
S Bandyopadhyay, D S Sharma and R Sangal. Proc. of the 14th Intl. Conference on Natural Language Processing, pages 188–196,
Kolkata, India. December 2017. c©2016 NLP Association of India (NLPAI)

Reasoning with Sets to Solve Simple Word Problems Automatically

Sowmya S Sundaram
Indian Institute of Technology, Madras

Chennai 600036
sowmya@cse.iitm.ac.in

Deepak Khemani
Indian Institute of Technology, Mandi

Himachal Pradesh 175005
khemani@iitmandi.ac.in

Abstract

A system, Magi, is proposed, which
analyses simple addition/subtraction
arithmetic word problems expressed in
English, represents them in the form
of schemas and sets, reasons with set
cardinalities and presents the final answer
in English phrases. It also provides simple
explanations. This work presents a study
of the features of a knowledge-based
system used for solving such a task.
It has been evaluated and has been
found to perform better than current
knowledge-based systems for similar
problems.

1 Introduction

Natural language understanding is one of the key
elements of human intelligence. Hence, it has
attracted the attention of a sizeable population
of researchers of artificial intelligence. The
first published work in this field (Bobrow, 1964)
attempted to solve word problems presented to
a computer in English. The appeal of solving
word problems lies in the fact that semantic
understanding is required to map the word
problem to a mathematical framework.

Consider the following example.
Input: Keith has 20 books . Jason has 21 books .
How many books do they have together?
Output: Altogether 41 books

Here, the system has to map the word ‘they’
to ‘Keith’ and ‘Jason’. This is an example
of co-reference resolution. Next, the notion of
associating ‘20 books’ to ‘Keith’ and ‘21 books’
to ‘Jason’ has to be captured. These relevant
details are also extracted. The last piece of
information required is the word ‘together’ that
signifies what is the goal of the problem. In

this work, these details are extracted by using the
Stanford Core NLP (Manning et al., 2014) suite
of tools extensively. Other approaches include
semantic parsing (Shi et al., 2015), learning
equation co-efficients (Kushman et al., 2014),
learning expression trees (Koncel-Kedziorski et
al., 2015) and so on. In this work, as the principle
was to build as precise a system as possible, we’ve
used a rule based approach. The motivation was
that if this tool was used by a student, she should
be able to see the trace of the solution.

In order to know what are the elements that
are to be extracted from the word problem,
some model of word problems must be encoded
into the system. This is the role of knowledge
representation. Here, knowledge representation
is in the form of schemas that are templates
for solving problems. They describe common
categories of word problems. The schema for
the above problem is ‘combine’ which describes
that the answer is the sum of entities in question.
Internally, this idea is represented as sets for
closer coupling to the semantics of the problem.

t0
Jason has B books
Keith has A books
———————–
A 20
B 21

The next step is reasoning. The schema
‘combine’ directs that the sum of the ‘books’
owned by ‘Jason’ and ‘Keith’ is required. The
answer is computed by adding the cardinalities of
A and B. The final answer, ‘41’ is presented as
‘Altogether 41 books’. The last step of generating
the answer is facilitated by the schema as well.

The challenges in this problem solving process
are high. This is because natural language
processing is difficult and often ambiguous or188

may rely on implicit details. Magi resolves some
of the ambiguities by reasoning about implicit
events and making some assumptions. There
are some ambiguities in schema identification as
well which have been partially addressed using
some heuristics. While computing elementary
problems, numerical efficiency of computers
is much more. The challenging task is the
introduction of language and representing the
information extracted from the natural language.

2 Related Work

As mentioned, the work that pioneered the field
of natural language understanding was (Bobrow,
1964). The program, STUDENT, was able
to process sentences that followed a specified
template and could handle addition, subtraction,
division, multiplication and exponentiation.

Schemas were introduced by (Fletcher, 1985)
based on cognitive theory. It specified three
schemas - combine, compare and change. After
this, (Dellarosa, 1986) proposed ARITHPRO
which encoded some inheritance. For example,
dolls and balls are toys. If a problem described
dolls, balls and clothes and the task was to find
total toys, ARITHPRO would pick only relevant
entities.

Schemas were used relatively recently in
(Bakman, 2007). It could solve multi-step
problems and could ignore extraneous
information. However, the system did not
scale well as the complexity of natural language
increased. This is a common trait running through
all these knowledge-based systems. A major
stumbling block was the complexity of natural
language understanding. Many systems worked
on a subset of natural language called Controlled
Natural Language to resolve ambiguities.

After this system, as mentioned in (Mukherjee
and Garain, 2008), without a common standard
dataset to compare different algorithms, the
interest in this field died down. Also, the extensive
human effort involved in curating rules for these
systems was not encouraging.

In recent times, there has been a resurgence of
interest for this type of problems. In (Kushman et
al., 2014), word problems were solved by building
an empirical model that matched the numerals
in a word problem to co-efficients in a template.
Their domain was the set of word problems that
could be solved by a set of linear equations.

They achieved a commendable accuracy. (Zhou et
al., 2015) improved this work by using quadratic
programming on a simpler and more efficient
model. Another work (Hosseini et al., 2014)
used a state representation for arithmetic word
problems. It used machine learning to identify
the characteristic operation signalled by a verb.
They provided three datasets of varying difficulty
that have been used for evaluation in this paper
against their fully knowledge-based variant of
the code. (Shi et al., 2015) solves algebraic
word problems which reason about numbers and
their relations. It uses semantic parsing with a
custom-built language for their chosen domain.
The work presented in (Koncel-Kedziorski et al.,
2015) learns a model that maps natural language to
expression trees. They could solve single-variable
word problems effectively. As the narrative of
the problem became longer, the search space grew
exponentially. A knowledge based system could
potentially solve problems of arbitrary length
provided the sentences could be processed by it.
In (Mitra and Baral, 2016), there is a notion of the
categories of word problems where a model learns
to identify which category and the alignment of the
numbers to the template of the word problem. It is
the learning version of this work. The drawback it
faces is the heavy annotation required for learning
such an alignment. A recent work, (Ling et al.,
2017) uses deep learning to solve general word
problems and provide explanations for the same.
It solves problems which are in a competitive
exam style, with possible answer options. It
develops a language model and a mathematical
model simultaneously. Since the problem setting
is slightly different, its performance on existing
datasets is not available.

The knowledge based systems are precise but
can attempt few real-world problems as their
natural language processing is limited. On
the other hand, empirical systems can tackle a
wide gamut of problems but they are not as
precise as knowledge based systems. This work
hopes to maximise the trade-off between the
two methodologies by using statistically trained
parsers and a well-defined representation system.

3 The Process

As the dependency parser provided by (Manning
et al., 2014) is not robust for long sentences, the
given English word problem is first simplified and189

then passed to the co-reference resolver and the
dependency parser. The simplification is based
on a set of rules derived from the part-of-speech
tags and the constituency parser. The parsers
extract relevant information for each sentence.
The sentences are then ordered in increasing order
of time by using the tense of the sentences.
After this, sets are created for each numerical
entity. Then, relationships between these sets
are established by schemas using the extracted
information. Finally, after reasoning with the
set cardinalities, the answer is displayed along
with the trace and explanation. This process is
explained in detail with a running example

Algorithm 1: The Problem Solving Process
Input: Word Problem: p
Output: String: expl, Number: ans

1 WordProblem p1 = simplify(p)
2 List<Steps> extractedInfo =

extract(p1.sentences())
3 List<Steps> orderedInfo =

rearrange(extractedInfo)
4 time = 0
5 questionSet = ∅
6 story = ∅
7 for each step in orderedInfo do
8 if event(step) then
9 time = time + 1

10 end
11 story = story.add(step,time)
12 story = story.apply(step.schema)
13 if step.isQuestion = true then
14 questionSet =

story.get(step,time).value
15 end
16 end
17 solve(story.sets)
18 expln = explain(story)
19 ans = questionSet.cardinality
20 Print ans
21 Print expln

4 Natural Language Understanding

The steps involved in natural language
understanding are explained briefly below.

• Resolve unknown entities - For example, if
the problem had sentences like, ‘There are 5
trees in a park. Park workers cut 2 of them’,

this is converted to ‘There are 5 trees in a
park. Park workers cut 2 trees.’ This is to
ease the task of the parsers.

• Simplifying sentences - Most long sentences
are split into simpler sentences. For instance,
‘Sally got 4 erasers and 3 pencils’ is split as
‘Sally got 4 erasers. Sally got 3 pencils.’

• Resolving co-references - This has been done
by using the ‘decoref’ annotator provided by
(Manning et al., 2014).

• Rule based information extraction - a set of
rules that work on the output given by the
dependency parser to extract the details of
each sentence .

• The retrieved information is then ordered
based on the tense of each sentence.

4.1 An Example

Let us see an example to illustrate the various
points described above. Consider the problem,
‘Molly owns the Wafting Pie Company. This
morning, her employees used 816 eggs to bake
pumpkin pies. If her employees used a total of
1339 eggs today, how many eggs did they use in
the afternoon?’.

4.1.1 Preprocessing
For this problem, the first step is to resolve
the pronoun ‘her’. After this step, our system
changes the input to, ‘Molly owns the Wafting
Pie Company. This morning, Molly’s employees
used 816 eggs to bake pumpkin pies. If Molly’s
employees used a total of 1339 eggs today, how
many eggs did Molly’s employees use in the
afternoon?’.

4.1.2 Simplification
As the sentences are relatively complex,
simplifying them brings much better results.
At the end of simplification, the problem is
changed to : ‘Molly owns the Wafting Pie
Company. Molly’s employees used 816 eggs to
bake pumpkin pies. Molly’s employees used a
total of 1339 eggs today. How many eggs did
Molly’s employees use in the afternoon?’. This is
achieved by examining the Part-Of-Speech(POS)
tag of every sentence, identifying the verb, and
extracting the relevant noun phrase and verb
phrase.190

4.1.3 Information Extraction

Some rules are used to get the information
required for representation. Each sentence’s
analysis is enlisted below.

• ‘Molly owns the Wafting Pie Company’ -
this sentence is ignored because there is no
number involved. There are some exceptions
to this rule. If the sentence contains words
like ‘some’, that information is encoded.

• ‘Molly’s employees used 816 eggs to bake
pumpkin pies’ - this sentence is converted by
Magi as

owner1 : Molly’s employees
owner2 : (none)
verb : use
entity : egg
value : 816
keyword : use
procedure : reduction
tense : past
isQuestion : false
isAggregator : false

The ‘owner1’ and ‘owner2’ fields suggest
who are the participants. Here, only ‘Molly’s
employees’ are relevant. If the question
was ‘Sally gave 4 kites to Sam’, then the
two owners would be ‘Sally’ and ‘Sam’
respectively. This is extracted by a set
of rules. In this case, the subject of
sentence(denoted by the ‘nsubj’ tag) is taken
as the first owner. There are a set of keywords
and their associated procedures stored - this is
explained in more detail in the next section.
If the sentence contains one of the keywords,
it is retrieved from the sentence and stored
along with the corresponding procedure’s
name. The tense is stored by analysing
the POS tag. It is later used for ordering.
The field ‘isQuestion’ signifies whether this
step contains information that pertains to the
answer to be retrieved. On the other hand,
‘isAggregator’ states whether the sentence
contains any word that imply combination,
such as ‘total’, ‘altogether’, etc.

• ‘Molly’s employees used a total of
1339 eggs today.’ - a similar process

leads to the following data to be stored.
owner1 : Molly’s employees
owner2 : (none)
verb : use
entity : egg
value : 1339
keyword : use
procedure : reduction
tense : past
isQuestion : false
isAggregator : true

• ‘How many eggs did Molly’s employees use
in the afternoon?’ -

owner1 : Molly’s employees
owner2 : (none)
verb : use
entity : egg
value : (empty)
keyword : use
procedure : reduction
tense : past
isQuestion : true
isAggregator : false

By setting the ‘isQuestion’ flag, the system is
now equipped with the insight that the answer
required is the number of eggs Molly’s
employees used.

5 Knowledge Representation

5.1 Schemas

Schemas are templates that suggest how a problem
should be solved. They were applied to solve math
word problems first by (Fletcher, 1985). He used
three schemas - Combine, Change and Compare.
Let us consider the ‘Compare’ schema. A typical
example is ‘Rachel has 3 pencils. Tom has 3
pencils more than Rachel. How many pencils
does Tom have?’. The schema, ‘Compare’, and its
instantiation is given below:
(owner1) has (X) (object)
(owner2) has (Y) (object) more than (owner1)
(owner2) has (Z) (object)
Z = X + Y
(owner1) = ‘Rachel’, (owner2) = ‘Tom’, (object)
= ‘pencil’, (X) = 3, (Y) = 3.

Schemas have a structure that can be mapped to
the sentences given in the sentence along with an191

equation connecting the variables. If two variables
are retrieved from the problem (in this example,
X and Y), the value of the third variable can be
computed.

The first disadvantage of this method is that it
is too rigid. All word problems are not expressed
in a format that is easy to map to this format. If
the question was changed as ‘Rachel has 3 pencils.
Tom has 3 more. How many does he have?’,
this particular schema would fail as it does not
exactly match the natural language input expected.
The second issue is that these three schemas are
inadequate to describe all types of problems. For
example, the problem ‘Samantha has 8 cookies.
She ate 3 of them. How many does she have
now?’, would not fit in any of the above schemas.
The ‘change’ schema is tailored to capture transfer
of ‘object’ from one person to another. Hence,
though it seems applicable, it is not so.

To counter these challenges, (Bakman, 2007)
describes his system ‘ROBUST’ that can handle
a larger number of schemas. Some ideas were
inspired by Script Applier Mechanism (SAM)
by (Schank and Abelson, 1975) which captured
semantics by grouping words from a dictionary
into categories. Similarly, instead of a single
keyword for schemas, ROBUST mapped a lot
of keywords to a single schema. For example,
‘eat’, ‘destroy’, ‘kill’ were keywords for the
‘termination’ schema. ROBUST concentrated on
the various possibilities of ‘change’ schema. It
also used schemas iteratively until all possible
equations were applied in order to handle
multi-step problems. It showed significant
improvements over existing systems.

5.2 Schemas and Time
From ROBUST’s emphasis on the ‘change’
schema, the next natural step is to capture
information about time. By explicitly assigning
timestamps to sentences, the search for schema
instantiation is made more focussed.

5.3 Schemas and Ambiguity
A classic example of ambiguity can be seen in
the problem ‘Samantha ate 8 cookies. Anne ate 4
cookies more than Samantha. How many cookies
did Anne eat?’. Here, the correct schema to be
used is ‘Compare’. However, due to the word
‘ate’, the ‘termination’ schema is also applicable.
If the ‘termination’ schema is applied, since there
is no information about the cookies any of them

had before or after, it cannot be instantiated. To
address this, the schemas are modified such that
the verb is variable and it can reason about any
verb. The narrative is represented in the following
manner.
t0
Samantha : eat : 8 : cookies
t1
Anne : eat : 8 + 4 : cookies

Hence, the template-matching is relaxed and
more problems can be solved.

5.4 Schemas and Sets

After introducing time, its related concepts and
reasoning about events while applying schemas,
there are still some problems which cannot be
addressed. Consider, ‘There are 70 students in a
class. If 65 students are present, how many are
absent?’.

These problems have no events, or tell-tale
keywords for helping the system solve problems.
The schema of combination usually implies an
aggregation over different owners. This a case
of set completion, where the 65 students are a
subset of the 70 students in class and the set of
students who are present is disjoint from the set of
absentees. Hence, the representation is shifted to
schemas with descriptions as sets.

Revisiting ‘Rachel has 3 pencils. Tom has 3
pencils more than Rachel. How many pencils
does Tom have?’, the ‘compare’ schema which
has been specialised as ‘compare-plus’ in Magi is
stored as :
(owner1) (verb) (X) (object)
(owner2) (verb) (Y) (object) more than (owner1)
(owner2) (verb) (Z) (object)
|Z| = |X ∪ Y |, X ∩ Y = ∅
(owner1) = ‘Rachel’, (owner2) = ‘Tom’, (verb) =
‘has’, (object) = pencil, |X| = 3, |Y | = 3.

Coming back to the set-completion scenario,
the narrative is represented as :
t0
class : has : A : students
class : has : B : present students
——————————————
A 70
B 65

While parsing the sentence, the behaviour of192

antonyms is recorded and the case for subset
completion is set to be true, if the antonyms are
appropriately situated. If it is true, the statements
B ⊆ A,C ⊆ A,B ∩ C = ∅ are added
along with ‘class : has : C : absent students’.
Antonyms have been computed from https://
www.thesarus.com.

5.5 Magi’s Schemas
The schemas used by Magi are described in Table
1. The procedures are programming directives
and are more flexible than traditional schemas.
Implicitly, all sets are considered disjoint unless
set completion is involved. Even though the
description says ‘owner1’ and ‘owner2’, Magi is
implemented in such a way that it can reason
about different entities owned by the same owner
if required.

Schema Procedure Relations
combine Sum over all relevant

entities
|D| = |A ∪ B..|

comparePlus owner1 has A items,
owner2 has B items more,
owner2 has C items

|C| = |A ∪ B|

compareMinus owner1 has A items,
owner2 has B items less,
owner 2 has C items

|C| = |A− B|

increase owner1 had A items,
owner1 got B items more,
owner1 has C items now

|C| = |A ∪ B|

reduction owner1 had A items,
owner1 lost B items,
owner1 has C items now

|C| = |A− B|

set-completion A,B,C B ⊆ A,C ⊆ A

Table 1: Flexible Schemas used by Magi

6 Reasoning

In the straight-forward situation, reasoning is
simply a case of solving the equations relating set
cardinalities based on the axioms of set theory.
However, to address a larger type of problems,
some common sense rules have been added.

6.1 Handling Implicit Events
Consider the problem, ‘Last week Tom had $74.
He washed cars over the weekend and now has
$86. How much money did he make washing
cars?’. The word ‘wash’ is not a keyword, hence
it is not registered as an event. When the narrative
is being constructed, the first statement will
record that Tom has 74 dollars. As no event has
occurred, the timer is not incremented. After that,
the system encounters that Tom has 86 dollars
at the same time. Since this is not possible, it
introduces an event, ‘Tom gets 86 - 74 dollars’.
This is illustrated below:

t0
Tom : has : A : dollars
t1
Tom : get : C : dollars
t2
Tom : has : B : dollars
—————————–
A 74
B 86
C 12

The statements involved are |C| = |B| − |A|.

6.2 Assumption of Initial Conditions
Most schema-based systems fail due to some
missing information. For example, ROBUST
would fail to solve ‘Jane bought 10 cookies. She
ate 3 cookies. How many does she have now?’.
This is because, it would try to find some value as
the initial number of cookies Jane owned. Magi
sets initial values as ∅.

6.3 Reasoning about Events
Ideas from ‘Event Calculus’ described in
(Shanahan, 1999) have been used to construct
the narrative. For example, circumscription is
used in the problem, ‘Sam grew 4 watermelons,
but the rabbits ate 3 watermelons. How many
watermelons does Sam have?’ to reason that the
3 watermelons are actually a subset of Sam’s
watermelons. This idea was also employed by
(Hosseini et al., 2014). Also, common sense law
of inertia was implemented to state that entities
that were not affected by an event, continue to
persist across time steps.

6.4 Reasoning and Natural Language
Sometimes, reasoning is performed using
the extracted information presented for
representation. For example, the situation
where ‘Sam buy games for $35’ actually implies
that the event is ‘Sam spent 35 dollars’. Such
rules are also enforced.

6.5 Heuristics
Due to the complexity of processing natural
language and the limited rules available, the
numerals in the problem may not be correctly
assigned to the templates required for a schema
properly. Hence, some heuristics are used to
improve performance. As expected, they are
not sound. One consistent heuristic is, if Magi193

retrieves a value that is already given in the
question, then search is repeated. Another
heuristic is, if the system is unable to represent
as desired, but has recognized that the question
needs aggregation, it simply returns the sum of all
entities.

7 Natural Language Generation

Since one of the driving factors behind this work
is to facilitate the understanding of students, an
attempt has been made to explain the answer
obtained in natural language. The trace of the
problem is recorded as the problem is solved and
then an explanation is generated. The quality of
generation is quite low at this point in time but the
intermediate representation is provided. This can
be taken up by a generation expert and designed.

One of the successful examples is illustrated
below.

7.1 Problem

John had 7 apples. Mary has gave some apples to
John. Now, John has 10 apples. How many apples
does Mary have?

7.2 Explanation

John has 7 apples.
Mary gives x apples.
Hence, John has 7+x apples.
Now, John has 10 apples.
Therefore, 7+x = 10
Mary gives 3 apples

7.3 Trace

John had 7 apples. Mary gave 3 apples to John.
John had 10 apples. John had 10 apples. Mary
had 3 apples.

This trace is concatenating the situation at every
time step. Hence, the statement John had 10
apples is repeated twice. We used SimpleNLG
(Gatt and Reiter, 2009) for generation.

8 Evaluation

Magi has been coded in Java 1.7 and has used the
same version of (Manning et al., 2014) parser as
the one used by ARIS (Hosseini et al., 2014) for
a fair evaluation. The work has been compared
against other knowledge based systems.

Magi has been evaluated on the three datasets,
DS1, DS2 and DS3 provided by (Hosseini et al.,

DS1 DS2 DS3 Avg
Magi 95.52 80.00 84.30 86.51

Gold ARIS 94.0 77.1 81.0 84.0
ROBUST 12.69 0.71 0 4.56

WolframAlpha 5.97 2.14 0.83 3.03

Table 2: Performance

2014). DS1 has 134 problems. DS1 and DS3
are similar in terms of the applicable schemas.
However, DS3 has more complex sentences and
has extraneous information. It has 121 problems.
DS2 involves the use of decimals which is difficult
for parsing. Also, DS2 has a lot of problems that
require set-completion, an issue whose solution
was the inspiration for this representation. It has
140 problems.

A comparison has been presented in Table
2 with respect to three other systems. One
is ROBUST (Bakman, 2007) which has been
discussed before. (Hosseini et al., 2014)
presented ARIS. It attempted to learn the
equation categorising verbs. They also presented
an algorithm for learning that information.
However, by limiting themselves to verbs (change
schemas), other schemas such as ‘combine’
and ‘compare’ were missed. As we have
not performed any empirical method to learn
the keyword-schema mapping, the system for
comparison is Gold-ARIS. (Wolfram, 2015) is
another system that solves math word problems
on the Internet without divulging implementation
details.

The increased performance over Gold ARIS is
because of the use of heuristics, addressing set
completion and handling implicit events. Also,
simplifying the problem and performing some
reasoning with the language helped reduce parser
errors mentioned in (Hosseini et al., 2014).
ROBUST performs relatively better with DS1
because it consists of simple sentences. As the
complexity of processing English increases, the
performance of both ROBUST and WolframAlpha
reduces.

8.1 Analysis of Errors

8.1.1 Absence of a Keyword
Consider “A restaurant served 9 pizzas during
lunch and 6 during dinner today. How many pizzas
were served today?”. Since there are no keywords
like “altogether”, the system did not recognize that
the “combine” schema is to be applied. Also, it
could not identify that lunch and dinner are parts194

of “today”.

8.1.2 No Model for Intent
In “Joan decided to sell all of her old books.
She gathered up 33 books to sell. She sold 26
books in a yard sale. How many books does Joan
now have?”, the system couldn’t represent that
Joan hadn’t actually sold 33 books and was only
intending to sell them.

8.1.3 Issues in Extracting Entities
Consider “A ship full of grain crashes into a coral
reef. By the time the ship is fixed, 49952 tons
of grain have spilled into the water. Only 918
tons of grain remain onboard. How many tons of
grain did the ship originally contain?”. The system
did not recognize that the ship had spilled tons of
grain. The system represented it as “water has
49952 ton” and “water spill 918 ton”. Here there
are multiple entities that are interacting with each
other. These facets could not be extracted by the
rules designed for information extraction.

9 Discussion

While it has been presented that Magi is a good
knowledge-based system, the question remains
whether it is robust enough to have a recall
comparable with empirical systems. This is hard
to evaluate as empirical systems are usually tested
by cross validation. When a human expert makes
rules, she cannot subjectively claim that the rules
have made solely on the basis of a section of
the data. The fact that the system can achieve
a high accuracy shows that it does solve a large
number of problems. However, there may be
a problem of over-fitting in some sense. In
empirical systems, this is also possible because
often there is a considerable overlap of sentence
styles in the training and test examples. How
these systems fare with completely unseen data
would be an interesting experiment to compare
these algorithms. This work is not limited
to presenting a numerical answer. Rather, it
attempts to illustrate what are the components
required to build a product that would benefit
students - namely natural language understanding,
representation, reasoning and natural language
generation. A loss in precision implies that it
might induce confusion in a student’s mind. In
hindsight, the heuristics did drastically reduce
precision and doing away with them is part of the
future work.

9.1 Knowledge Acquisition Bottleneck

The primary reason knowledge-based systems
went out of vogue for natural language processing
is because of the knowledge acquisition
bottleneck. In this work, the types of word
problems were already established in the
literature. However, two sources of knowledge
acquisition bottleneck still exist - the mapping
between the schemas and the keywords as well
as the various rules and strategies to extract
information and represent them as schemas.
While a human expert can sift through the data
and come up with better rules than a learning
program in a simplistic domain such as this, the
generalisability of this approach is questionable.

9.2 Similarities between Knowledge-Based
and Empirical Systems

In this particular domain, there is often a need
to encode world knowledge in some form. In
empirical systems, it comes as the cost of
annotation and choice of hand-coded features.

9.3 The Need for Semantics

Many works (eg. (Shi et al., 2015)) recognize
the need for semantics for this class of problems.
A single word could completely change the
equation construction. Hence, it is imperative
that there must be some model of mathematical
computation.

10 Conclusion and Future Work

We have presented a knowledge-based system
to explore what are the exact sources of
information required in the quest for building a
student-friendly application that is precise. It
has been shown that to solve such problems,
world knowledge has to be encoded and semantic
understanding is required. Exciting developments
such as deep learning (Ling et al., 2017) in
natural language processing can learn the required
representation as well and succeed in building an
end-to-end system. However, it comes at the cost
of a huge amount of data that is not available at
this point in time for many mathematical problem
domains. Though we have introduced some level
of statistical analysis through parsers, it would
be beneficial to explore semantic parsing and
other approaches to map the natural language
description to an underlying representation with
higher precision for semantically richer domains.195

References
Yefim Bakman. 2007. Robust understanding of

word problems with extraneous information. arXiv
preprint math/0701393.

Daniel G Bobrow. 1964. A question-answering
system for high school algebra word problems. In
Proceedings of the October 27-29, 1964, fall joint
computer conference, part I, pages 591–614. ACM.

Denise Dellarosa. 1986. A computer simulation
of childrens arithmetic word-problem solving.
Behavior Research Methods, Instruments, &
Computers, 18(2):147–154.

Charles R Fletcher. 1985. Understanding and solving
arithmetic word problems: A computer simulation.
Behavior Research Methods, Instruments, &
Computers, 17(5):565–571.

Albert Gatt and Ehud Reiter. 2009. Simplenlg:
A realisation engine for practical applications.
In Proceedings of the 12th European Workshop
on Natural Language Generation, pages 90–93.
Association for Computational Linguistics.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learning
to solve arithmetic word problems with verb
categorization. In Proceedings of the 2014
Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 523–533.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into
equations. Transactions of the Association for
Computational Linguistics, 3:585–597.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. ACL (1), pages
271–281.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil
Blunsom. 2017. Program induction by rationale
generation: Learning to solve and explain algebraic
word problems. arXiv preprint arXiv:1705.04146.

Christopher D Manning, Mihai Surdeanu, John
Bauer, Jenny Finkel, Steven J Bethard, and David
McClosky. 2014. The stanford corenlp natural
language processing toolkit. In Proceedings
of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 55–60.

Arindam Mitra and Chitta Baral. 2016. Learning to
use formulas to solve simple arithmetic problems.
ACL.

Anirban Mukherjee and Utpal Garain. 2008. A
review of methods for automatic understanding of
natural language mathematical problems. Artificial
Intelligence Review, 29(2):93–122.

Roger C Schank and Robert P Abelson. 1975. Scripts,
plans, and knowledge. Yale University.

Murray Shanahan. 1999. The event calculus
explained. In Artificial intelligence today, pages
409–430. Springer.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving
number word problems by semantic parsing and
reasoning. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), Lisbon, Portugal.

Stephen Wolfram. 2015. Wolfram—alpha. On the
WWW. URL http://www. wolframalpha. com.

Lipu Zhou, Shuaixiang Dai, and Liwei Chen.
2015. Learn to solve algebra word problems
using quadratic programming. In EMNLP, pages
817–822.

196

