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Abstract

We explore context representation learn-
ing methods in neural-based models for
dialog act classification. We propose
and compare extensively different meth-
ods which combine recurrent neural net-
work architectures and attention mecha-
nisms (AMs) at different context levels.
Our experimental results on two bench-
mark datasets show consistent improve-
ments compared to the models without
contextual information and reveal that the
most suitable AM in the architecture de-
pends on the nature of the dataset.

1 Introduction

The study of spoken dialogs between two or more
speakers can be approached by analyzing the di-
alog acts (DAs), which is the intention of the
speaker at every utterance during a conversation.
Table 1 shows a fragment of a conversation from
the Switchboard (SwDA) dataset with DA anno-
tation. Automatic DA classification is an impor-
tant pre-processing step in natural language under-
standing tasks and spoken dialog systems. This
classification task has been approached using tra-
ditional statistical methods such as hidden Markov
models (HMMs) (Stolcke et al., 2000), condi-
tional random fields (CRF) (Zimmermann, 2009)
and support vector machines (SVMs) (Henderson
et al., 2012). However, recent works with deep
learning (DL) techniques have brought state-of-
the-art models in DA classification, such as con-
volutional neural networks (CNNs) (Kalchbrenner
and Blunsom, 2013; Lee and Dernoncourt, 2016),
recurrent neural networks (RNNs) (Lee and Der-
noncourt, 2016; Ji et al., 2016) and long short-term
memory (LSTM) models (Shen and Lee, 2016).

Utterance Dialog act
A: Are you a musician yourself? Yes-no-question
B: Uh, well, I sing. Affirmative non-yes answer
A: Uh-huh. Acknowledge (Backchannel)
B: I don’t play an instrument. Statement-non-opinion

Table 1: Examples from the SwDA dataset.

Given an utterance in a dialog without any pre-
vious context, it is not always obvious even for
human beings to find the corresponding dialog
act. In many cases, the utterances are too short
so that is hard to classify them, for example the
utterance ’Right’ can be either an Agreement or a
Backchannel indicating the interlocutor to go on
talking, in this case the context plays a key role
at disambiguating. Therefore, using context in-
formation from the previous utterances in a dialog
flow is a crucial step for improving DA classifica-
tion. Few papers in the literature have suggested
to utilize context as a potential knowledge source
for DA classification (Lee and Dernoncourt, 2016;
Shen and Lee, 2016). Recently, Ribeiro et al.
(2015) presented an extensive analysis of the in-
fluence of context on DA recognition concluding
that contextual information from preceding utter-
ances helps to improve the classification perfor-
mance. Nonetheless, such information should be
differentiable from the current utterance informa-
tion, otherwise, the contextual information could
have a negative impact.

Attention mechanisms (AMs) introduced by
Bahdanau et al. (2014) have contributed to sig-
nificant improvements in many natural language
processing tasks, for instance machine translation
(Bahdanau et al., 2014), sentence classification
(Shen and Lee, 2016) and summarization (Rush
et al., 2015), uncertainty detection (Adel and
Schütze, 2017), speech recognition (Chorowski
et al., 2015), sentence pair modeling (Yin et al.,
2015), question-answering (Golub and He, 2016),
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document classification (Yang et al., 2016) and en-
tailment (Rocktäschel et al., 2015) . AMs let the
model decide what parts of the input to pay atten-
tion to according to the relevance for the task.

In this paper, we explore the use of AMs to learn
the context representation, as a manner to differ-
entiate the current utterance from its context as
well as a mechanism to highlight the most relevant
information, while ignoring unimportant parts for
DA classification. We propose and compare exten-
sively different neural-based methods for context
representation learning by leveraging a recurrent
neural network architecture with LSTM (Hochre-
iter and Schmidhuber, 1997) or gated recurrent
units (GRUs) (Cho et al., 2014; Chung et al., 2014)
in combination with AMs.

2 Model

The model architecture, shown on the left side of
Figure 1, contains two main parts: the CNN-based
utterance representation and the attention mecha-
nism for context representation learning. Finally,
the context representation is fed into a softmax
layer which outputs the posterior of each prede-
fined DA given the current dialog utterance.

2.1 CNN-based Dialog Utterance
Representation

We used CNNs for the representation of each ut-
terance. CNNs perform a discrete convolution on
an input matrix with a set of different filters. For
the DA classification task, the input matrix rep-
resents a dialog utterance and its context, this is
n previous utterances: each column of the ma-
trix stores the word embedding of the correspond-
ing word. We use 2D filters f (with width |f |)
spanning all embedding dimensions d. This is de-
scribed by the following equation:

(w∗f)(x, y) =
d∑

i=1

|f |/2∑
j=−|f |/2

w(i, j)·f(x−i, y−j)

(1)
After convolution, a max pooling operation is ap-
plied that stores only the highest activation of each
filter. Furthermore, we apply filters with different
window sizes 3-5 (multi-windows), i.e. spanning a
different number of input words. Then, all feature
maps are concatenated to one vector which repre-
sents the current utterance and its context.

2.2 Internal Attention Mechanism
Attention mechanisms can be applied in different
sequences of input vectors, e.g. representations of
consecutive dialog utterances. For each of the in-
put vectors u(t − i) at time step t − i in a dialog
and t is the current time step, the attention weights
αi are computed as follows

αi =
exp(f(u(t− i)))∑

0<j<m exp(f(u(t− j)) (2)

where f is the scoring function. In this work, f is
the linear function of the input u(t− i)

f(u(t− i)) = W Tu(t− i) (3)

where W is a trainable parameter. The out-
put attentive u after the attention layer is the
weighted sum of the input sequence.

attentive u =
∑

i

αiu(t− i) (4)

Another option (order-preserved attention as pro-
posed in Adel and Schütze (2017)) is to store
the weighted inputs into a vector sequence
attentive v which preserves the order informa-
tion.

attentive v = [α0u(t), α1u(t− 1), ...] (5)

2.3 Neural-based Context Modeling
In this subsection, we present different methods,
depicted on the right side of Figure 1, to learn the
context representation.

a Max We apply max-pooling on top of the di-
alog utterance representations which spans all the
contexts and the vector dimension.

b Attention We apply directly attention mech-
anism on the dialog utterance representations. The
weighted sum of all the dialog utterances repre-
sents the context information.

c RNN We introduce a recurrent architecture
with LSTM or GRU cells on top of the dialog ut-
terance representations to model the relation be-
tween the context and the current utterance over
time. The output of the hidden layer of the last
state is the context representation.

d RNN-Output-Attention Based on the pre-
vious option, we apply the attention mechanisms
on the output sequence of the RNN. The context
representation is the weighted sum of all the out-
put vectors.
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Figure 1: Model architecture for DA classification. On the left side is the overview of the model. The
right site contains six neural-based methods for context representation learning.

e RNN-Input-Attention We first apply the
order-preserved attention mechanism on the dia-
log utterance representations to obtain a sequence
of weighted inputs. Afterwards, an RNN with
LSTM or GRU cells is introduced to model the
relation of the weighted context.

3 Experimental Setup

3.1 Data
We test our model on two DA datasets:

• MRDA: ICSI Meeting Recorder Dialog Act
Corpus (Janin et al., 2003; Shriberg et al.,
2004; Dhillon et al., 2004), a dialog corpus
of multiparty meetings. The 5-tag-set used
in this work was introduced by Ang et al.
(2005).

• SwDA: Switchboard Dialog Act Corpus
(Godfrey et al., 1992; Jurafsky et al., 1997),
a dialog corpus of 2-speaker conversations.

Train, validation and test splits on both datasets
were taken as defined in Lee and Dernoncourt
(2016)1, summary statistics are shown in Table 2.
In both datasets the classes are highly unbalanced,
the majority class is 59.1% on MRDA and 33.7 %
on SwDA.

3.2 Hyperparameters and Training
The hyperparameters for both datasets are sum-
marized in Table 3, they were selected by vary-

1Concerning SwDA, the data setup in Lee and Dernon-
court (2016) was preferred over Stolcke et al. (2000)’s, be-
cause it was not clearly found in the latter which conversa-
tions belong to each split.

Dataset C |V| Train Validation Test
MRDA 5 12k 78k 16k 15k
SwDA 43 20k 193k 23k 5k

Table 2: Data statistics: C is the num-
ber of classes, |V| is the vocabulary size and
Train/Validation/Test are the no. of utterances.

ing one hyperparameter at a time while keeping
the others fixed. The filter widths and feature
maps were taken from the CNN architecture for
sentence classification in Kim (2014). Dropout
rate of 0.5 was found to be the most effective
in the range of [0-0.9]. The rectified linear unit
(ReLU) was used as non-linear activation func-
tion, 1-max as pooling operation at utterance level
as suggested in Zhang and Wallace (2015). The
only dataset specific hyperparameter is the mini-
batch size: 150 and 50 for SwDA and MRDA, re-
spectively. Word2vec (Mikolov et al., 2013) was
used for word vector representation. Training was
done for 30 epochs with averaged stochastic gradi-
ent descent (Polyak and Juditsky, 1992) over mini-
batches. The learning rate was initialized at 0.1
and reduced 10% every 2000 parameter updates.
We kept the word vector unchanged during train-
ing. The context length was optimized on the de-
velopment set, ranging from 1-5. Our best re-
sults were obtained with three context utterances
for MRDA and two for SwDA.

4 Experimental Results

4.1 Baseline Models

We define two models as baseline, both are a one-
layer CNN for sentence classification based on
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Hyperparameter Value
Filter width 3, 4, 5
Feature maps per filter 100
Dropout rate 0.5
Activation function ReLU
Pooling 1-max pooling per utterance
Mini-batch size 50 (MRDA) – 150 (SwDA)
Word embeddings word2vec (dim. 300)

Table 3: Hyperparameters.

Kim (2014) but with an input variation: a) Base-
line I: The input is a single utterance a time with-
out any contextual information and b) Baseline II:
The input is the concatenation of the current utter-
ance and previous utterances.

4.2 Results

Table 4 summarizes the results of all the models.
Results on the Baseline I and the Baseline II on
both datasets show that a simple context concate-
nation is not enough to model the context informa-
tion for this task. While on SwDA the accuracy
improves by 1.3%, it slightly drops on MRDA.
Other simple methods such as Max and Attention
do not improve the results over the baseline either.

Our results are consistently improved on both
datasets after introducing RNN architecture to
model the relation between the contexts. It in-
dicates that hierarchical structure is crucial to
learn the context representation. Attention mecha-
nisms contribute to the overall improvements. On
MRDA, the AM was more useful when it was ap-
plied to the inputs of the RNN, whereas on SwDA
when it was applied to the outputs. Our intuition
is that in multiparty dialogs the dependency be-
tween the utterances should be weighted before
being processed by the RNN.

Model MRDA SwDA
Baseline I 83.6 71.3
Baseline II 83.5 72.6
Max 58.5 48.0
Attention 83.5 72.4
RNN (LSTM) 83.8 73.1
RNN (GRU) 83.8 72.8
RNN-Output-Attention (LSTM) 84.1 73.8
RNN-Output-Attention (GRU) 84.0 73.1
RNN-Input-Attention (LSTM) 84.3 73.3
RNN-Input-Attention (GRU) 83.6 73.1

Table 4: Accuracy (%) of baselines and models
with different context processing methods.

4.3 Impact of Context Length

Our experiments revealed that context length plays
an important role for DA classification and the best
length is corpus dependent. By experimenting in
the context range of 0-5 utterances, we found that
the best context length for MRDA is three utter-
ances and two for SwDA. Table 5 shows the results
at different context lengths.

n-context MRDA SwDA
1 83.8 73.1
2 83.9 73.8
3 84.3 73.5
4 84.0 73.1
5 84.0 72.9

Table 5: Comparison of accuracy (%) on different
context lengths (n-context, where n is the number
of sentences as context).

5 Comparison with Other Works

Table 6 compares our results with other works.
To the best of our knowledge, Lee and Dernon-
court (2016) is the newest research in DA clas-
sification, which published train/validation splits
and claimed to be the state-of-the-art on that setup.
Therefore, an accurate comparison of our results
can be only done with this work. Our model
yields comparable results to the state-of-the-art on
both datasets, 84.3% against 84.6% on MRDA and
73.8% against 73.1% on SwDA. Ji et al. (2016)
and Kalchbrenner and Blunsom (2013) obtained
higher accuracy on SwDA but with different setup.

Model MRDA SwDA
Our best model 84.3 73.8
CNN-FF 84.6 73.1
LSTM-FF 84.3 69.6
HBM 81.3 —
LV-RNN — 77.0
HCNN — 73.9
CA-LSTM — 72.6
HMM — 71.0
Majority class 59.1 33.7

Table 6: Comparison of accuracy (%). CNN-
FF and LSTM-FF: proposed in Lee and Dernon-
court (2016), HBM: hidden backoff model (Ji and
Bilmes, 2006). LV-RNN: latent variable RNN with
conditional training (Ji et al., 2016). HCNN: hier-
archical CNN (Kalchbrenner and Blunsom, 2013).
CA-LSTM: contextual attentive LSTM (Shen and
Lee, 2016). HMM Stolcke et al. (2000).
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6 Conclusions

We explored different neural-based context repre-
sentation learning methods for dialog act classi-
fication which combine RNN architectures with
attention mechanisms at different context levels.
Our results on two benchmark datasets reveal that
using RNN architecture is important to learn the
context representation. Moreover, attention mech-
anisms contribute to the overall improvements,
however, the place where AM should be applied
depends on the nature of the dataset.
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