
Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 273–283
New Orleans, Louisiana, June 5, 2018. c©2018 Association for Computational Linguistics

Toward Data-Driven Tutorial Question Answering with

Deep Learning Conversational Models

Mayank Kulkarni and Kristy Elizabeth Boyer

Department of Computer & Information Science & Engineering

University of Florida

Gainesville, Florida, USA

mayankk91@ufl.edu, keboyer@ufl.edu

Abstract

There has been an increase in popularity of

data-driven question answering systems

given their recent success. This paper ex-

plores the possibility of building a tutorial

question answering system for Java pro-

gramming from data sampled from a

community-based question answering fo-

rum. This paper reports on the creation of

a dataset that could support building such

a tutorial question answering system and

discusses the methodology to create the

106,386 question strong dataset. We inves-

tigate how retrieval-based and generative

models perform on the given dataset. The

work also investigates the usefulness of

using hybrid approaches such as combin-

ing retrieval-based and generative models.

The results indicate that building data-

driven tutorial systems using community-

based question answering forums holds

significant promise.

1 Introduction

Question answering in dialogue is a central con-

cern for designing the next generation of dialogue

systems. Recent work has made great strides in

generating dialogue, for example, with neural

conversation models (Vinyals and Le, 2015),

persona-based conversation models (Li et al.,

2014) and adversarial models (Li et al., 2017).

Specifically, for responding to questions, infor-

mation-retrieval techniques have long been ex-

plored (Jeon et al., 2005; Ramos, 2003; Lowe et

al., 2015). A critical open question is how to build

data-driven systems for specific domains. A chal-

lenge that is faced by the community for such sys-

tems is the availability of data for those domains.

Given that transfer learning has not yet been

shown to yield good results (Mou et al., 2016),

there has been investigation in the area of partially

data-driven and hand-crafted systems (Williams et

al., 2017). However, handcrafted systems face

tremendous limitations in authoring. Data-driven

dialogue systems, which derive their functionality

from corpora, have the potential to eliminate this

bottleneck.

This work explores the possibility of building a

data-driven question-answering system for Java

programming. We leverage a promising source of

data by drawing from community-based question

answering forums of Stack Exchange. Forums

typically also have sub-forums, such as Stack

Overflow for programming questions and Ask

Ubuntu for Ubuntu operating system related ques-

tions. Such community-based forums serve as ex-

cellent datasets for specific domains, such as pro-

gramming or IT support, that are otherwise not

easily available to the general public. The promise

of this data is further demonstrated by other work

done using the Stack Exchange data: Campbell

and Treude (2017) explore how to use semantic

parsing to convert an English sentence or query

into a code snippet, while Campos et al. (2016)

investigate returning relevant question answer

pairs for Swing, Boost and LINQ by using index-

ing techniques and building feature-based classifi-

ers.

With technology becoming ubiquitous, having

programming skills are highly sought after. In a

University or MOOC setting, ‘Introduction to

Programming’ courses typically have a large class

size, and with a limited number of Teaching Assis-

tants, providing individual help becomes a diffi-

cult task. The work in this paper focuses on at-

tempting to assist in helping students learn Java

programming with a data-driven tutorial question

answering system.

This work attempts to build the tutorial ques-

tion-answering system as both a retrieval-based

question answering system (Ji et al., 2014) via the

273

Dual Encoder architecture (Medsker and Jain,

2001; Bromley et al., 1994) and as a generative

question answering system (Ritter et al., 2011)

via the Sequence-to-Sequence architecture

(Sutsveker et al., 2014; Cho et al., 2014). The re-

trieval-based model answers the user’s question

by predicting the most relevant answer from a set

of predefined answers. In contrast to the retrieval-

based model, the generative model answers the

user’s question by generating new answers based

on the data on which the model was trained. Both

of these approaches rely on building good seman-

tic representations of the input in the vector space

using word embeddings (Mikolov et al., 2013;

Mikolov et al., 2013).

This work also explores the usefulness of a hy-

brid approach involving the combination of the re-

trieval-based and generative models. This paper

thus represents the first work to explore deep

learning techniques for data-driven tutorial dia-

logue for Java programming.

2 Related Work

Recently, there has been work using natural lan-

guage processing and machine learning tech-

niques within tools for programming support and

computer science education. Zhang et al. (2016)

explored using Deep Belief Networks to grade

short-answer texts and showed that this approach

outperformed conventional machine learning

models. They also explored using student

modeling and clustering based on engineered fea-

tures to predict the grades with reasonable suc-

cess. Wang et al. (2017) used a recurrent neural

network to attempt to represent a student’s

knowledge states for programming exercises and

found that the model was able to successfully

identify students with knowledge gaps and pro-

vide indications that assistance may be necessary.

Work is also being done to build models from

data that can generate their own answers to ques-

tions. Bengio et al. (2003) and Mikolov (2012)

(Mikolov et al., 2010) were able to successfully

construct a neural language model using recurrent

neural networks, further reinforcing the prevailing

conclusion that recurrent neural networks are the

architecture of choice for this task. Sordoni et al.

(2015) and Shang et al. (2015) were also able to

model short conversations using a recurrent neural

network.

A critical turning point for generative models

was when Sutskever et al. (2014) & Cho et al.

(2014) introduced the sequence-to-sequence

framework in the domain of machine translation.

The authors proposed an architecture to convert

one sequence to another sequence using recurrent

neural networks as encoders and decoders. In-

spired by the previous success of recurrent neural

networks and the sequence-to-sequence frame-

work, Vinyals and Le (2015) proposed applying

this framework to conversational modeling, fram-

ing question answering as a machine translation

problem. While Vinyals and Le (2015) showed

that the model was able to give short, coherent an-

swers for queries in a variety of settings, they also

mentioned limitations of the system: it is restricted

to short answers and lacks a personality.

In addition to generative systems, retrieval-

based systems have also shown success in the re-

cent past. Kannan et al. (2016) used semi-

supervised learning with an LSTM RNN along

with semantic intent clustering to generate high-

quality responses for the Google Smart Reply sys-

tem. Lu et al. (2017) explored how to generate re-

sponses from a large answer space by using a dual

encoder LSTM network and employing clustering

to generate templates from their large answer set,

reducing the answer set space for a customer sup-

port question answering system. Jeon et al. (2005)

investigated how to find question similarity using

word translation probabilities. Lowe et al. (2015)

constructed a corpus of one million multi-turn dia-

logues from the Ask Ubuntu forum, then per-

formed experiments with retrieval-based models

that demonstrated that a useful question answering

system could be built using a dataset sampled

from a community-based question answering fo-

rum. These techniques helped us gain insight on

how to identify the most appropriate responses

from a knowledge base.

The work in this paper attempts to employ deep

learning techniques to support computer science

education by developing a programming support

tool for Java Programming that provides automat-

ed tutorial question answering. The work builds

upon recent work in retrieval-based and genera-

tive models to construct answers that combine the

English language with the Java programming lan-

guage.

3 Dataset

Stack Exchange is a set of community-based

question answering websites, with each website

covering a specific topic. Stack Overflow deals

274

with programming questions and relies on self-

moderation through peer upvoting mechanisms.

The user who posts the question can select the an-

swer that they deem most appropriate. In some

cases, the original poster does not select an an-

swer, and in these cases the highest upvoted an-

swer could be considered the best answer.

A typical Stack Overflow question can be seen

in Figure 1. We see a title for the question at the

top “Java String Declaration”, followed by a de-

scription, “What is the difference between ... per-

formance variation.” An important piece of in-

formation is the meta tags seen underneath the de-

scription. We see the meta tags of “java” and

“string”, which describe on a high level to what

the post is related. We see an upvote count to the

left of the answer, a measure of how many other

users agree with this answer. For the question in

Figure 1, we see that there is an answer that has

received the user’s accepted answer status as well

as 29 upvotes by the community.

Stack Exchange provides an anonymized data

dump of all the user-contributed content, with the

most recent version published on Dec 1, 2017.

The data dump is in the format of a SQL database

consisting of various components of the website

represented in the form of SQL tables such as the

Posts table, Users table, and Comments table. For

the purposes of this work we consider only the

Stack Overflow data and the Posts table.

1 https://stackoverflow.com/questions/3652369/

3.1 Working with the Stack Exchange Da-

tabase

The Posts table contained about 38 million posts,

i.e. all the post data on Stack Overflow as of the

data dump publication date. Every question and

answer posted on the website is part of the Posts

table, with different identifiers to signify the type

of Post and relationships between the Posts. The

question-answer relationship was defined as fol-

lows: the original question had a post ID, and an-

swers corresponding to this question had the same

post ID in their parentID column.

3.2 Filtering Posts

This work focuses on Java programming ques-

tions, which required us to narrow our search to

Java-related questions from the Posts table. We

first filtered to ignore questions containing the

‘<code>’ tag in the ‘Body’ column, as our present

goal is to answer general questions within a future

tutorial system.

In order to obtain posts related to Java, we used

the Post table’s ‘Tags’ column, which contained

meta tags related to the post, as seen in Figure 1.

In order to ignore technology-specific questions

such as a question about ‘Spring’ or ‘Hibernate’,

we created a list of tags to ignore based on fre-

quency counts and prefixes (such as ‘google-api-

xx’ or ‘facebook-api-xx’). Once these filters were

in place, we filtered to ignore all unanswered

questions based on the ‘AnswerCount’ column in

the Posts table. Another filtering step was to take

all the answers that contained code snippets de-

fined by the <code> token and replace the tokens

with ‘CODE_START’ and ‘CODE_END’ as la-

bels to mark the beginning and end of the code

snippet.

3.3 Dataset Statistics

We collected all corresponding answers from our

set of filtered questions to create an initial cor-

pus. This corpus contained 107,961 question-

description-answer triplets, of which 47,220

questions did not have a ‘user accepted best an-

swer’. A statistical analysis based on a naive

word split showed that there were outliers in the

corpus, with very large maximum lengths of up

to 10,000 words in an answer. We identified and

removed the outliers in the corpus by removing

the current largest sample and monitoring the av-

erage length of the corpus. We continued to re-

move the largest sample till we obtained a rela-

Figure 1: Sample Stack Overflow question1

275

tively stable average value. This outlier determi-

nation was performed for each sample type of

question, description and answer separately. Ul-

timately, we removed questions longer than 19

words, or whose descriptions were longer than

125 words, or with answers longer than 175

words.

The questions, descriptions and answers in the

dataset were then converted into a sequence of

numbers using word indexing techniques, in order

to be usable by a machine learning model. The

word indexing techniques involved first tokeniz-

ing the sentences into word tokens by using an

open-source tokenizer (Python NLTK).2 Each

word was labelled with a unique index and stored

as a key-value pair in a data structure. Secondly,

the words in each sentence were replaced by the

corresponding indexes using the data structure

created above to obtain a sequence of numbers

which corresponded to the original sentence. A to-

tal of 284, 827 words were obtained through to-

kenization and subsequently indexed in the data

structure.

To maintain the uniformity of sentence length,

we ‘pre-pad’ the sequence with 0 before the origi-

nal sequence. Adding zeros at the start of the orig-

inal sequence (if required) allows the network to

accept a fixed sequence length and the nature of

the number zero also allows us to denote that the

element in the sequence is an empty space. We

‘pre-pad’ and thus structure the sequence with ac-

tual content towards the end of the sequence be-

cause a time-based neural network is more likely

to ‘remember’ time steps towards the end of the

sequence, as those would be stored in the more re-

cent memory which is captured by the network.

The filtering of the sentences with length

thresholds is important, as it is difficult to capture

semantic representations for lengthy text using

word embeddings. Setting these thresholds result-

ed in a reduced dataset of 106,386 questions. The

2 NLTK implementation: https://www.nltk.org/

statistics for the final dataset are shown in Table 1.

We also make this dataset available for public use

as a contribution of this paper.3

4 Methods and Techniques

With the future objective of building a data-driven

tutorial question-answering system, we first ex-

plore three overarching approaches of retrieval-

based models, generative models, and hybrid

models for Java programming-based tutorial ques-

tion answering.

The challenges associated with this dataset are

that unlike traditional question answering datasets,

this dataset has three streams of inputs. Each

stream has its own unique descriptors such as vo-

cabulary and length. The answers in the dataset

contain interspersed English and Java, which

could make building meaningful word vector rep-

resentations difficult. Long sentences are typically

more difficult to represent in a vector space and

this dataset contains longer typical sentences for

the description and answer than those seen in pre-

vious work of Lowe et al. (2015) and Lu et al.

(2017). As a part of this work, we investigate

which combinations of inputs from the dataset

yield the most optimal results.

4.1 Dual Encoder LSTM (Siamese network)

The Siamese Network or Dual Encoder architec-

ture (Medsker and Jain, 2001; Bromley et al.,

1994) has shown success in the recent past to

build a retrieval-based question answering system

(Lowe et al., 2015; Lu et al., 2017).

To use the dataset with the Dual Encoder archi-

tecture, we needed to perform some additional

pre-processing. We first built a dataset containing

the question along with its description and the cor-

responding correct answer, and we assigned a la-

bel of 1 to these samples. We then created a sam-

ple containing the incorrect answer for a given

question and description pair. This was done by

randomly choosing another answer from the rest

of the answer set and assigning a label of 0 to

these samples.

Description & Answer Dual Encoder

(DADE): This architecture consisted of a Dual

Encoder Bidirectional LSTM network, where the

first encoder encoded the description of the ques-

tion and the second encoder encoded the answer

3 https://cise.ufl.edu/research/learndialogue/data/java-

stackoverflow-QA-dec2017.zip

Average Question Length 8.68013

Average Description Length 71.45428

Average Answer Length 87.54342

Vocabulary Size 284,827

Table 1: Final Dataset Statistics

276

statement. The large maximum sequence lengths

influenced us to choose to use a Bidirectional

LSTM (Schuster and Paliwal, 1997) as it allows

the network to understand the context of a word

with respect to both previous and next words and

thus build better vector representations of the

words. Each bidirectional encoder’s output was

merged together to obtain a single 600-

dimensional output, and then this output was fed

to a fully connected network of two layers, with

the first layer containing 500 neurons and the sec-

ond layer containing 300 neurons. This was then

run through a sigmoid activation function in order

to obtain the result.

This architecture used pre-trained GloVe word

embeddings which were updated during the train-

ing phase. The LSTM cells contained 300 hidden

units and 2 layers and optimized the binary cross-

entropy loss function.

Question & Description Dual Encoder

(QDDE): This architecture was similar to the De-

scription and Answer Dual Encoder in that it con-

sisted of a Dual Encoder LSTM network, where

the first encoder encoded the question statement

and the second encoder encoded the description

statement. Each encoder’s outputs were merged

together to obtain a single 300-dimensional output

and then this output was run through a sigmoid

activation function in order to obtain the result.

Again, this architecture also used pre-trained

GloVe word embeddings which were updated dur-

ing the training phase. The LSTM cells contained

300 hidden units and a single layer and optimized

the binary cross-entropy loss function.

The rationale for this architecture was to build a

dual encoder that would be able to predict a de-

scription given a question. We wanted to investi-

gate whether the dual encoder could learn rela-

tionships between smaller questions and longer

descriptions. If we could successfully predict the

description for a given question, it would allow us

to leverage the similar lengths of the description

and answer to obtain better results.

4.2 Techniques to answer queries

The aforementioned architectures were able to de-

termine answers for the given training, validation

and testing sets, where the correct answers are

predetermined. To extend our model’s use to the

real world, we needed to define a different set of

strategies to answer questions for which we do not

know the predetermined answer. We explore our

proposed strategies in the following section.

Question Description Matching followed by

Description Answer Matching: This approach

attempted to find a similarity measure between a

given user question and a description of the given

Figure 2. Question Description Matching followed by Description Answer Matching

277

question via QDDE. The best matching descrip-

tion was then run against all the answers to deter-

mine the top 10 best possible answers, as seen in

Figure 2. The intuition behind using this approach

was that the description-answer dual encoder

should provide better results as it used a bi-

directional LSTM network and both sequence

lengths were approximately the same.

4.3 Sequence-to-Sequence Models

Sequence-to-Sequence models are generative

models that, unlike their retrieval-based counter-

parts, do not rely on choosing from an existing set

of answers but rather generate answers on their

own.

The preprocessing steps for the sequence-to-

sequence model were identical to the prepro-

cessing steps specified for the dual encoder mod-

el.

Description to Answer Encoder - Decoder:

This architecture used the description of a ques-

tion as the input to the encoder and attempted to

match the actual answer to the question using the

decoder. The intuition behind matching a de-

scription to the answer was that as the sequences

are of almost equal length, this could then be

framed as a machine translation problem, which

has seen significant success with the sequence-

to-sequence model (Sutskever et al., 2014; Cho

et al., 2014; Vinyals and Le, 2015).

The encoder was a bidirectional recurrent neu-

ral network using LSTM cells. We chose bidirec-

tionality for better sentence vector representation,

and LSTM cells for their ability to capture long-

term dependencies. The decoder is a standard re-

current neural network with LSTM cells.

The LSTM cells contained 512 hidden units

and 2 layers. We used a dropout (Srivastava et al,

2014) probability of 0.2 and gradient normaliza-

tion (Pascanu et al., 2013) of 3.6. We used 15

buckets, as the length of 175 (maximum answer

length) would then be equally split into smaller

chunks of size 12 increments. The Luong attention

mechanism (Luong et al., 2015) was implemented

in order to boost accuracy, as was beam search

(Wiseman and Rush, 2016) of beam width 10 in

order to obtain a better output for a given input.

The vocabulary had to be reduced to 60,000 due

to memory constraints.

All the hyperparameters stated for the networks

discussed above were determined by performing a

Figure 3. Hybrid Architecture Combining Dual Encoder with Sequence-to-Sequence Model

278

grid search and cross-validating with the valida-

tion dataset.

4.4 Hybrid architecture (Dual Encoder +

Sequence-to-Sequence)

In this work, we built a hybrid structure that com-

bined both the retrieval-based model of the dual

encoder with the generative model of the se-

quence-to-sequence model. The intuition behind

building this model was that a user typically asks

questions with a length of fewer than 20 words

and may not necessarily have enough of a descrip-

tion to fit the 125-word limit sufficiently. The pro-

posed architecture combats this issue by obtaining

the user question and trying to find the most ap-

propriate description from a set of prefixed de-

scriptions, this is done by the question and de-

scription dual encoder mentioned earlier. The en-

tire workflow can be seen in Figure 3.

We take the top 10 predicted descriptions and

feed these descriptions as input to the description

to answer sequence-to-sequence model.

The Description to Answer model would result

in 10 different generated answers and the answers

were ranked based on the input descriptions rank-

ing. This architecture also lets us leverage the na-

ture of the dataset, in that it contains a question, a

description and an answer as opposed to a tradi-

tional question-answer pair dataset.

5 Experiments

All the experiments performed as a part of this

work were done on a desktop with the following

specification i7 8-core CPU, 32GB RAM, and

NVIDIA GTX 1070 8GB VRAM.

The dataset of 106,386 was split into separate

training, testing and validation sets. Given the

large network sizes used in the experiments, there

were a correspondingly large number of parame-

ters to be trained for each network, which in turn

required a sufficiently large dataset to train on.

Taking this into consideration we chose to not fol-

low the traditional 80-20 train-test split but rather

maintain a large enough training set and use the

rest of the data for testing and validation. The

training set thus contained 100,000 questions and

corresponding description and answers triplets,

the test dataset contained 5,000 triplets and the

validation set contained 1,386 triplets.

For the dual encoder experiments, the training

set size was 200,000 as we had to use both posi-

tive and negative samples while training. Whereas

for the sequence-to-sequence model training we

used only 100,000 description and answer pairs.

5.1 Quantitative Analysis

Dual Encoder: The recall@k metric works in

conjunction with the group size. Given that we

have a group size of 5, recall@1 tells us that if we

had the option to choose 1 out of the 5 options,

what is the probability that it would be correct. We

take a look at Table 2, where the group size is 10

and we compare another popular retrieval-based

method, TF-IDF (Ramos, 2003), to our obtained

results. TF-IDF has been outperformed by dual

encoders for conversational models in the past

(Lowe et al., 2015), but we see some interesting

results for our dataset.

We see that for DADE, TF-IDF is able to

slightly outperform the dual encoder at the re-

call@1 scores, but the dual encoder outperforms

TF-IDF for recall@2 and recall@5. We further

see that QDDE is outperformed by TF-IDF in

both recall@1 and recall@2, only for QDDE to do

better in recall@5.

We believe that we see this behavior because

TF-IDF works based on word similarity and rates

rare words between two documents as highly re-

lated (Ramos, 2003). Questions and descriptions

containing common phrases are better perceived

by TF-IDF than by the dual encoders. In addition,

previous results like Lowe et al. (2015), worked

on a corpus with an average word count of 10

words where they showed that the dual encoder

architecture significantly outperformed TF-IDF,

whereas our work deals with much longer utter-

ances. In spite of long utterances, we see that the

dual encoders do a comparable or better job than

TF-IDF.

Sequence-to-Sequence: We followed Google’s

Neural Machine Translation tutorial (Luong et al.,

2017) to build our sequence-to-sequence models.

Model Name recall@1 recall@2 recall@5

DA TF-IDF 0.7837 0.8437 0.9137

DADE 0.7052 0.8672 0.9798

QA TF-IDF 0.9483 0.9685 0.9785

QDDE 0.8542 0.951 0.9928

Table 2. Testing recall@k for group size 10

279

An important point to note is that while traditional

machine translations are judged based on BLEU

score (Papineni et al., 2002) and perplexity, a con-

versational model cannot be judged on BLEU and

hence we used perplexity as the primary measure

of judgment (Shao et al., 2017).

Description to Answer Sequence-to-

Sequence Model: The perplexity for the dev set

continued to decrease, thus we could assume no

overfitting had occurred over the epochs of train-

ing this network. The dev and test perplexity

scores were better than the previous model, with

scores of 68.91 and 70.15 respectively, and this is

also reflected in the coherent responses made by

the model.

5.2 Qualitative Analysis

We chose a question which was neither part of the

training, development nor test corpus to analyze

the qualitative results. The reason these results are

presented as qualitative is that since its part of nei-

ther of the corpus we do not have the actual ex-

pected response. The question that we chose is a

fairly simple and straightforward question:

“How can we create an integer array in java”

We take a look at the responses given by the

models in Table 3. As the models provide multiple

answers, we have handpicked the answer that we

thought was most relevant from the top 10. We

have also cleaned the answer by referring the orig-

inal post on Stack Overflow for readability.

The QDDE+DADE model produces a response

that suggests using Java collections to achieve the

same purpose of the array. The drawback here is

that it diverges from the actual answer but is still

relevant nonetheless. Another one of the top ten

answers suggested looking at some of the Java

documentation related to arrays.

We now take a look at the responses generated

by sequence-to-sequence models and the hybrid

model. While the hybrid model suggests using an

‘ArrayList’ instead of an array, it was able to form

different codes for the condition of the ‘for’ loop

in both the answers, suggesting that it may under-

stand a relationship between functions such as

‘get’ and ‘add’ and the ‘for’ loop condition.

It is also interesting to see the response gener-

ated by the Description to Answer sequence-to-

sequence model. We can analyze some of the

aforementioned testing responses generated via

the Description to Answer Sequence-to-Sequence

model as can be seen in Table 4.

By analyzing the generated responses for the

samples above, we can see that the model has

learned how to create new objects and has also

learned what kind of commands are related to a

given object, such as the date in Java needs

simpledateformat class or that the file could need

a file path. Perhaps the most notable was the crea-

4 The sequence-to-sequence model does not include non-

word tokens such as ‘=’ or ‘{‘. These have been added for

readability.

Model: Best Output:

QDDE +

DADE
you can use an arraylist or a list of in-

tegers instead so that you can add items

to the list as and when required also the

list would then have only as many ele-

ments as the number of inputs syntax

CODE_START List<Integer> = new

ArrayList<Integer>() CODE_END to

add elements to the list use

CODE_START elements.add(new

Item()) CODE_END to access mem-

bers of the list use CODE_START el-

ements.get(index) CODE_END

Hybrid

Model

(Response

#1)

CODE_START
public static void main (string args)
 list<integer> list = new ar-

raylist<integer>
for (int i = 0; i < list.size(); i++){
 system.out.println(list.get(i));
}

CODE_END
4

Actual output: code start list lt integer

gt list new arraylist lt integer gt for int i

0 i lt list size i system out println list

get i code end

Hybrid

Model

(Response

#2)

CODE_START
public static void main(string args) {
 list<integer> list = new ar-

raylist<integer>
for (int i = 0; i < 10; i++){
 list.add(i);
 system.out.println(list.get(i));
}

CODE_END
3

Actual output: code start public static

void main string args list lt integer gt

list new arraylist lt integer gt for int i 0

i lt 10 i list add i system out println list

get i code end

Table 3. Top Responses for “how can we create

an integer array in java”

280

tion of a coherent ‘for’ loop using the previously

created object and referencing the appropriate

method.

We also see that the models are able to success-

fully combine the English language along with ja-

va code, starting answers with phrases such as

“you can use...”, “i dont think there is a way...”, “i

am not sure but try…” and so on. The models are

also able to draw a clear line between code snip-

pets and English language and code start labels

are mostly correctly completed with code end la-

5 https://stackoverflow.com/questions/7631470
6 https://stackoverflow.com/questions/40983790
7 https://stackoverflow.com/questions/6390581

bels. There have also been instances where Eng-

lish phrases such “you can also try” are used be-

tween two code snippets.

While these examples have been sampled from

a much larger set in which not all the responses

are as appropriate, this still shows promise in us-

ing this architecture to build models that can ap-

propriately respond to a query by generating their

own response.

6 Conclusion

This work has examined how we can leverage

community-based question answering forums as a

source of data to build a dataset specific to general

Java-based programming questions. We have seen

that retrieval-based models obtain high recall rates

on the testing set but are restricted only to the an-

swer set available. On the other hand, generative

models are able to successfully combine the

English language along with Java code to make

coherent responses at times, but the responses are

small and do not completely answer the question.

We found reasonable success with the hybrid

model by combining the retrieval-based approach

with the generative approach. The proposed ap-

proaches show promise in building a useful tutori-

al system based on the sampled dataset. These are

the first steps made in that direction.

This work could be furthered by investigating

jointly training the hybrid model to improve de-

scription selection and answer generation. One

could also frame this task as a machine compre-

hension task, where the entire answer set could be

used as the context. Doing so would allow us to

leverage the memory network architecture, which

performs better at tasks involving storing long-

term memory. Finally, we could explore using ad-

versarial training, as it has seen success on con-

versational models in the recent past (Li et al.,

2017).

7 Acknowledgments

The authors wish to thank the members of the

LearnDialogue group at the University of Florida

for their helpful input. This work is supported in

part by the National Science Foundation through

grant CNS-1622438. Any opinions, findings, con-

clusions, or recommendations expressed in this

report are those of the authors, and do not neces-

sarily represent the official views, opinions, or

policy of the National Science Foundation.

1

Question: how to format a date in java

Description: how can change this date for-

mat 2011 09 07...
5

Generated

Response:
CODE_START
simpledateformat sdf new

simpledateformat yyyy mm dd

hh mm ss …...

2

Question: java does not recognize a file

when it begins with file

Description: java says a file does not exist

when it is a valid file path ...
6

Generated

Response:
CODE_START
file file new file path to file
CODE_END

3

Question: how to track of other applica-

tion's memory and cpu usage by

java coding

Description: i want to show cpu and memory

utilization of any application...
7

Generated

Response:
you can take a look at the

CODE_START java util con-

current CODE_END package

http docs oracle com javase tu-

torial essential environment

sysprop html

 Table 4: Sample Sequence-to-Sequence Gen-

erated Responses from Test Set

281

References

Yoshua Bengio, Réjean Ducharme, Pascal Vincent

and Christian Jauvin. 2003. A neural probabilistic

language model. Journal of Machine Learning Re-

search, 3(Feb), pp. 1137-1155.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard

Säckinger and Roopak Shah. 1994. Signature veri-

fication using a "siamese" time delay neural net-

work. In Advances in Neural Information Pro-

cessing Systems, pp. 737-744.

Brock Angus Campbell and Christoph Treude. 2017.

NLP2Code: Code snippet content assist via natural

language tasks. In Software Maintenance and Evo-

lution (ICSME), 2017 IEEE International Confer-

ence on, pp. 628-632. IEEE.

Eduardo C. Campos, Lucas BL Souza and Marcelo de

A. Maia. 2016. Searching crowd knowledge to rec-

ommend solutions for API usage tasks. Journal of

Software: Evolution and Process 28, no. 10: 863-

892

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-

cehre, Dzmitry Bahdanau, Fethi Bougares, Holger

Schwenk and Yoshua Bengio. 2014. Learning

phrase representations using RNN encoder-decoder

for statistical machine translation. In Proceedings

of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP), pp.

1724–1734.

Jiwoon Jeon, W. Bruce Croft and Joon Ho Lee. 2005.

Finding similar questions in large question and an-

swer archives. In Proceedings of the 14th ACM In-

ternational Conference on Information and

Knowledge Management, pp. 84-90. ACM.

Zongcheng Ji, Zhengdong Lu and Hang Li. 2014. An

information retrieval approach to short text conver-

sation. arXiv preprint arXiv:1408.6988.

Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias

Kaufmann, Andrew Tomkins, Balint Miklos, Greg

Corrado et al. 2016. Smart reply: Automated re-

sponse suggestion for email. In Proceedings of the

22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 955-

964. ACM.

Jiwei Li, Michel Galley, Chris Brockett, Georgios P.

Spithourakis, Jianfeng Gao and Bill Dolan. 2016. A

persona-based neural conversation model. In Pro-

ceedings of 54th Annual Meeting of Association for

Computational Linguistics, pp. 994–1003.

Jiwei Li, Will Monroe, Tianlin Shi, Alan Ritter and

Dan Jurafsky. 2017. Adversarial learning for neural

dialogue generation. arXiv preprint

arXiv:1701.06547.

Ryan Lowe, Nissan Pow, Iulian Serban and Joelle

Pineau. 2015. The ubuntu dialogue corpus: A large

dataset for research in unstructured multi-turn dia-

logue systems. In Proceedings of the SIGDIAL

2015 Conference, pp. 285–294.

Yichao Lu, Phillip Keung, Shaonan Zhang, Jason Sun

and Vikas Bhardwaj. 2017. A practical approach to

dialogue response generation in closed domains.

arXiv preprint arXiv:1703.09439.

Minh-Thang Luong and Eugene Brevdo and Rui

Zhao. 2017. Neural Machine Translation (seq2seq)

Tutorial, https://github.com/tensorflow/nmt.

Minh-Thang Luong, Hieu Pham and Christopher D.

Manning. 2015. Effective approaches to attention-

based neural machine translation. In Proceedings

of the 2015 Conference on Empirical Methods in

Natural Language Processing, pp. 1412–1421.

L. R. Medsker and L. C. Jain. 2001. Recurrent neural

networks. Design and Applications 5.

Tomáš Mikolov. 2012. Statistical language models

based on neural networks. PhD thesis, PhD Thesis,

Brno University of Technology, 2012.

Tomáš Mikolov, Ilya Sutskever, Kai Chen, Greg S.

Corrado, and Jeff Dean. 2013. Distributed repre-

sentations of words and phrases and their composi-

tionality. In Advances in Neural Information Pro-

cessing Systems (pp. 3111-3119).

Tomáš Mikolov, Kai Chen, Greg Corrado, and Jeffrey

Dean. 2013. Efficient estimation of word represen-

tations in vector space. arXiv preprint

arXiv:1301.3781.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan

Černocký and Sanjeev Khudanpur. 2010. Recurrent

neural network based language model. In Eleventh

Annual Conference of the International Speech

Communication Association, pp. 1045-1048.

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu, Lu

Zhang and Zhi Jin. 2016. How Transferable are

Neural Networks in NLP Applications?. In Pro-

ceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing, pp.

479–489.

Kishore Papineni, Salim Roukos, Todd Ward and Wei-

Jing Zhu. 2002. Bleu: a method for automatic eval-

uation of machine translation. In Proceedings of

the 40th Annual Meeting on Association for Com-

putational Linguistics, pp. 311–318.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.

2013. On the difficulty of training recurrent neural

networks. In International Conference on Machine

Learning (pp. 1310-1318)

Juan Ramos. 2003. Using tf-idf to determine word

relevance in document queries. In Proceedings of

282

the First Instructional Conference on Machine

Learning, vol. 242, pp. 133-142.

Alan Ritter, Colin Cherry and William B. Dolan.

2011. Data-driven response generation in social

media. In Proceedings of the Conference on Empir-

ical Methods in Natural Language Processing, pp.

583-593.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-

tional recurrent neural networks. IEEE Transac-

tions on Signal Processing 45, no. 11: 2673-2681.

Lifeng Shang, Zhengdong Lu and Hang Li. 2015.

Neural responding machine for short-text conver-

sation. In Proceedings of the 53rd Annual Meeting

of the Association for Computational Linguistics

and the 7th International Joint Conference on Nat-

ural Language Processing, pp. 1577–1586.

Yuanlong Shao, Stephan Gouws, Denny Britz, Anna

Goldie, Brian Strope and Ray Kurzweil. 2017.

Generating high-quality and informative conversa-

tion responses with sequence-to-sequence models.

In Proceedings of the 2017 Conference on Empiri-

cal Methods in Natural Language Processing, pp.

2210-2219.

Alessandro Sordoni, Michel Galley, Michael Auli,

Chris Brockett, Yangfeng Ji, Margaret Mitchell,

Jian-Yun Nie, Jianfeng Gao and Bill Dolan. 2015.

A neural network approach to context-sensitive

generation of conversational responses. In Pro-

ceedings of Human Language Technologies: The

2015 Annual Conference of the North American

Chapter of the ACL, pp. 196–205.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,

Ilya Sutskever, and Ruslan Salakhutdinov. 2014.

Dropout: A simple way to prevent neural networks

from overfitting. The Journal of Machine Learning

Research, 15(1), 1929-1958.

Ilya Sutskever, Oriol Vinyals and Quoc V. Le. 2014.

Sequence to sequence learning with neural net-

works. In Advances in Neural Information Pro-

cessing Systems, pp. 3104-3112.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-

tional model. Proceedings of the 31st International

Conference on Machine Learning, JMLR: W&CP

volume 37.

Lisa Wang, Angela Sy, Larry Liu, Chris Piech. 2017.

Learning to represent student knowledge on pro-

gramming exercises using deep learning.

In Proceedings of the 10th International Confer-

ence on Educational Data Mining; Wuhan, Chi-

na (pp. 324-329).

Jason D. Williams, Kavosh Asadi and Geoffrey

Zweig. 2017. Hybrid code networks: practical and

efficient end-to-end dialog control with supervised

and reinforcement learning. In Proceedings of 55th

Annual Meeting of Association for Computational

Linguistics, pp. 665-677.

Sam Wiseman and Alexander M. Rush. 2016. Se-

quence-to-sequence learning as beam-search opti-

mization. In Proceedings of the 2016 Conference

on Empirical Methods in Natural Language Pro-

cessing, pp. 1296–1306.

Yuan Zhang, Rajat Shah and Min Chi. 2016. Deep

Learning+ Student Modeling+ Clustering: a Recipe

for Effective Automatic Short Answer Grading.

In Proceedings of the 9th International Conference

on Educational Data Mining (pp. 562-567).

283

