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Abstract 

There has been an increase in popularity of 

data-driven question answering systems 

given their recent success. This paper ex-

plores the possibility of building a tutorial 

question answering system for Java pro-

gramming from data sampled from a 

community-based question answering fo-

rum. This paper reports on the creation of 

a dataset that could support building such 

a tutorial question answering system and 

discusses the methodology to create the 

106,386 question strong dataset. We inves-

tigate how retrieval-based and generative 

models perform on the given dataset. The 

work also investigates the usefulness of 

using hybrid approaches such as combin-

ing retrieval-based and generative models. 

The results indicate that building data-

driven tutorial systems using community-

based question answering forums holds 

significant promise. 

1 Introduction 

Question answering in dialogue is a central con-

cern for designing the next generation of dialogue 

systems. Recent work has made great strides in 

generating dialogue, for example, with neural 

conversation models (Vinyals and Le, 2015), 

persona-based conversation models (Li et al., 

2014) and adversarial models (Li et al., 2017). 

Specifically, for responding to questions, infor-

mation-retrieval techniques have long been ex-

plored (Jeon et al., 2005; Ramos, 2003; Lowe et 

al., 2015). A critical open question is how to build 

data-driven systems for specific domains. A chal-

lenge that is faced by the community for such sys-

tems is the availability of data for those domains. 

Given that transfer learning has not yet been 

shown to yield good results (Mou et al., 2016), 

there has been investigation in the area of partially 

data-driven and hand-crafted systems (Williams et 

al., 2017). However, handcrafted systems face 

tremendous limitations in authoring. Data-driven 

dialogue systems, which derive their functionality 

from corpora, have the potential to eliminate this 

bottleneck.  

This work explores the possibility of building a 

data-driven question-answering system for Java 

programming. We leverage a promising source of 

data by drawing from community-based question 

answering forums of Stack Exchange. Forums 

typically also have sub-forums, such as Stack 

Overflow for programming questions and Ask 

Ubuntu for Ubuntu operating system related ques-

tions. Such community-based forums serve as ex-

cellent datasets for specific domains, such as pro-

gramming or IT support, that are otherwise not 

easily available to the general public. The promise 

of this data is further demonstrated by other work 

done using the Stack Exchange data: Campbell 

and Treude (2017) explore how to use semantic 

parsing to convert an English sentence or query 

into a code snippet, while Campos et al. (2016) 

investigate returning relevant question answer 

pairs for Swing, Boost and LINQ by using index-

ing techniques and building feature-based classifi-

ers. 

With technology becoming ubiquitous, having 

programming skills are highly sought after. In a 

University or MOOC setting, ‘Introduction to 

Programming’ courses typically have a large class 

size, and with a limited number of Teaching Assis-

tants, providing individual help becomes a diffi-

cult task. The work in this paper focuses on at-

tempting to assist in helping students learn Java 

programming with a data-driven tutorial question 

answering system.  

This work attempts to build the tutorial ques-

tion-answering system as both a retrieval-based 

question answering system (Ji et al., 2014) via the 

273



   

Dual Encoder architecture (Medsker and Jain, 

2001; Bromley et al., 1994) and as a generative 

question answering system  (Ritter et al., 2011) 

via the Sequence-to-Sequence architecture 

(Sutsveker et al., 2014; Cho et al., 2014). The re-

trieval-based model answers the user’s question 

by predicting the most relevant answer from a set 

of predefined answers. In contrast to the retrieval-

based model, the generative model answers the 

user’s question by generating new answers based 

on the data on which the model was trained. Both 

of these approaches rely on building good seman-

tic representations of the input in the vector space 

using word embeddings (Mikolov et al., 2013; 

Mikolov et al., 2013).  

This work also explores the usefulness of a hy-

brid approach involving the combination of the re-

trieval-based and generative models. This paper 

thus represents the first work to explore deep 

learning techniques for data-driven tutorial dia-

logue for Java programming. 

2 Related Work 

Recently, there has been work using natural lan-

guage processing and machine learning tech-

niques within tools for programming support and 

computer science education. Zhang et al. (2016) 

explored using Deep Belief Networks to grade 

short-answer texts and showed that this approach 

outperformed conventional machine learning 

models. They also explored using student 

modeling and clustering based on engineered fea-

tures to predict the grades with reasonable suc-

cess. Wang et al. (2017) used a recurrent neural 

network to attempt to represent a student’s 

knowledge states for programming exercises and 

found that the model was able to successfully 

identify students with knowledge gaps and pro-

vide indications that assistance may be necessary.  

Work is also being done to build models from 

data that can generate their own answers to ques-

tions. Bengio et al. (2003) and Mikolov (2012) 

(Mikolov et al., 2010) were able to successfully 

construct a neural language model using recurrent 

neural networks, further reinforcing the prevailing 

conclusion that recurrent neural networks are the 

architecture of choice for this task. Sordoni et al. 

(2015) and Shang et al. (2015) were also able to 

model short conversations using a recurrent neural 

network. 

A critical turning point for generative models 

was when Sutskever et al. (2014) & Cho et al. 

(2014) introduced the sequence-to-sequence 

framework in the domain of machine translation. 

The authors proposed an architecture to convert 

one sequence to another sequence using recurrent 

neural networks as encoders and decoders. In-

spired by the previous success of recurrent neural 

networks and the sequence-to-sequence frame-

work, Vinyals and Le (2015) proposed applying 

this framework to conversational modeling, fram-

ing question answering as a machine translation 

problem. While Vinyals and Le (2015) showed 

that the model was able to give short, coherent an-

swers for queries in a variety of settings, they also 

mentioned limitations of the system: it is restricted 

to short answers and lacks a personality.  

In addition to generative systems, retrieval-

based systems have also shown success in the re-

cent past. Kannan et al. (2016) used semi-

supervised learning with an LSTM RNN along 

with semantic intent clustering to generate high-

quality responses for the Google Smart Reply sys-

tem. Lu et al. (2017) explored how to generate re-

sponses from a large answer space by using a dual 

encoder LSTM network and employing clustering 

to generate templates from their large answer set, 

reducing the answer set space for a customer sup-

port question answering system. Jeon et al. (2005) 

investigated how to find question similarity using 

word translation probabilities. Lowe et al. (2015) 

constructed a corpus of one million multi-turn dia-

logues from the Ask Ubuntu forum, then per-

formed experiments with retrieval-based models 

that demonstrated that a useful question answering 

system could be built using a dataset sampled 

from a community-based question answering fo-

rum. These techniques helped us gain insight on 

how to identify the most appropriate responses 

from a knowledge base. 

The work in this paper attempts to employ deep 

learning techniques to support computer science 

education by developing a programming support 

tool for Java Programming that provides automat-

ed tutorial question answering. The work builds 

upon recent work in retrieval-based and genera-

tive models to construct answers that combine the 

English language with the Java programming lan-

guage. 

3 Dataset 

Stack Exchange is a set of community-based 

question answering websites, with each website 

covering a specific topic. Stack Overflow deals 
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with programming questions and relies on self-

moderation through peer upvoting mechanisms. 

The user who posts the question can select the an-

swer that they deem most appropriate. In some 

cases, the original poster does not select an an-

swer, and in these cases the highest upvoted an-

swer could be considered the best answer. 

A typical Stack Overflow question can be seen 

in Figure 1. We see a title for the question at the 

top “Java String Declaration”, followed by a de-

scription, “What is the difference between ... per-

formance variation.” An important piece of in-

formation is the meta tags seen underneath the de-

scription. We see the meta tags of “java” and 

“string”, which describe on a high level to what 

the post is related. We see an upvote count to the 

left of the answer, a measure of how many other 

users agree with this answer. For the question in 

Figure 1, we see that there is an answer that has 

received the user’s accepted answer status as well 

as 29 upvotes by the community.  

Stack Exchange provides an anonymized data 

dump of all the user-contributed content, with the 

most recent version published on Dec 1, 2017. 

The data dump is in the format of a SQL database 

consisting of various components of the website 

represented in the form of SQL tables such as the 

Posts table, Users table, and Comments table. For 

the purposes of this work we consider only the 

Stack Overflow data and the Posts table. 

                                                      
1 https://stackoverflow.com/questions/3652369/ 

3.1 Working with the Stack Exchange Da-

tabase 

The Posts table contained about 38 million posts, 

i.e. all the post data on Stack Overflow as of the 

data dump publication date. Every question and 

answer posted on the website is part of the Posts 

table, with different identifiers to signify the type 

of Post and relationships between the Posts. The 

question-answer relationship was defined as fol-

lows: the original question had a post ID, and an-

swers corresponding to this question had the same 

post ID in their parentID column. 

3.2 Filtering Posts 

This work focuses on Java programming ques-

tions, which required us to narrow our search to 

Java-related questions from the Posts table. We 

first filtered to ignore questions containing the 

‘<code>’ tag in the ‘Body’ column, as our present 

goal is to answer general questions within a future 

tutorial system.  

In order to obtain posts related to Java, we used 

the Post table’s ‘Tags’ column, which contained 

meta tags related to the post, as seen in Figure 1. 

In order to ignore technology-specific questions 

such as a question about ‘Spring’ or ‘Hibernate’, 

we created a list of tags to ignore based on fre-

quency counts and prefixes (such as ‘google-api-

xx’ or ‘facebook-api-xx’). Once these filters were 

in place, we filtered to ignore all unanswered 

questions based on the ‘AnswerCount’ column in 

the Posts table. Another filtering step was to take 

all the answers that contained code snippets de-

fined by the <code> token and replace the tokens 

with ‘CODE_START’ and ‘CODE_END’ as la-

bels to mark the beginning and end of the code 

snippet. 

3.3 Dataset Statistics 

We collected all corresponding answers from our 

set of filtered questions to create an initial cor-

pus. This corpus contained 107,961 question-

description-answer triplets, of which 47,220 

questions did not have a ‘user accepted best an-

swer’. A statistical analysis based on a naive 

word split showed that there were outliers in the 

corpus, with very large maximum lengths of up 

to 10,000 words in an answer. We identified and 

removed the outliers in the corpus by removing 

the current largest sample and monitoring the av-

erage length of the corpus. We continued to re-

move the largest sample till we obtained a rela-

 

Figure 1: Sample Stack Overflow question1 
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tively stable average value. This outlier determi-

nation was performed for each sample type of 

question, description and answer separately. Ul-

timately, we removed questions longer than 19 

words, or whose descriptions were longer than 

125 words, or with answers longer than 175 

words.  

The questions, descriptions and answers in the 

dataset were then converted into a sequence of 

numbers using word indexing techniques, in order 

to be usable by a machine learning model. The 

word indexing techniques involved first tokeniz-

ing the sentences into word tokens by using an 

open-source tokenizer (Python NLTK).2 Each 

word was labelled with a unique index and stored 

as a key-value pair in a data structure. Secondly, 

the words in each sentence were replaced by the 

corresponding indexes using the data structure 

created above to obtain a sequence of numbers 

which corresponded to the original sentence. A to-

tal of 284, 827 words were obtained through to-

kenization and subsequently indexed in the data 

structure. 

To maintain the uniformity of sentence length, 

we ‘pre-pad’ the sequence with 0 before the origi-

nal sequence. Adding zeros at the start of the orig-

inal sequence (if required) allows the network to 

accept a fixed sequence length and the nature of 

the number zero also allows us to denote that the 

element in the sequence is an empty space. We 

‘pre-pad’ and thus structure the sequence with ac-

tual content towards the end of the sequence be-

cause a time-based neural network is more likely 

to ‘remember’ time steps towards the end of the 

sequence, as those would be stored in the more re-

cent memory which is captured by the network. 

The filtering of the sentences with length 

thresholds is important, as it is difficult to capture 

semantic representations for lengthy text using 

word embeddings. Setting these thresholds result-

ed in a reduced dataset of 106,386 questions. The 
                                                      
2 NLTK implementation: https://www.nltk.org/ 

statistics for the final dataset are shown in Table 1. 

We also make this dataset available for public use 

as a contribution of this paper.3 

4 Methods and Techniques 

With the future objective of building a data-driven 

tutorial question-answering system, we first ex-

plore three overarching approaches of retrieval-

based models, generative models, and hybrid 

models for Java programming-based tutorial ques-

tion answering.  

The challenges associated with this dataset are 

that unlike traditional question answering datasets, 

this dataset has three streams of inputs. Each 

stream has its own unique descriptors such as vo-

cabulary and length. The answers in the dataset 

contain interspersed English and Java, which 

could make building meaningful word vector rep-

resentations difficult. Long sentences are typically 

more difficult to represent in a vector space and 

this dataset contains longer typical sentences for 

the description and answer than those seen in pre-

vious work of Lowe et al. (2015) and Lu et al. 

(2017).  As a part of this work, we investigate 

which combinations of inputs from the dataset 

yield the most optimal results.  

4.1 Dual Encoder LSTM (Siamese network) 

The Siamese Network or Dual Encoder architec-

ture (Medsker and Jain, 2001; Bromley et al., 

1994) has shown success in the recent past to 

build a retrieval-based question answering system 

(Lowe et al., 2015; Lu et al., 2017).  

To use the dataset with the Dual Encoder archi-

tecture, we needed to perform some additional 

pre-processing. We first built a dataset containing 

the question along with its description and the cor-

responding correct answer, and we assigned a la-

bel of 1 to these samples. We then created a sam-

ple containing the incorrect answer for a given 

question and description pair. This was done by 

randomly choosing another answer from the rest 

of the answer set and assigning a label of 0 to 

these samples.  

Description & Answer Dual Encoder 

(DADE): This architecture consisted of a Dual 

Encoder Bidirectional LSTM network, where the 

first encoder encoded the description of the ques-

tion and the second encoder encoded the answer 

                                                      
3 https://cise.ufl.edu/research/learndialogue/data/java-

stackoverflow-QA-dec2017.zip 

Average Question Length 8.68013 

Average Description Length 71.45428 

Average Answer Length 87.54342 

Vocabulary Size 284,827 

Table 1: Final Dataset Statistics 

276



   

statement. The large maximum sequence lengths 

influenced us to choose to use a Bidirectional 

LSTM (Schuster and Paliwal, 1997) as it allows 

the network to understand the context of a word 

with respect to both previous and next words and 

thus build better vector representations of the 

words. Each bidirectional encoder’s output was 

merged together to obtain a single 600-

dimensional output, and then this output was fed 

to a fully connected network of two layers, with 

the first layer containing 500 neurons and the sec-

ond layer containing 300 neurons. This was then 

run through a sigmoid activation function in order 

to obtain the result. 

This architecture used pre-trained GloVe word 

embeddings which were updated during the train-

ing phase. The LSTM cells contained 300 hidden 

units and 2 layers and optimized the binary cross-

entropy loss function.  

Question & Description Dual Encoder 

(QDDE): This architecture was similar to the De-

scription and Answer Dual Encoder in that it con-

sisted of a Dual Encoder LSTM network, where 

the first encoder encoded the question statement 

and the second encoder encoded the description 

statement. Each encoder’s outputs were merged 

together to obtain a single 300-dimensional output 

and then this output was run through a sigmoid 

activation function in order to obtain the result.  

Again, this architecture also used pre-trained 

GloVe word embeddings which were updated dur-

ing the training phase. The LSTM cells contained 

300 hidden units and a single layer and optimized 

the binary cross-entropy loss function.  

The rationale for this architecture was to build a 

dual encoder that would be able to predict a de-

scription given a question. We wanted to investi-

gate whether the dual encoder could learn rela-

tionships between smaller questions and longer 

descriptions. If we could successfully predict the 

description for a given question, it would allow us 

to leverage the similar lengths of the description 

and answer to obtain better results.  

4.2 Techniques to answer queries 

The aforementioned architectures were able to de-

termine answers for the given training, validation 

and testing sets, where the correct answers are 

predetermined. To extend our model’s use to the 

real world, we needed to define a different set of 

strategies to answer questions for which we do not 

know the predetermined answer. We explore our 

proposed strategies in the following section.  

Question Description Matching followed by 

Description Answer Matching: This approach 

attempted to find a similarity measure between a 

given user question and a description of the given 

  

Figure 2. Question Description Matching followed by Description Answer Matching 
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question via QDDE. The best matching descrip-

tion was then run against all the answers to deter-

mine the top 10 best possible answers, as seen in 

Figure 2. The intuition behind using this approach 

was that the description-answer dual encoder 

should provide better results as it used a bi-

directional LSTM network and both sequence 

lengths were approximately the same.  

4.3 Sequence-to-Sequence Models 

Sequence-to-Sequence models are generative 

models that, unlike their retrieval-based counter-

parts, do not rely on choosing from an existing set 

of answers but rather generate answers on their 

own. 

The preprocessing steps for the sequence-to-

sequence model were identical to the prepro-

cessing steps specified for the dual encoder mod-

el.  

Description to Answer Encoder - Decoder:  

This architecture used the description of a ques-

tion as the input to the encoder and attempted to 

match the actual answer to the question using the 

decoder. The intuition behind matching a de-

scription to the answer was that as the sequences 

are of almost equal length, this could then be 

framed as a machine translation problem, which 

has seen significant success with the sequence-

to-sequence model (Sutskever et al., 2014; Cho 

et al., 2014; Vinyals and Le, 2015).  

The encoder was a bidirectional recurrent neu-

ral network using LSTM cells. We chose bidirec-

tionality for better sentence vector representation, 

and LSTM cells for their ability to capture long-

term dependencies. The decoder is a standard re-

current neural network with LSTM cells.  

The LSTM cells contained 512 hidden units 

and 2 layers. We used a dropout (Srivastava et al, 

2014) probability of 0.2 and gradient normaliza-

tion (Pascanu et al., 2013) of 3.6. We used 15 

buckets, as the length of 175 (maximum answer 

length) would then be equally split into smaller 

chunks of size 12 increments. The Luong attention 

mechanism (Luong et al., 2015) was implemented 

in order to boost accuracy, as was beam search 

(Wiseman and Rush, 2016) of beam width 10 in 

order to obtain a better output for a given input. 

The vocabulary had to be reduced to 60,000 due 

to memory constraints.  

All the hyperparameters stated for the networks 

discussed above were determined by performing a 

 

Figure 3. Hybrid Architecture Combining Dual Encoder with Sequence-to-Sequence Model 
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grid search and cross-validating with the valida-

tion dataset. 

4.4 Hybrid architecture (Dual Encoder + 

Sequence-to-Sequence) 

In this work, we built a hybrid structure that com-

bined both the retrieval-based model of the dual 

encoder with the generative model of the se-

quence-to-sequence model. The intuition behind 

building this model was that a user typically asks 

questions with a length of fewer than 20 words 

and may not necessarily have enough of a descrip-

tion to fit the 125-word limit sufficiently. The pro-

posed architecture combats this issue by obtaining 

the user question and trying to find the most ap-

propriate description from a set of prefixed de-

scriptions, this is done by the question and de-

scription dual encoder mentioned earlier. The en-

tire workflow can be seen in Figure 3.  

We take the top 10 predicted descriptions and 

feed these descriptions as input to the description 

to answer sequence-to-sequence model.  

The Description to Answer model would result 

in 10 different generated answers and the answers 

were ranked based on the input descriptions rank-

ing. This architecture also lets us leverage the na-

ture of the dataset, in that it contains a question, a 

description and an answer as opposed to a tradi-

tional question-answer pair dataset. 

5 Experiments 

All the experiments performed as a part of this 

work were done on a desktop with the following 

specification i7 8-core CPU, 32GB RAM, and 

NVIDIA GTX 1070 8GB VRAM. 

The dataset of 106,386 was split into separate 

training, testing and validation sets. Given the 

large network sizes used in the experiments, there 

were a correspondingly large number of parame-

ters to be trained for each network, which in turn 

required a sufficiently large dataset to train on. 

Taking this into consideration we chose to not fol-

low the traditional 80-20 train-test split but rather 

maintain a large enough training set and use the 

rest of the data for testing and validation. The 

training set thus contained 100,000 questions and 

corresponding description and answers triplets, 

the test dataset contained 5,000 triplets and the 

validation set contained 1,386 triplets.  

For the dual encoder experiments, the training 

set size was 200,000 as we had to use both posi-

tive and negative samples while training. Whereas 

for the sequence-to-sequence model training we 

used only 100,000 description and answer pairs.  

5.1 Quantitative Analysis 

Dual Encoder: The recall@k metric works in 

conjunction with the group size. Given that we 

have a group size of 5, recall@1 tells us that if we 

had the option to choose 1 out of the 5 options, 

what is the probability that it would be correct. We 

take a look at Table 2, where the group size is 10 

and we compare another popular retrieval-based 

method, TF-IDF (Ramos, 2003), to our obtained 

results. TF-IDF has been outperformed by dual 

encoders for conversational models in the past 

(Lowe et al., 2015), but we see some interesting 

results for our dataset.  

We see that for DADE, TF-IDF is able to 

slightly outperform the dual encoder at the re-

call@1 scores, but the dual encoder outperforms 

TF-IDF for recall@2 and recall@5. We further 

see that QDDE is outperformed by TF-IDF in 

both recall@1 and recall@2, only for QDDE to do 

better in recall@5.  

We believe that we see this behavior because 

TF-IDF works based on word similarity and rates 

rare words between two documents as highly re-

lated (Ramos, 2003). Questions and descriptions 

containing common phrases are better perceived 

by TF-IDF than by the dual encoders. In addition, 

previous results like Lowe et al. (2015), worked 

on a corpus with an average word count of 10 

words where they showed that the dual encoder 

architecture significantly outperformed TF-IDF, 

whereas our work deals with much longer utter-

ances. In spite of long utterances, we see that the 

dual encoders do a comparable or better job than 

TF-IDF. 

Sequence-to-Sequence: We followed Google’s 

Neural Machine Translation tutorial (Luong et al., 

2017) to build our sequence-to-sequence models. 

Model Name recall@1 recall@2 recall@5 

DA TF-IDF 0.7837 0.8437 0.9137 

DADE 0.7052 0.8672 0.9798 

QA TF-IDF 0.9483 0.9685 0.9785 

QDDE 0.8542 0.951 0.9928 

Table 2. Testing recall@k for group size 10 
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An important point to note is that while traditional 

machine translations are judged based on BLEU 

score (Papineni et al., 2002) and perplexity, a con-

versational model cannot be judged on BLEU and 

hence we used perplexity as the primary measure 

of judgment  (Shao et al., 2017).  

Description to Answer Sequence-to-

Sequence Model: The perplexity for the dev set 

continued to decrease, thus we could assume no 

overfitting had occurred over the epochs of train-

ing this network. The dev and test perplexity 

scores were better than the previous model, with 

scores of 68.91 and 70.15 respectively, and this is 

also reflected in the coherent responses made by 

the model. 

5.2 Qualitative Analysis 

We chose a question which was neither part of the 

training, development nor test corpus to analyze 

the qualitative results. The reason these results are 

presented as qualitative is that since its part of nei-

ther of the corpus we do not have the actual ex-

pected response. The question that we chose is a 

fairly simple and straightforward question: 

“How can we create an integer array in java” 

We take a look at the responses given by the 

models in Table 3. As the models provide multiple 

answers, we have handpicked the answer that we 

thought was most relevant from the top 10. We 

have also cleaned the answer by referring the orig-

inal post on Stack Overflow for readability.  

The QDDE+DADE model produces a response 

that suggests using Java collections to achieve the 

same purpose of the array. The drawback here is 

that it diverges from the actual answer but is still 

relevant nonetheless. Another one of the top ten 

answers suggested looking at some of the Java 

documentation related to arrays. 

We now take a look at the responses generated 

by sequence-to-sequence models and the hybrid 

model. While the hybrid model suggests using an 

‘ArrayList’ instead of an array, it was able to form 

different codes for the condition of the ‘for’ loop 

in both the answers, suggesting that it may under-

stand a relationship between functions such as 

‘get’ and ‘add’ and the ‘for’ loop condition.  

It is also interesting to see the response gener-

ated by the Description to Answer sequence-to-

sequence model. We can analyze some of the 

aforementioned testing responses generated via 

the Description to Answer Sequence-to-Sequence 

model as can be seen in Table 4. 

By analyzing the generated responses for the 

samples above, we can see that the model has 

learned how to create new objects and has also 

learned what kind of commands are related to a 

given object, such as the date in Java needs 

simpledateformat class or that the file could need 

a file path. Perhaps the most notable was the crea-

                                                      
4 The sequence-to-sequence model does not include non-

word tokens such as ‘=’ or ‘{‘. These have been added for 

readability. 

Model:  Best Output: 

QDDE + 

DADE 
you can use an arraylist or a list of in-

tegers instead so that you can add items 

to the list as and when required also the 

list would then have only as many ele-

ments as the number of inputs syntax 

CODE_START List<Integer> = new 

ArrayList<Integer>() CODE_END to 

add elements to the list use 

CODE_START elements.add(new 

Item()) CODE_END to access mem-

bers of the list use CODE_START el-

ements.get(index) CODE_END 

Hybrid 

Model 

(Response 

#1) 

CODE_START 
public static void main (string args) 
 list<integer> list = new ar-

raylist<integer>  
for (int i = 0; i < list.size(); i++){ 
           system.out.println(list.get(i)); 
}  

CODE_END
4 

Actual output: code start list lt integer 

gt list new arraylist lt integer gt for int i 

0 i lt list size i system out println list 

get i code end 

Hybrid 

Model 

(Response 

#2) 

CODE_START 
public static void main(string args) { 
 list<integer> list = new ar-

raylist<integer>  
for (int i = 0; i < 10; i++){ 
           list.add(i); 
           system.out.println(list.get(i)); 
}  

CODE_END
3 

Actual output: code start public static 

void main string args list lt integer gt 

list new arraylist lt integer gt for int i 0 

i lt 10 i list add i system out println list 

get i code end 

Table 3. Top Responses for “how can we create 

an integer array in java” 
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tion of a coherent ‘for’ loop using the previously 

created object and referencing the appropriate 

method.  

We also see that the models are able to success-

fully combine the English language along with ja-

va code, starting answers with phrases such as 

“you can use...”, “i dont think there is a way...”, “i 

am not sure but try…” and so on. The models are 

also able to draw a clear line between code snip-

pets and English language and code start labels 

are mostly correctly completed with code end la-
                                                      
5 https://stackoverflow.com/questions/7631470 
6 https://stackoverflow.com/questions/40983790 
7 https://stackoverflow.com/questions/6390581 

bels. There have also been instances where Eng-

lish phrases such “you can also try” are used be-

tween two code snippets.  

While these examples have been sampled from 

a much larger set in which not all the responses 

are as appropriate, this still shows promise in us-

ing this architecture to build models that can ap-

propriately respond to a query by generating their 

own response. 

6 Conclusion 

This work has examined how we can leverage 

community-based question answering forums as a 

source of data to build a dataset specific to general 

Java-based programming questions. We have seen 

that retrieval-based models obtain high recall rates 

on the testing set but are restricted only to the an-

swer set available. On the other hand, generative 

models are able to successfully combine the 

English language along with Java code to make 

coherent responses at times, but the responses are 

small and do not completely answer the question. 

We found reasonable success with the hybrid 

model by combining the retrieval-based approach 

with the generative approach. The proposed ap-

proaches show promise in building a useful tutori-

al system based on the sampled dataset. These are 

the first steps made in that direction.  

This work could be furthered by investigating 

jointly training the hybrid model to improve de-

scription selection and answer generation. One 

could also frame this task as a machine compre-

hension task, where the entire answer set could be 

used as the context. Doing so would allow us to 

leverage the memory network architecture, which 

performs better at tasks involving storing long-

term memory. Finally, we could explore using ad-

versarial training, as it has seen success on con-

versational models in the recent past (Li et al., 

2017). 
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1 

Question: how to format a date in java 

 

Description: how can change this date for-

mat 2011 09 07...
5 

Generated 

Response: 
CODE_START 
simpledateformat sdf new 

simpledateformat yyyy mm dd 

hh mm ss …... 

 

2 

Question: java does not recognize a file 

when it begins with file 

 

Description: java says a file does not exist 

when it is a valid file path ...
6 

Generated 

Response: 
CODE_START 
file file new file path to file  
CODE_END 

 

3 

Question: how to track of other applica-

tion's memory and cpu usage by 

java coding 

 

Description: i want to show cpu and memory 

utilization of any application...
7 

Generated 

Response: 
you can take a look at the 

CODE_START java util con-

current CODE_END package 

http docs oracle com javase tu-

torial essential environment 

sysprop html 

 Table 4: Sample Sequence-to-Sequence Gen-

erated Responses from Test Set 
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