neighbors. Beyond 
that, drug entities still occupy more than half of 
the nearest 10 neighbors. These results suggest 
there is a strong coherence in the semantic space.  

4.3    Outlier Detection 

As a final intrinsic measure of word embedding 
quality, we consider a modification of a 
previously proposed outlier detection task. 
Given a group of words W, the compactness 
score of word 𝑤" ∈ 𝑊  represents the 
compactness of the cluster W\{wm}.  
Performance on the outlier detection task can be 
evaluated by accuracy and outlier position 
percentage (OPP) (Camacho-Collados & Navigli, 
2016). Ideally, if outliers in all the groups were 
identified and listed at the last position, accuracy 
and OPP should be 1 and 100% respectively. 
In this study, the goal of outlier detection is to 
identify the non-drug words as outliers. We 
created two datasets each with 400 groups of 
words (|D|=400). Following the work of 
Camacho-Collado and Navigli, the first dataset, 
D-Manu, contains 4 to 8 drugs and 1 manually 
selected non-drug outlier ( |𝑊| ∈ [5, 9] ). 
Additionally, we modify the previously 
presented work by forming a second dataset, D-
Rand, in which each group contains 4 to 8 drugs 
and 1 randomly selected non-drug outlier (|𝑊| ∈
[5, 9] ). Tables 4 and 5 show the evaluation 
results of outlier detection on D-Rand and D-
Manu. On D-Rand, outliers were identified in 
more than 40% of groups across different sizes, 
and OPP values indicate that the average outlier 
position was around 70% to the right end (100%) 
of the list arranged by compactness score. 
Meanwhile, for D-Manu, the accuracy values are 
all higher than 0.8 and the OPP values are all 
above 93%.  

 

Group size-|W| 5 6 7 8 9 
Accuracy 0.43 0.44 0.41 0.40 0.41 
OPP(%) 69.2 72.0 73.6 70.3 72.4 

Table 4: Accuracy and OPP of outlier detection on 
D-Rand 

Group size-|W| 5 6 7 8 9 
Accuracy 0.82 0.83 0.85 0.80 0.83 

OPP 93.4 94.3 95.3 93.9 94.9 
Table 5: Accuracy and OPP of outlier detection on 
D-Manu 

To gain further insight on the potential 
correlation between the outlier task performance 
and the similarity distribution over the outlier 
term and the non-outlier terms, we calculated the 
average similarity between each pair of non-
outlier terms and the average between non-
outliers and the outlier for each group in D-Rand 
and D-Manu. We found that the average 
similarity between non-outliers was about 0.21. 
The average similarity between non-outliers and 
randomly selected outliers and manually selected 
outliers was about 0.16 and 0.12, respectively. 
This result confirmed that the greater distinction 
in word similarity is consistent with the better 
accuracies in outlier detection.  

5 Extrinsic Evaluation - DNR 

5.1 DNR with Bi-LSTM Model 

We employ a bidirectional long short-term 
memory (Bi-LSTM) RNN model that is 
designed to process text input as a sequence of 
tokens (constituent parts, usually words) and 
predict the label for each token. The BLSTM-
RNN model combines two RNNs: the forward 
RNN processes the sequence from left to right 
and the backward RNN processes it from right to 
left. We use a BIO scheme for the sequence 
labeling task. Specifically, each token is labeled 
as one B-X, I-X or O indicating it is at the 
beginning (B), inside (I), or outside (O) of the 
entity of type X (e.g. drug name).  
In order to achieve the best results and compare 
the impact of the word embedding model in the 
labeling task, we introduced three BLSTM-RNN 
variants: (1) Fixed embedding (BLSTM-F): 
Word embedding values were provided by the 
pre-trained word embedding model and treated 
as fixed constants; (2) Varied embedding 
(BLSTM-V): Word embedding values were also 
provided by the pre-trained word embedding but 
treated as learnable parameters; (3) Randomly-
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initialized embedding (BLSTM-R): Word 
embedding values were initialized randomly and 
treated as learnable parameters. 

5.2 Experiments on Drug Name Recognition 

We evaluated our model on DDI-Extraction-
2011 task (Segura-Bedmar et al., 2011) using 
two metrics: Exact matching-the predicted 
entity must have exactly the same boundary with 
the annotated entity and Partial matching-the 
predicted entity must have some overlap with the 
annotated entity. Table 6 shows the results of 
three BLSTM models. Regarding to the impact 
of pre-trained word embeddings, there is no 
obvious improvement when introducing the pre-
trained embedding values instead of randomly 
initialized vector values. Moreover, the f1-score 
of BLSTM-V that sets embedding values as 
learnable parameters in RNN model is increased 
to 0.911 from 0.891 in BLSTM-F that treats 
them as fixed constants. Overall, our BLSTM 
models achieve very good results on DNR 
according to f1-scores, and treating embedding 
values as learnable parameters, regardless of pre-
trained or randomly initialized, lead to better 
results than setting them fixed, indicating the 
great advantage of RNN models for drug name 
recognition task. 
 

 Exact Matching Partial Matching 
P R F1 P R F1 

BLSTM-F 0.89 0.90 0.89 0.91 0.92 0.91 
BLSTM-V 0.91 0.91 0.91 0.93 0.94 0.94 
BLSTM-R 0.90 0.92 0.91 0.93 0.94 0.93 
 *Bold indicates the highest score in the column. 
Table 6: Evaluation results on DDI-Extraction-
2011 test set.  

5.3 Experiments on Drug Name Classification 

In DDI-Extraction-2013 challenge (Segura-
Bedmar et al., 2013), the drugs were annotated 
with four types instead of one type in 2011 task, 
including: drug, brand, group, and drug_n. Thus, 
it becomes a drug name recognition and 
classification task. We evaluated our results 
using four metrics provided by the organizers, 
with f1-scores shown in Table 7. Pre-trained 
word embeddings showed their advantages, for 
instance, f1 of strict matching were improved 16% 
in BLSTM-V than BLSTM-R. While updating 
the pre-trained embedding values did not show 
obvious improvement by comparing BLSTM-F 
and BLSTM-V. 

 

DrugBank+MedLine BLSTM-F BLSTM-V BLSTM-R 
Strict matching 0.735 0.724 0.631 
Type matching 0.753 0.737 0.654 
Exact oundary 

matching 0.789 0.801 0.658 

Partial boundary 
matching 0.816 0.823 0.688 

drug 0.824 0.852 0.750 
brand 0.722 0.588 0.344 
group 0.722 0.702 0.697 
drug_n 0.381 0.333 0 

Table 7: Results on DDI-Extraction-2013 test set. 

6     Conclusion 

We presented biomedical domain-specific word 
embeddings formulated with the word2vec 
model using PubMed and DrugBank text sources 
and a comprehensive intrinsic and extrinsic 
evaluation framework for word embeddings that 
includes new and existing metrics. We found 
that our word embeddings demonstrated superior 
performance based on relatedness assessment, 
neighborhood coherence, and outlier detection. 
Moreover, we also found that these embeddings 
performed better than those generated from very 
large datasets such as Google News. This is 
significant because our training dataset is 
approximately two orders of magnitude smaller.  
Since drug name recognition (DNR) is an 
important biomedical NLP task, we used DNR 
as the downstream task for extrinsic evaluation 
of the developed drug name embeddings. We 
utilized the pre-trained word embeddings in Bi-
LSTM model for the task of drug name 
recognition and classification. For drug name 
recognition, setting embedding values as 
learnable parameters in RNN model has more 
impact on the performance than utilizing pre-
trained word embeddings. For drug name 
classification, pre-trained word embeddings 
offer significant performance increases over 
randomly-initialized embeddings, while 
updating the pre-trained embedding values 
during the BLSTM model training has little 
improvement. This work provides a useful tool 
or framework for processing raw biomedical text 
and extracting drug entities, which could be 
helpful in processing other unstructured data and 
medical entities. 
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