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Abstract

Many genres of natural language text are
narratively structured, a testament to our
predilection for organizing our experi-
ences as narratives. There is broad consen-
sus that understanding a narrative requires
identifying and tracking the goals and de-
sires of the characters and their narrative
outcomes. However, to date, there has
been limited work on computational mod-
els for this problem. We introduce a new
dataset, DesireDB, which includes gold-
standard labels for identifying statements
of desire, textual evidence for desire ful-
fillment, and annotations for whether the
stated desire is fulfilled given the evidence
in the narrative context. We report experi-
ments on tracking desire fulfillment using
different methods, and show that LSTM
Skip-Thought model achieves F-measure
of 0.7 on our corpus.

1 Introduction

Humans appear to organize and remember every-
day experiences by imposing a narrative structure
on them (Nelson, 1989; Thorne and Nam, 2009;
Bruner, 1991; McAdams et al., 2006), and many
genres of natural language text are therefore nar-
ratively structured, e.g. dinner table conversa-
tions, news articles, user reviews and blog posts
(Polanyi, 1989; Jurafsky et al., 2014; Bell, 2005;
Gordon et al., 2011). Moreover, there is broad
consensus that understanding a narrative involves
activating a representation, early in the narrative,
of the protagonist and her goals and desires, and
then maintaining that representation as the narra-
tive evolves, as a vehicle for explaining the pro-
tagonist’s actions and tracking narrative outcomes
(Elson, 2012; Rapp and Gerrig, 2006; Trabasso

People did seem pleased to see me but all I [wanted to]
do was talk to a particular friend.

I’m off this weekend and had really [hoped to] get out
and dance.

We [decided to] just go for a walk and look at all the
sunflowers in the neighborhood.

I [couldn’t wait to] get out of our cheap and somewhat
charming hotel and show James a little bit of Paris.

We drove for just over an hour and [aimed to] get to Trin-
ity beach to set up for the night.

She called the pastor, and he had time, too, so, we [ar-
ranged to] meet Saturday at 9am.

Even though my deadline wasn’t until 4 p.m., I [needed
to] write the story as quickly as possible.

Figure 1: Desire expressions in personal narratives

and van den Broek, 1985; Lehnert, 1981).
To date, there has been limited work on com-

putational models for recognizing the expression
of the protagonist’s goals and desires in narrative
texts, and tracking their corresponding narrative
outcomes. We introduce a new corpus DesireDB
of∼3,500 first-person informal narratives with an-
notations for desires and their fulfillment status,
available online.1 Because first-person narratives
often revolve around the narrator’s private states
and goals (Labov, 1972), this corpus is highly suit-
able as a testbed for identifying human desires and
their outcomes. Moreover, first-person narratives
allow the narrative protagonist (first-person) to be
easily identified and tracked. Figure 1 illustrates
examples of desire and goal expressions in our
corpus.

DesireDB is open domain. It contains a broad
range of expressions of desires and goal state-
ments in personal narratives. It also includes
the narrative context for each desire statement as
shown in Figure 2. We include both prior and

1https://nlds.soe.ucsc.edu/DesireDB
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post context of the desire expressions, since the-
ories of narrative structure suggest that the evalu-
ation points of a narrative can precede the expres-
sion of the events, goals and desires of the narra-
tor (Labov, 1972; Swanson et al., 2014).

Our approach builds on seminal work on a com-
putational model of Lehnert’s plot units, that ap-
plied modern NLP tools to tracking narrative af-
fect states in Aesop’s Fables (Goyal et al., 2010;
Lehnert, 1981; Goyal and Riloff, 2013). Our fram-
ing of the problem is also inspired by recent work
that identifies three forms of desire expressions
in short narratives from MCTest and SimpleWiki
and develops models to predict whether desires are
fulfilled or unfulfilled (Chaturvedi et al., 2016).
However DesireDB’s narrative and sentence struc-
ture is more complex than either MCTest or
SimpleWiki (Richardson et al., 2013; Coster and
Kauchak, 2011).

We propose new features (Sec 4.1), as well as
testing features used in previous work, and apply
different classifiers to model desire fulfillment in
our corpus. We also directly compare to results
on MCTest and SimpleWiki (Sec 4.4). We apply
LSTM models that distinguish between prior and
post context and capture the flow of the narrative.
Our best system, a Skip-Thought RNN model,
achieves an F-measure of 0.70, while a logistic re-
gression system achieves 0.66. Our models and
features outperform Chaturvedi et al. (2016) on
MCTest and SimpleWiki, while providing new
results for a new corpus for tracking desires in
first-person narratives. Moreover, analysis of our
results shows that features representing the dis-
course structure (such as overt discourse relation
markers) are the best predictors of fulfillment sta-
tus of a desire or goal. We also show that both
prior and post context are important for this task.

We discuss related work in Sec. 2 and describe
our corpus and annotations in Sec. 3. Section 4
presents our features and methods for modeling
desire fulfillment in narratives along with the ex-
periments and results including comparison to pre-
vious work. Finally, we present conclusions and
future directions in Sec. 5.

2 Related Work

There has recently been an upsurge in inter-
est in computational models of narrative struc-
ture (Lehnert, 1981; Wilensky, 1982) and story un-
derstanding (Rahimtoroghi et al., 2016; Swanson

Prior-Context: (1) I ran the Nike+ human Race 10K new
York in under 57 minutes! (2) Then at the all-American
rejects concert, I somehow ended up right next to this re-
ally cute guy and he seemed interested in me. (3) Was I
imagining things? He was really nice; (4) I dropped some-
thing and it was dark, he bent with his cell phone light to
help me look for it. (5) We spoke a little, but it was loud
and not suited for conversation there.
Desire-Expression-Sentence: I [had hoped to] ask him
to join me for a drink or something after the show (if my
courage would allow such a thing) but he left before the
end and I didn’t see him after that.
Post-Context: (1) Maybe I’ll try missed connections lol.
(2) I didn’t want to tell him I think he’s cute or make any
gay references during the show because if I was wrong
that would make standing there the whole rest of the con-
cert too awkward... (3) Afterward, I wandered through
the city making stops at several bars and clubs, met some
new people, some old people (4) As in people I knew - I
actually didn’t met any old people, unless you count the
tourist family whose dad asked me about my t-shirt. (5)
And when I thought the night was over (and the doorman
of the club did insist it was over) I met this great guy going
into the subway.

Figure 2: A desire expression with its surrounding
context extracted from a personal narrative

et al., 2014; Ouyang and McKeown, 2015, 2014).
However there has been limited work on computa-
tional models for recognizing the expression of the
protagonist’s goals and desires in narrative genres.

Our approach builds on work by Goyal and
Riloff (2013) that applied modern NLP tools to
track narrative affect states in Aesop’s Fables
(Goyal et al., 2010). They present a system called
AESOP that uses a number of existing resources to
identify affect states of the characters as part of de-
riving plot units. The motivation of modeling plot
units is the idea that emotional reactions are cen-
tral to the notion of a narrative and the main plot
of a story can be modeled by tracking the tran-
sition between the affect states (Lehnert, 1981).
The AESOP system identifies affect states and cre-
ates links between them to model plot units and is
evaluated on a small set of two-character fables.
They performed a manual annotation to examine
different types of affect expressions in the narra-
tives. Their study shows that many affect states
arise from events where a character is acted upon
in positive or negative ways, not explicit expres-
sion of emotions. They also show that most of the
affect states emerge by the expression of goals and
plans and goal completion. Some of our features
are motivated by the idea that implicit sentiment
polarity can represent success or failure of goals
and can be used to better model desire and goal

361



fulfillment in a narrative (Reed et al., 2017), al-
though we cannot directly compare our findings
to theirs because their annotations are not publicly
available.

Chaturvedi et al. (2016) exploit two deliberately
simplified datasets in order to model desire and its
fulfillment: MCTest which contains 660 stories
limited to content understandable by 7-year old
children, and, SimpleWiki created from a dump
of the Simple English Wikipedia discarding all the
lists, tables and titles. They use desire statements
matching a list of three verb phrases, wanted to,
hoped to, and wished to. Their context repre-
sentation consists of five or fewer sentences fol-
lowing the desire expression. They use BOW
(Bag of Words) as baseline and apply unstructured
and structured models for desire fulfillment mod-
eling with different features motivated by narra-
tive structure. Their best result is achieved with
a structured prediction model called Latent Struc-
tured Narrative Model (LSNM) which models the
evolution of the narrative by associating a latent
variable with each fragment of the context in the
data. Their best unstructured model is a Logistic
Regression classifier that uses all of their features.

Recent work on computational models of se-
mantics provides an evaluation test for story un-
derstanding (Mostafazadeh et al., 2017). The task
includes four-sentence stories, each with two pos-
sible endings where only one is correct. The goal
is for each system to select the correct ending of
the story by modeling different levels of seman-
tics in narratives, such as lexical, sentential and
discourse-level. The highest performing model
with 75% accuracy used a linear regression classi-
fier with several features such as neural language
models and stylistic features to model the story co-
herence (Schwartz et al., 2017). The results from
other systems showed that sentiment is an impor-
tant factor and using only sentiment features could
achieve about 65% accuracy on the test.

3 DesireDB Corpus

DesireDB aims to provide a testbed for model-
ing desire and goals in personal narrative and pre-
dicting their fulfillment status. We develop a sys-
tematic method to identify desire and goal state-
ments, and then collect annotations to create gold-
standard labels of fulfillment status as well as
spans of text marked as evidence.

3.1 Identifying Desires and Goals

Our corpus is a subset of the Spinn3r corpus
(Burton et al., 2011, 2009), consisting of first-
person narratives from six personal blog domains:
livejournal.com, wordpress.com, blogspot.com,
spaces.live.com, typepad.com, travelpod.com. To
create our dataset, we select only desire expres-
sions involving some version of the first-person.
In first-person narratives, the narrator and protag-
onist naturally align which makes it much easier
to identify and track the protagonist than in fic-
tion or historical genre. Thus, selecting narrative
passages with expressions of desire relating to the
first-person are very likely to discuss subsequent
behaviors to achieve that desire and the end re-
sult. Put simply, zooming in on first-person desires
means that desire and its aftermath are more likely
to be highly topical for the narrative. This corpus,
then, is highly suitable as a testbed for modeling
human desires and their fulfillment.

Human desires and goals can be expressed lin-
guistically in many different ways, including both
explicit verbal and nominal markers of desire or
necessity (e.g., want, hope) and more general
markers of urges (e.g., craving, hunger, thirst).
To systematically discover predicates that spec-
ify desires, we browsed FrameNet 1.7 (Baker
et al., 1998) selecting frames that seemed likely
to contain lexical units specifying desires: Being-
necessary, Desiring, Have-as-a-demand, Needing,
Offer, Purpose, Request, Required-event, Schedul-
ing, Seeking, Seeking-to-achieve, Stimulus-focus,
Stimulate-emotion, and Worry. We then selected
100 representative instances of that frame in En-
glish Gigaword (Parker et al., 2011) by first select-
ing the 10 most frequent lexical units in that frame,
and then selecting 10 random instances per lexical
unit. One of the authors examined each set of 100
instances, estimating for each sentence whether
the predicate specifies a goal that the surrounding
text picks up on. Because we were looking for
predicates that reliably specify desires that moti-
vate a protagonist’s actions, we eliminated frames
where less than 80% of the sentences showed this
characteristic.

This resulted in a downsample to the follow-
ing four frames: Desiring, Needing, Purpose,
and Request. We selected only the verbal lexi-
cal units because we found that verbs were more
likely to introduce goals than nouns or adjectives.
We examined 100 instances for each verbal lex-
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Data-Instance:
Prior-Context: ConnectiCon!!! Ya baby, we did go this
year as planned! Though this year we weren’t in the artist
colony, so I didn’t see much point in posting about it be-
fore hand.
Desire-Expression-Sentence: This year we [wanted to] be
part of the main crowd.
Post-Context: We wanted to get in on all the events and
panels that you cant attend when watching over a table.
And this year we wanted to cosplay! My hubby and I de-
cided to dress up like aperture Science test subjects from
the PC game portal. It was a good and original choice,
as we both ended up being the only portal related people
in the con (unless there were others who came late in the
evening we didn’t see) It was loads of fun and we got a
surprising amount of attention.

Annotations:
Fulfillment-Label: Fulfilled
Fulfillment-Agreement-Score: 3
Evidence: Though this year we weren’t in the artist
colony. We wanted to get in on all the events and pan-
els that you cant attend when watching over a table.
Evidence-Overlap-Score: 3

Figure 3: Example of data in DesireDB

ical unit, discarding as before. This resulted in
37 verbs. For each verb, we systematically con-
structed and coded all past forms of the verb (e.g.,
was [verb]ing, had [verb]ed, had been [verb]ing,
[verb]ed, didn’t [verb], etc.) because we posited
that morphological form itself may convey like-
lihood of fulfillment (e.g., a past perfect I had
wanted to ... signals that something changed, ei-
ther the desire or fulfillment). We initially experi-
mented with both past and (historical) present, but
past tense verb patterns resulted in much higher
precision. We counted the instances of these pat-
terns in our dataset, and retained only those lem-
mas with at least 1000 instances across the corpus.

We extract stories containing the verbal patterns
of desire, with five sentences before and after the
desire expression sentence as context (See Fig. 2).
Our annotation results provide support that the ev-
idence of desire fulfillment can be expressed be-
fore the desire statement. We also study the ef-
fect of prior and post context in understanding de-
sire fulfillment in our experiments (Section 4) and
show that using the narrative context preceding the
desire statement improves the results.

3.2 Data Annotation

We extracted ∼600K desire expressions with their
context, and then sample 3,680 instances for anno-
tation. This subset consists of 16 verbal patterns
(when collapsing all morphological forms to their

Pattern Count Ful Unf Unk None

wanted to 2,510 49% 35% 14% 2%
needed to 202 65% 16% 16% 3%
ordered 201 71% 21% 6% 2%
arranged to 199 68% 13% 16% 3%
decided to 68 87% 9% 4% 0%
hoped to 68 19% 68% 12% 1%
couldn’t wait 68 79% 3% 15% 3%
wished to 66 27% 35% 30% 8%
scheduled 60 43% 25% 27% 5%
asked for 60 53% 27% 15% 5%
required 58 69% 16% 15% 0%
requested 30 60% 20% 20% 0%
demanded 30 60% 23% 17% 0%
ached to 20 50% 40% 10% 0%
aimed to 20 55% 30% 15% 0%
desired to 20 50% 25% 25% 0%

Total 3,680 53% 31% 14% 2%

Table 1: Distribution of desire verbal patterns and
fulfillment labels in DesireDB

head word). A group of pre-qualified Mechani-
cal Turkers then labelled each instance. The anno-
tators labelled the fulfillment status of the desire
expression sentence based on the prior and post
context, by choosing from three labels: Fulfilled,
Unfulfilled, and Unknown from the context. They
were also asked to mark the evidence for the la-
bel they had chosen by specifying a span of text
in the narrative. For each data instance, we asked
the Turkers to mark the subject of the desire ex-
pression and determine if the expressed desire is
hypothetical (e.g., a conditional sentence) or not.

The annotators were selected from a list of pre-
qualified workers who had successfully passed a
test on a textual entailment task with 100% cor-
rect answers. They were provided with detailed
instructions and examples as to how to label the
desires and mark the evidence. We also specified
the desire expression verbal pattern using square
brackets (as shown in Fig. 1 and 2) for more clar-
ity. Three annotators were assigned to work on
each data instance. To generate the gold-standard
labels we used majority vote and the cases with no
agreement were labeled as ‘None’.

Table 1 reports the distribution of data and gold-
standard labels (Ful:Fulfilled, Unf:Unfulfilled,
Unk:Unknown from the context). About half of
the desire expressions (53%) were labeled Ful-
filled and about one third (31%) were labeled Un-
fulfilled. The annotators didn’t agree on about
2% of the instances, that were labeled None. As
Tabel 1 shows, the distribution of labels is not
uniform across different verbal patterns. For in-
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stance, decided to and couldn’t wait are highly
skewed towards Fulfilled as opposed to hoped to
which includes 68% Unfulfilled instances. Some
patterns seem to be harder to annotate, like wished
to, which has the highest rate of Unknown (30%)
and None (8%) among all.

Other than fulfillment status, for each data in-
stance in our corpus we include the agreement-
score which is the number of annotators that
agreed on the assigned label. In addition, we pro-
vide the evidence as a part of the DesireDB data,
by merging the text spans marked by the annota-
tors as evidence. We compared the evidence spans
pairwise to measure the overlap-score, indicating
the number of pairs of annotators with overlap-
ping responses. An example is shown in Figure 3.
The first part is the extracted data including the de-
sire expression with prior and post context, and the
second part is the gold-standard annotations.

To assess inter-annotator agreement for Ful-
fillment, we calculated Krippendorff-alpha
Kappa (Krippendorff, 1970, 2004) for pairwise
inter-annotator reliability, and, the average of
Kappa between each annotator and the majority
vote. These two metrics are 0.63 and 0.88
respectively. Overall, 66% of the data was labeled
with total agreement (where all three annotators
agreed on the same label) and about 32% of
data was labeled by two agreements and one
disagreement. We also examined the agreements
across each label separately. For Fulfilled class,
total agreement rate is 75%, which for Unfulfilled
is 67%, and on Unknown from the context is
41%. We believe this indicates that annotating
unfulfilled desires was harder than fulfilled cases.
For evidence marking, in 79% of the data all three
annotators marked overlapping spans.

4 Modeling Desire Fulfillment

We conducted a range of experiments on predict-
ing fulfillment status of desires and goals, using
different features and models, including LSTM ar-
chitectures that can encode the sequential structure
of the narratives. We first describe our features
and models. Then, we present our feature analysis
study to examine their importance in modeling ful-
fillment. Finally we provide results of direct com-
parison to previous work on the existing corpora.

Sentiment: Negative
Prior-Context(4): ”I had been working for hours on boring
paperwork and financial stuff, and I was really crabby.”

Sentiment: Negative
Prior-Context(5): I decided it was time to take a break
and thought, should I read a magazine or watch best Week
Ever?

Sentiment: Negative
Desire-Epxression-Sentence: But I realized that what I re-
ally [wanted to] do was go for a run!

Sentiment: Positive
Post-Context(1): That was pretty amazing, to transition
mentally from ’having to’ to ’wanting to’ run.

Sentiment: Positive
Post-Context(2): So I did a quick, fun 2.75 miles.

Figure 4: Example of sentiment features, where
prior context is negative while the post context is
positive, implying fulfillment of the desire

4.1 Features Description

In our original informal examination of the De-
sireDB development data, we noticed several ways
that a writer can signal (lack of) fulfillment of
a desire like “I hoped to pick up a dictionary”.
First, they may mention an outcome that entails
(“The book I bought was...”) or strongly implies
fulfillment (“I went back home happily.”). How-
ever, we noticed that in many cases of fulfillment,
the ‘marker’ was simply the absence of any men-
tion that things went wrong. For lack of fulfill-
ment, while we found cases where writers explic-
itly state that their desire wasn’t met, we noted
many instances where evidence came from men-
tioning that an enabling condition for fulfillment
wasn’t met (“The bookstore was closed.”).

True machine understanding of these kinds of
narrative structures requires robust models of the
complex interplay of semantics (including nega-
tion) as well as world knowledge about the scripts
for tasks like buying books, including what count
as enabling conditions and entailers for fulfill-
ment. While we hope to explore more articulated
models in the future, for our experiments we con-
sidered reasonable proxies for the conditions men-
tioned above using existing resources (note that we
also tested LSTM models described below, which
may implicitly learn such relationships with suf-
ficient data). One set (Desire Features) indexes
properties of the desire expression (e.g., the de-
sire verb) as well as overlap between the desired
object/event and the surrounding context. The re-
maining features attempt to find general markers
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for success or failure. One set (Discourse Fea-
tures) looks for overt discourse relation markers
that signal violation of expectation (e.g., ‘but’,
‘however’) or its opposite (e.g., ‘so’). Another
uses the Connotation Lexicon (Feng et al., 2013)
to model whether the context provides a positive
or negative event. All of these features are in-
spired by Chaturvedi et al. (2016). Finally, mo-
tivated by the AESOP modeling of affect states
for identifying plot units (Goyal and Riloff, 2013),
one set of features (Sentiment-Flow-Features)
indexes whether there has been a change in sen-
timent in the surrounding context (which might be
the mention of a thwarted effort or a hard won vic-
tory). Figure 4 provides an example of this.

In addition to a BOW (Bag of Words) base-
line, we extracted the four types of features men-
tioned above. For features that examine the con-
text around the desire expression, our experiments
used the pre-context, the post-context, or both, as
discussed below; context features are computed
per sentence i of the context. We also tested vari-
ous ablations of these features described below as
well. We now describe the full set of features in
more detail.

Desire-Features. From a desire expression of
the form ‘X Ved S’, we extract the lexical fea-
ture Desire-Verb, the lemma for V. We also ex-
tract a list of focal words, the content words
in embedded sentence S. In Figure 4, these
are ‘do’, ‘go’, and ‘run’. The features Focal-
{Word,Synonym,Antonym}-Mention-i counts how
many times each word, its synonyms, or its
antonyms in WordNet (Fellbaum, 1998) are in the
context, respectively. Similarly, Desire-Subject-
Mention-i marks if subject X is mentioned in the
context. Finally, boolean First-Person-Subject in-
dicates if X is first person (‘I’, ‘we’).

Discourse-Features. This class of features count
how many of two classes of discourse relation
markers (Violated-Expectation–i vs. Meeting-
Expectation–i) occur in the context. For the
classes, we manually coded all overt discourse
relation markers in the Penn Discourse Treebank
three ways(violation, meeting, or neutral), leading
to 15 meeting markers (‘accordingly’, ‘so’, ‘ul-
timately’, ‘finally’) and 31 violating (‘although’,
‘rather’, ‘yet’, ‘but’). In addition, we also tracked
the presence of the most frequent of these (‘so’ and
‘but’, respectively) in the desire sentence itself by
the booleans So-Present and But-Present.

Fulfilled Unfulfilled Unknown None Total

1,366 953 380 70 2,780

Table 2: Simple-DesireDB dataset

Connotation-Features. Beyond the use of Word-
Net expansion for Focal-Word-Mention-i, we also
used the Connotation Lexicon (Feng et al., 2013),
a lexical resource marking very general conno-
tation polarities (positive or negative) of words
(as opposed to more specific sentiment lexicons).
Connotation-Agree-i counts for each word w in
focal words the number of words in the context
that have the same connotation polarity as w.
Connotation-Disgree-i is defined similarly.
Sentiment-Flow-Features. To model affect
states, we compute a sentiment score for the desire
expression sentence as well as each sentence in the
context. Then for each sentence of the context,
the booleans Sentiment-Agree-i and Sentiment-
Disagree-i mark whether that sentence and the
desire expression sentence have the same senti-
ment polarity (see Figure 4). While there is evi-
dence suggesting that models of implicit sentiment
(e.g., (Goyal et al., 2010; Reed et al., 2017)) could
do much better at tracking affect states, here we
use the Stanford Sentiment system (Socher et al.,
2013).

4.2 LSTM Models

Our features are motivated by narrative character-
istics but do not directly capture the sequential
structure of the narratives. We thus apply neu-
ral network models suitable for sequence learn-
ing, in order to directly encode the order of the
sentences in the story and distinguish between
prior and post context. We use two different
architectures of LSTM (Long Short-Term Mem-
ory) (Hochreiter and Schmidhuber, 1997) models
to generate sentence embeddings and then apply a
three-layer RNN (Recurrent Neural Network) for
classification. We used Keras (Chollet, 2015) as a
deep learning toolkit for implementing our exper-
iments.
Skip-Thoughts. This is a sequential model that
uses pre-trained skip-thoughts model (Kiros et al.,
2015) as the embedding of sentences. It first con-
catenates features, if any, with embeddings, and
then uses LSTM to generate a single representa-
tion for the context sequence, which is the output
of the last unit. That single representation is then
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Method Features Ful-P Ful-R Ful-F1 Unf-P Unf-R Unf-F1 Precision Recall F1
Skip-Thought BOW 0.75 0.70 0.72 0.54 0.61 0.57 0.65 0.65 0.65

ALL 0.80 0.71 0.75 0.59 0.70 0.64 0.70 0.70 0.70

CNN-RNN BOW 0.75 0.73 0.74 0.57 0.60 0.58 0.66 0.66 0.66
ALL 0.75 0.79 0.77 0.61 0.56 0.59 0.68 0.68 0.68

Table 3: Results of LSTM models on Simple-DesireDB

Data Ful-P Ful-R Ful-F1 Unf-P Unf-R Unf-F1 Precision Recall F1

Desire 0.74 0.75 0.75 0.57 0.56 0.57 0.66 0.66 0.66
Desire+Prior 0.78 0.73 0.75 0.58 0.65 0.61 0.68 0.69 0.68
Desire+Post 0.76 0.70 0.73 0.55 0.62 0.59 0.66 0.66 0.66
Desire+Context 0.80 0.71 0.75 0.59 0.70 0.64 0.70 0.70 0.70

Table 4: Results of Skip-Thought using different parts of data, with ALL features on Simple-DesireDB

concatenated with embedding-feature concatena-
tion of desire sentence and is fed into a multi-layer
network to yield a single binary output.
CNN-RNN. The only difference between the
CNN-RNN model and Skip-Thought is that it
uses the 1-dimensional convolution with max-
over-time pooling introduced in (Kim, 2014) to
generate the sentence embedding from word em-
bedding, instead of using skip-thoughts. We use
Google News Vectors (Mikolov et al., 2013) for
the word embedding with different sizes from 1 to
7 for the kernel.

For our experiments, we first constructed a
subset of DesireDB that we will call Simple-
DesireDB, in order to be able to compare more
directly to the models and data used in previous
work. Chaturvedi et al. (2016) used three verb
phrases to identify desire expressions (wanted to,
hoped to, and wished to), so we selected a por-
tion of our corpus including these patterns along
with two other expressions (couldn’t wait to and
decided to) to have sufficient data for experiments.
Table 2 shows the distribution of labels in this sub-
set. For classification experiments we use data la-
beled as Fulfilled and Unfulfilled, thus the major-
ity class accuracy is 59%. We split the data into
Train (1,656), Dev (327), and Test (336) sets for
the experiments.

Results of our two LSTM models for Fulfilled
(Ful) and Unfulfilled (Unf) classes and the over-
all classification task (P:precision, R:recall) on
Simple-DesireDB are presented in Table 3. ALL
feature set includes all the features described in
Sec. 4.1 (without BOW). The results indicate that
our features can considerably improve the model,
compared to the BOW baseline (F1 improved from

0.65 to 0.70 for Skip-Thought). We also con-
ducted 4 sets of experiments to study the impor-
tance of prior, post and the whole context in pre-
dicting fulfillment status, using our best model.
The results of Skip-Thought using different con-
textual representations are in Table 4 with ALL
features. The results indicate that adding features
from prior context alone improves the results. The
best results are obtained by including the whole
context and desire sentence.

We then experimented with our best model on
all of DesireDB. We also trained Naive Bayes,
SVM and Logistic Regression (LR) classifiers as
baselines, with the best results on the Dev set
achieved by Logistic Regression. Table 5 shows
the results of Skip-Thought and LR on DesireDB
for different features on the test set. Our fea-
ture ablation study on the Dev set, discussed in
Sec. 4.3, indicates that Discourse features are bet-
ter predictors of fulfillment status, so we present
results using only Discourse features in addition
to BOW and ALL.

All of the results indicate that similar features
and methods achieve better results for the Fulfilled
class as compared to Unfulfilled. We believe the
reason is that identifying unfulfillment of a desire
or goal is a more difficult task, as discussed in
the annotation description in Section 3.2. To fur-
ther our analysis on the annotation disagreements,
we examined the cases where only two annotators
agreed on the assigned label. From the expressions
labeled Fulfilled by two annotators, 64% were la-
beled Unknown from the context by the disagree-
ing annotator, and only 36% were labeled Unful-
filled. However, these numbers for the Unfulfilled
class are respectively 49% and 51%, indicating a
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Method Features Ful-P Ful-R Ful-F1 Unf-P Unf-R Unf-F1 Precision Recall F1
Skip- BOW 0.78 0.78 0.78 0.57 0.56 0.57 0.67 0.67 0.67
Thought All 0.78 0.79 0.79 0.58 0.56 0.57 0.68 0.68 0.68

Discourse 0.80 0.79 0.80 0.60 0.60 0.60 0.70 0.70 0.70

Logistic BOW 0.69 0.65 0.67 0.53 0.57 0.55 0.61 0.61 0.61
Regression All 0.79 0.70 0.74 0.52 0.64 0.58 0.66 0.67 0.66

Discourse 0.75 0.84 0.80 0.60 0.45 0.52 0.67 0.65 0.66

Table 5: Results of best LSTM model with different feature sets, compared to LR on DesireDB

Features Precision Recall F1

ALL 0.64 0.64 0.64
Discourse 0.66 0.64 0.65
But-Present 0.72 0.64 0.68
ALL w/o But-Present 0.58 0.58 0.58

Table 6: Results of Logistic Regression classifier
with different feature sets on Simple-DesireDB

stronger disagreement between annotators when
labeling Unfulfilled expressions.

4.3 Feature Selection Experiments

We used the InfoGain measure to rank fea-
tures based on their importance in modeling
desire fulfillment. The top 5 features are:
But-Present, Post-Context-Connotation-Disagree,
Post-Context-Violated-Expectation, Desire-Verb,
Is-First-Person. We also tested different feature
sets separately. We describe our experiment re-
sults below.

The results of the feature ablation experiments
using LR model are shown in Table 6. The ALL
feature set includes all the features described in
Sec. 4.1 (without BOW). We obtained high preci-
sion and F-measure using the Discourse features.
We also experimented with our top feature from
the InfoGain analysis, But-Present, which surpris-
ingly achieves a high F-measure, compared to us-
ing ALL and Discourse feature sets. The last row
of Table 6 shows the results of using ALL fea-
tures excluding But-Present. This indicates that
features motivated by narrative structure are pri-
marily driving improvement. In previous work
Chaturvedi et al. (2016) show that a model rep-
resenting narrative structure could beat the BOW
baseline, but they performed no systematic feature
ablation. Our results suggest that ultimately, the
presence of “but” is likely a central driver for their
improvements as well.

Dataset Method Precision Recall F1

MCTest BOW 0.41 0.50 0.45
Unstruct-LR 0.71 0.63 0.67
LSNM 0.70 0.84 0.74
Discourse-LR 0.63 0.83 0.71
SkipTh-BOW 0.72 0.68 0.70
SkipTh-ALL 0.70 0.84 0.76

Simple BOW 0.28 0.20 0.23
Wiki Unstruct-LR 0.50 0.09 0.15

LSNM 0.38 0.21 0.27
Discourse-LR 0.32 0.82 0.46
SkipTh-BOW 0.71 0.26 0.38
SkipTh-ALL 0.33 0.16 0.22

Table 7: Previous work and our results for the
Fulfilled class, on MCTest and SimpleWiki.

4.4 Comparison to Previous Work

We directly compare our methods and features
to the most relevant previous work (Chaturvedi
et al., 2016). They applied their models on two
datasets and reported the results for the Fulfilled
class. We present the same metrics in Table 7, us-
ing our best model Skip-Thought (SkipTh). We
also present results of our LR model with our Dis-
course features, Discourse-LR, trained and tested
on their corpora to compare to their features. The
first three rows show the results from Chaturvedi
et al. (2016) for comparison. As described in
Sec. 2, they used BOW as baseline, LSNM is their
best model, and Unstruct-LR is their unstructured
model that uses all of their features with LR.

On both corpora, Discourse-LR outperforms
Unstruct-LR, showing that the Discourse features
are stronger indicators of the desire fulfillment sta-
tus when used with LR classifier. In addition,
on SimpleWiki, LR-Discourse outperforms their
structured model, LSNM (0.46 vs. 0.27 on F-1).

5 Conclusion and Future Work

We created a novel dataset, DesireDB, for study-
ing the expression of desires and their fulfillment
in narrative discourse. We show that contextual
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features help with classification, and that both
prior and post context are useful. Finally, we show
that exploiting narrative structure is helpful, both
directly in terms of the utility of discourse rela-
tion features and indirectly via the superior per-
formance of a Skip-Thought LSTM model.

In future work, we plan to explore richer fea-
tures and models for semantic and discourse-based
features, as well as the utility of more narratively-
aware features. For instance, the sentiment flow
features roughly track the notion that the arc of a
narrative may implicitly reveal resolution of a goal
via changes in affect states. We hope to exam-
ine whether there are other similar rough-grained
measures of change over the entire narrative that
can improve the results.

DesireDB contains annotator-labeled spans for
evidence for the annotator’s conclusions. While
we have not used this labeling, we plan to use it
in future work. Finally, we hope to turn to auto-
matically detecting instances of desire expressions
that give rise to the kind of goal-oriented narra-
tives DesireDB contains. Here we have used high-
precision search patterns but our annotations show
that such patterns still admitted 134 hypothetical
desires (e.g., ‘If I had wanted to buy a book’). It
would appear that distinguishing hypothetical vs.
real desires itself could be an interesting problem.
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