
Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 382–389
Copenhagen, Denmark, September 8, 2017. c©2017 Association for Computational Linguistics

The Power of Character N-grams in Native Language Identification

Artur Kulmizev, Bo Blankers, Johannes Bjerva, Malvina Nissim,
Gertjan van Noord, Barbara Plank, Martijn Wieling

University of Groningen
Oude Kijk in ’t Jatstraat 26

9712 EK Groningen
{a.kulmizev,b.blankers}@student.rug.nl

{j.bjerva,m.nissim,g.j.m.van.noord,b.plank,m.b.wieling}@rug.nl

Abstract

In this paper, we explore the performance
of a linear SVM trained on language-
independent character features for the NLI
Shared Task 2017. Our basic system
(GRONINGEN) achieves the best perfor-
mance (87.56 F1-score) on the evaluation
set using only 1-9 character n-grams as
features. We compare this against several
ensemble and meta-classifiers in order to
examine how the linear system fares when
combined with other, especially non-linear
classifiers. Special emphasis is placed on
the topic bias that exists by virtue of the
assessment essay prompt distribution.

1 Introduction

Native Language Identification (NLI) is the task of
identifying a writer’s native language (L1) based
on their writings in another language. Typically,
low-to-medium proficiency writers exhibit a ten-
dency to “borrow” linguistic constructions from
their native language and apply them to the lan-
guage in which they are communicating. A na-
tive Russian speaker, for example, may forego the
use of articles such as “the” when writing in En-
glish. This phenomenon, widely referred to as
Language Transfer, allows for a common set of
linguistic features to emerge between speakers of
the same native language (Odlin, 1989). NLI is
thus concerned with applying machine learning
approaches using these features in order to auto-
matically identify the L1 of writers communicat-
ing in another language.

There are many practical applications for NLI.
Second language (L2) education is a field in which
NLI can offer much potential aid. For instance,
in identifying the native language of a learner by
their writing, it is possible to isolate the linguistic

features they employ when communicating. This
could subsequently be integrated in language-
specific error-correction systems, in which a user
receives L1-based suggestions to correct their L2
writing. At a large scale, this could be extended
to enhance existing teaching pedagogies and tailor
them towards students of a particular L1. NLI is
another natural fit for forensic linguistics, where it
can be used to detect the native language (and po-
tentially the nationality) of an anonymous writer.

NLI is typically framed as a multi-class classifi-
cation problem, wherein a classifier is trained on
more than two native languages simultaneously.
As with many text-classification tasks, Support
Vector Machines (SVM) have consistently pro-
duced the best results for the task, e.g., (Brooke
and Hirst, 2012). However, other classifiers, such
as Random Forests and Logistic Regression, have
also been explored (Tetreault et al., 2013). En-
semble systems, which combine the predictions of
several classifiers and output the most likely class
label via voting or probability-averaging, have fur-
ther been shown to provide a boost in accuracy
compared to the single-classifier approach. Such
systems, however, are not light-weight. In training
several classifiers simultaneously, quick training
speeds are typically sacrificed in favor of a (usu-
ally marginal) performance gain. This paper is
thus concerned with exploring each of these classi-
fication methods as they pertain to the NLI Shared
Task 2017 (Malmasi et al., 2017).

2 Related Work

In 2005, Koppel et al. (2005) begun exploring
methods for NLI by exploring the International
Corpus of Learner English (Granger et al., 2009).
In this work, they evaluated the effect of sev-
eral features, including function words, letter n-
grams, part-of-speech bigrams and error types.

382

Training an SVM on the combination of these
yielded an accuracy score of 80.0%. Several
years later, a shared task in NLI was organized by
Tetreault et al. (2013). A total of 29 teams partici-
pated in this competition, with the winning system
implementing a combination of lexeme, lemma,
and POS-tagged 1-3grams for their model (Jarvis
et al., 2013). This system produced an accuracy of
83.6% discriminating between 11 different native
languages. Ionescu et al. (2014) later improved
on this result by applying Kernel Ridge Regres-
sion and Kernel Discriminant Analysis in order
to extract character n-gram features from the NLI
Shared Task 2013 data. This approached yielded
an 85.3% accuracy score on the 2013 shared task’s
test set.

In the years between the initial NLI shared
task and the current one, teams have continued
to produce new state-of-the-art systems. Most re-
cently, Malmasi and Dras (2017), presented an
exhaustive survey of potentially relevant features
for NLI. These included character, word, lemma,
and POS n-grams, function words, context-free
grammar production rules, and dependency tags,
among others. Separate SVMs were trained on
each of these features and their outputs were fed
into a mean probability ensemble. A meta Linear
Discriminant Analysis (LDA) classifier was then
trained on the probability distributions generated
by the ensemble, yielding an accuracy of 87.1%.

3 Methodology and Data

3.1 Data

The provided data set consists of 13,200 English-
language essays submitted for a standardized as-
sessment of English proficiency for academic pur-
poses. The essays are equally divided into 11
native languages (L1s), totalling 1,200 essays
per language. The languages represented therein
are as follows: Arabic (ARA), Chinese (CHI),
French (FRE), German (GER), Italian (ITA),
Hindi (HIN), Japanese (JPN), Korean (KOR), Tel-
ugu (TEL), and Turkish (TUR). The full data set
is divided into three parts, with 11,000, 1,100,
and 1,100 essays constituting the training, devel-
opment, and test set, respectively. The number of
words per essay varies between 300 and 400.

In participating in the assessment, all partici-
pants were instructed to write their essay about a
specific prompt topic. The data set is thus divided
over 8 different prompts as well as L1s. While

the L1s are evenly distributed over the data, the
distribution of the prompts is skewed by both lan-
guage and overall, as shown in Table 1. The table
represents the distribution of the prompts for the
training and the development set combined, since
this constitutes all of the data that our final system
is trained on. Noteworthy is the fact that Hindi
and Telugu have similar distributions over all the
prompts, which is a different distribution than the
the other languages. It is also interesting that only
a small portion (12 essays) are written about P1
for Italian, which could cause a discrepancy in the
later classification of the language.

Due to these factors, we pay particular attention
to the prompt distribution during our analysis.

3.2 Features

Our main classifier is a Linear Support Vector Ma-
chine, which has been shown to perform well in
prior NLI tasks. We performed a grid search over
the C, loss, and penalty parameters of the Linear
SVM in order to obtain the best-performing vari-
ant. However, tuning these parameters failed to
produce any noteworthy results and we thus opted
for a non-parametric SVM. We also evaluated the
performance of the classifier with an RBF kernel
in order to examine whether a non-linear approach
would generalize better over the data. Ultimately,
this resulted in significantly longer training times
as well as much lower performance accuracy and
was discarded in favor of the linear alternative.
The non-parametric classifier is based on several
combinations or stand-alone models of the fea-
tures described below.

3.2.1 Character n-grams
Large ranges of character n-grams contain charac-
teristic information about the writing style of an
author. Compared to word n-grams, which only
capture the identity of a word and its possible
neighbors, character n-grams are additionally ca-
pable of detecting the morphological makeup of a
word. In a task such as NLI, where many words
are likely to be misspelled, character n-grams are
especially powerful at detecting patterns in such
misspellings, and substantially less sparse than
word n-grams. In this paper, we experimented
with several ranges of character n-grams. Even
though prior research in NLI has largely focused
on character n-grams of up to 5 characters, this
range did not perform well in this task. Instead, in-
creasing the upper bound of the range to between

383

Table 1: Overview of prompt distribution per language for the data set
ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR

% # % # % # % # % # % # % # % # % # % # %
P0 139 12.6% 140 12.7% 156 14.2% 151 13.7% 86 7.8% 187 17.0% 138 12.5% 128 11.6% 159 14.5% 55 5.0% 170 15.5%
P1 133 12.1% 141 12.8% 68 6.2% 28 2.5% 53 4.8% 12 1.1% 142 12.9% 142 12.9% 157 14.3% 41 3.7% 43 3.9%
P2 141 12.8% 139 12.6% 160 14.5% 153 13.9% 161 14.6% 141 12.8% 143 13.0% 143 13.0% 162 14.7% 171 15.5% 169 15.4%
P3 138 12.5% 139 12.6% 151 13.7% 152 13.8% 158 14.4% 173 15.7% 141 12.8% 141 12.8% 160 14.5% 166 15.1% 167 15.2%
P4 138 12.5% 140 12.7% 158 14.4% 155 14.1% 161 14.6% 173 15.7% 116 10.5% 140 12.7% 141 12.8% 165 15.0% 169 15.4%
P5 136 12.4% 134 12.2% 160 14.5% 150 13.6% 156 14.2% 187 17.0% 138 12.5% 137 12.5% 134 12.2% 169 15.4% 147 13.4%
P6 138 12.5% 126 11.5% 87 7.9% 157 14.3% 163 14.8% 138 12.5% 140 12.7% 136 12.4% 54 4.9% 167 15.2% 90 8.2%
P7 137 12.5% 141 12.8% 160 14.5% 154 14.0% 162 14.7% 89 8.1% 142 12.9% 133 12.1% 133 12.1% 166 15.1% 145 13.2%

Total: 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100

8 and 10 characters yielded very encouraging re-
sults. In training a classifier on character n-grams
ranging from 1 to 10, this effectively models the
effect of word unigrams, bigrams, and, in cases of
very short words, trigrams. Indeed, the most in-
formative features in these cases are 7-9 character
n-grams in which the author discusses his or her
own country (Japanese people talk about Japan,
etc.). When combined with the morphological in-
sight of the lower-range character n-grams, this
approach proved to be simultaneously very pow-
erful and simple. Though the performance differ-
ence between ranges of 1-8, 1-9, 1-10, 2-8, etc. is
marginal, we choose the 1-9 range for our system
as it provided the best results for Hindi and Telugu
on the dev set - the languages which were most
often confused in our case. It is important to note
that we also employ a binary-counting approach,
where a feature is either present (if it appears at
least once in a document) or absent (if it did not
appear). These counts are normalized via term-
frequency, inverse-document frequency (tf-idf) as
implemented by the scikit-learn1 machine learning
package for Python.

3.2.2 Part-of-speech tags
Part-of-speech tags provide information about
how ESL learners approach English at a morpho-
syntactic level. Intuitively, then, it is likely that the
native distribution and usage of POS tags might
affect a learner’s production of English. For ex-
ample, native speakers of Turkish are known for
the difficulty they experience with appropriately
inserting definite articles in English. This diffi-
culty could thus surface in terms of observed POS
sequences or distributions in Turkish-native pro-
duction of English texts. Furthermore, this could
be notably different from what is observed in the
production of speakers whose native language fea-
tures a usage of determiners that is more similar to
English.

1http://scikit-learn.org/stable/

Although countless POS-taggers exist, one ma-
jor problem in acquiring reliable tags is intrinsic to
the non-native nature of the texts we deal with. As
POS models for English are trained on native En-
glish data, it is not granted that they will perform
as well on non-native writing as they do on canon-
ical texts. For this reason, we trained a POS tagger
(Plank et al., 2016) on POS-tagged English learner
data obtained from the Universal Dependencies
project (Nivre et al., 2016), i.e., English-ESL
(78k training tokens), tuning its parameters on the
corresponding UD dev data. We experimented
with several combinations of POS n-grams on our
data, and found that a range of 1–4 yielded the best
results on the development set.

3.2.3 Prompt word extraction

In an attempt to remove topic bias, we extracted
words that appear to be typical of each prompt
topic. This was done with the intuition that
such words would ultimately confuse the classi-
fier towards modeling prompt instead of native
language. As such, we concatenated every es-
say per topic (resulting in 8 large prompt docu-
ments) as well as every essay in total. Each of the
prompt documents was then passed to a sparse ad-
ditive generative model (SAGE) (Eisenstein et al.,
2011), with the concatenated corpus acting as a
comparison corpus. This allowed us to identify
the top keywords per topic (P0: “advertiser”; P1:
“tourist”, etc.). We then combined these prompt
lists into a single keyword list (ranked by SAGE-
score), which we considered to be representative
of the total number of prompt words written in the
corpus. In training our classifier, we then replaced
the top 100 of such words (if correctly spelled)
in the individual essays with a dummy token (*).
We retained misspelled prompt words, as our intu-
ition is that these represent (incorrect) information
about the writers’ understanding of English mor-
phology. Using this approach resulted in a slight
drop in performance accuracy (∼2%) for every

384

model it was tested with, thereby confirming our
intuition that our systems were indeed modeling
topics, too.

3.2.4 P7 Omission
In examining the prompt distribution for the test
data, we noticed that Prompt 7 was excluded en-
tirely from the provided essays. As such, we hy-
pothesized that omitting P7 from the training data
would remove a degree of confusion introduced by
the P7 prompt lexicon. To check this assumption,
we first removed all essays with P7 as a prompt
from the dev data (143 documents). This resulted
in a slight drop in F1-score (from 84% to 83%)
on the dev set. We then repeated this experiment
with the P7 essays also omitted from the training
data (1,419 documents). Doing so reproduced the
initial f1-score of 84%, albeit with different (less)
training and dev data. We replicated this for the
test submission, removing P7 from the concate-
nated train and dev data (1,562 documents) in or-
der to balance our system in terms of prompt with
respect to the actual test set.

3.3 Meta-classification and Ensembles

Meta-classification is the process of training a
classifier on the probability distributions output
by another classifier. Doing so has the effect of
revealing the classification patterns of the latter
classifier, including cases where it experienced the
most confusion in assigning a label. In seeing
enough of these patterns, a meta classifier can ef-
fectively learn from the label probability distribu-
tions and correct the decisions of the main clas-
sifier. We experimented with an SVM meta clas-
sifier trained on both the output of the character
n-gram classifier, as well as the output of a com-
bined character n-gram and a simple neural net-
work (CBOW, see Section 3.3.1). We performed
5-fold cross-validation on the training set in or-
der to obtain the label probabilities for the docu-
ments in the training data. Though this approach
improves upon the performance of both classifiers
we evaluated, it is important to note that it may
lead to over-fitting (Thornton et al., 2013).

We separately trained an ensemble and meta-
classifier on the probability distributions output by
several systems as features. The goal in doing
so was to examine how the aforementioned lin-
ear SVM fares when combined with other, non-
linear classifiers. The classifier employed is an
ensemble linear SVM, which is trained on the pre-

dicted probability distributions of a randomly cho-
sen 60% of the dev set and tuned on the remaining
40%. We use the standard hyperparameters of the
SVM implementation in scikit-learn, without any
tuning. The maximum of the predicted probabil-
ity distribution on the test set is then used as the
system’s label prediction.

We evaluated the performance of three ensem-
bles. The first two ensembles included the char-
acter 1-9-gram system, the CBOW system, and a
CNN system (see Section 3.3.2). The CNN sys-
tems in the two runs differed in the input represen-
tations used. In first case (CNN1), the CNN used
word unigrams and character 4-5grams, whereas
in the second case (CNN2), it used word uni-
grams and character 6-grams. The third ensem-
ble (Submission #8) concatenated the probability
distributions generated by both character 1-9-gram
and CBOW models (i.e. ARA CBOW: 0.1234;
ARA CHAR: 0.1432; etc.) and trained a
meta-classifier on these probabilities.

Each of the systems included in the ensembles
(excluding the character 1-9-gram SVM) as well
as the meta-classifier are described below.

3.3.1 CBOW system
We incorporated a simple neural baseline that
combines word embeddings with a feedforward
neural architecture similar to the continous bag-
of-words (CBOW) model introduced in (Mikolov
et al., 2013). This system represents each doc-
ument as the average embedding of all words in
the document. We used a shallow model (no deep
layers), with a single dropout layer followed by
the softmax output layer. The parameters of this
model were set based on the dev set: 512 input di-
mensions, 0.1 dropout, 20 epochs, trained with the
adam optimization algorithm (Kingma and Ba,
2014) for 20 iterations with a batch size of 50.

3.3.2 Deep Residual Networks
Deep residual networks (resnets) are a class of
convolutional neural networks (CNNs), which
consist of several convolutional blocks with skip
connections in between (He et al., 2016). Such
skip connections facilitate error propagation to
earlier layers in the network, which allows for
building deeper networks. Resnets have been
shown to be useful for NLP tasks, such as text
classification (Conneau et al., 2016), and se-
quence labelling (Bjerva et al., 2016). We ap-
plied resnets with four residual blocks in our en-

385

semble experiments, each containing two succes-
sive one-dimensional convolutions. Each such
block is followed by an average pooling layer and
dropout (p = 0.5, Srivastava et al. (2014)). The
resnets were applied to several input representa-
tions: word unigrams, and character 4-6-grams.
The outputs of each resnet are concatenated be-
fore passing through two fully connected layers.
We trained the resnet over 50 epochs with adam,
using the model with the lowest validation loss. In
addition to dropout, we used weight decay for reg-
ularization (ε = 10−4).

3.4 Discarded features
All previous features and systems have been used
for the final submissions and will be discussed in
the results section of this paper. However, it is
noteworthy to mention which features were eval-
uated but nonetheless failed to provide a perfor-
mance improvement. These were tested on the de-
velopment set of the data as standalone features
as well as in combination with others. However,
in none of the cases were these features able to
improve the performance of any of the submitted
systems.

3.4.1 Word, lemma, and POS n-grams
Given the relative success of prior work in
NLI, such as (Jarvis et al., 2013), we de-
cided to experiment with traditional n-gram fea-
tures. In these experiments, we employed the
spaCy2 NLP toolkit in order to generate the
lemma and POS representations of words to-
kens. Several combinations of these features were
evaluated, such as WORD + LEMMA + POS bi-
grams/trigrams, WORD/LEMMA unigrams + POS
bigrams/trigrams, etc. Combinations of binary
features and frequency-based features were evalu-
ated for all aforementioned feature types. The in-
clusion of any of the features, however, decreased
the performance of our system by at least 2% and
they were therefore excluded from any of our final
submissions.

3.4.2 Skipgrams
Skipgrams are a relatively new approach in NLP,
most notable for their effectiveness in approx-
imating word meaning in vector space models
(Mikolov et al., 2013). In addition to calculating
the n consecutive units in a sequence, skipgrams
introduce another parameter, k, which calculates

2https://spacy.io/

n-grams of units separated by a distance of k. For
example, the character bigram k = 1 represen-
tation of apple would thus be: (a, p), (p,
l), (p, e). As such, we experimented with
skipgrams for several of our systems. Most no-
tably, we evaluated character 2-9-grams with skips
of 2 and 3. These results, however, were largely
identical to our simpler 1-9-gram system and were
thus discarded due to significantly longer training
times and exceedingly sparse feature matrices.

3.4.3 IPA representation

Due to the success of the character n-gram mod-
els in capturing morphological details, we tested
a feature that transcribed every essay into its pho-
netic representation. Even though we knew this
would largely reproduce the same information
captured by the raw text of the essays, we nonethe-
less hypothesized that an IPA-transcription would
reveal further insights about how learners impose
the morpho-phonetic features of their native lan-
guage onto their spelling in English. For example,
while dipthongization is not represented by the or-
thography of a word, a phonetic transcription is
able to capture it. Thus, we employed the eS-
peak text-to-speech software3, which reproduced
words according to how an English speaker would
pronounce them. When tested against our best-
performing character-level system, this approach
produced a slight drop in F1-score (∼ 1%). This
factor, combined with very long training time, led
us to ultimately discard the feature.

3.4.4 Misspellings

In examining the essays in the training set, we ob-
served a large number of misspelled words. As
such, we experimented with incorporating word
misspellings into our system. These words were
identified via the PyEnchant Python library4 and
replaced with a dummy token (*). We posited
that this would have the effect of identifying mis-
spellings and capturing their distributions per lan-
guage. The character-level features of misspelled
words were also retained by the combined char-
acter 1-9-n-gram model. We attempted various
feature representations for this method, including
1-9 character n-grams as well as word unigrams
combined with non-filtered 1-9 character n-grams.
None of these results were noteworthy, however.

3http://espeak.sourceforge.net/
4http://pythonhosted.org/pyenchant/

386

4 Results

Table 2 provides an overview of all submissions
with results obtained both on the development and
on the final evaluation sets.

The results show that our best-performing sys-
tem was the character 1-9-gram system trained
on the concatenation of training and development
data. This is a notable improvement on the devel-
opment set, which was 84%. The system for the
first submission is the same as for the second sub-
mission. However the first submission was only
trained on the training data set and the second also
included the dev set. This resulted in more doc-
uments for training, which improved the perfor-
mance of the system. This resulted in our overall
best system. The confusion matrix for this system
is given in Figure 1.

Here, the most confused cases are Hindi and
Telugu, replicating what we observed (at a higher
rate) during the development of our system. This
discrepancy has also been reported by various
prior studies, including Jarvis et al. (2013), whose
system was trained and evaluated on different data
than ours. The other noteworthy cases are Turk-
ish and Arabic, which are confused at least once
for all but one and two languages, respectively.
Even though Korean is mislabeled as Japanese
eight times, the same does not apply for the reverse
situation: Japanese is the second most accurately-
labeled class, with only German faring better. In-
terestingly, the meta classifier over the character 1-
9-gram probabilities fares slightly worse than the
standalone system. This, however, could likely be
due to overfitting the system on the training data,
which is a risk posed by any meta-classification
approach.

Both of the prompt-based systems produced
largely similar results. In the case of prompt-word
omission, the confusion between Hindi and Tel-
ugu is slightly reduced, but also moved to other
classes. The omission of P7 documents from train-
ing also resulted in a larger drop in accuracy from
the character 1-9-n-gram system, which was not
observed during development. Of course a drop
would be expected, but not as large as it would
likely be if a prompt topic written about in the
test data had been omitted from the training data
instead. Also, it is possible that the omission of
1,562 total documents from training is responsible
for this result, prompt-effect notwithstanding.

Each of the ensemble methods failed to match

the performance of the character 1-9-n-gram sys-
tem. Though the intuition in assembling the en-
semble classifiers was that they would provide ex-
tra insight for the main classifier by virtue of be-
ing non-linear, this is not reflected in terms of ac-
curacy. It is noteworthy, however, that the sys-
tem including the CNN trained on character 4-
5-n-grams and word unigrams (CNN1) improved
much on Arabic (88% F1-score) and Turkish (83%
F1-score), suggesting that further refinement of
this system (perhaps extending the character n-
gram ranges) may be fruitful. Unfortunately, due
to time constraints, we did not have a chance to
explore other configurations, as CNNs take a con-
siderably long time to train.

Finally, we note that the native-trained POS-
approach did not produce encouraging results.
Unlike the ensemble, which improved the classi-
fier’s performance on some classes despite yield-
ing a lower F1-score, the POS tags failed to pro-
vide any notable insight relative to the character
classifier. However, this is not to say that this
approach should be entirely discarded. Rather, it
would be interesting to combine the POS features
with other feature types, such as word or lemma
n-grams, as opposed to character n-grams.

5 Discussion

Our first submission (i.e., standalone 1-9 charac-
ter n-grams), which was trained on both the train-
ing and development data yielded the best test-set
performance out of all our submitted systems. As
we received the results of our primary submissions
from the organizers during the testing period, it
was confirmed that the 1-9 character n-gram fea-
tures were very powerful when evaluated on the
test set. We thus continued to include these fea-
tures in subsequent system submissions. The in-
sight regarding the performance of these initial
systems against the test set has certainly impacted
the decisions we made about which features to in-
clude later. It must be noted, however, that our
best performing system was submitted before we
had received any such feedback, since it was one
of the first systems we submitted. Therefore we
did not tweak any aspect of the system for the test
set. The system we developed initially without any
knowledge of the test set performed best and also
proved to be the most compact system.

As mentioned in the features section, topic bias
was one of our major concerns during the sys-

387

Submission Char. 1-9-grams Char. 1-10-grams POS tags PW omitted Meta CBOW CNN1 CNN2 P7 Omitted Dev F1 Test F1

Random baseline: 0.0700 0.0909
Essay baseline: 0.6907 0.7104

1 x 0.8374 0.8684
2 x 0.8374 0.8756
3 x x 0.8165 0.8682
4 x x 0.8459 0.8737
5 x x x - 0.8515
6 x x x - 0.8616
7 x x 0.8410 0.8613
8 x x x 0.8321 (0.5302)
9 x x 0.8212 0.8414
10 x x 0.8385 0.8720

Table 2: Overview of submissions to the NLI Shared Task 2017. Test scores were received during the
test phase. As CNN1 and CNN2 were evaluated against 30% of the development set, their results are
excluded from the performance on the development set. (The low test performance for Submission 8
suggests that something went wrong with uploading the correct system.)

Figure 1: Confusion matrix for character 1-9-grams trained on train+dev

tem evaluation process. Our experiments with the
prompt-word feature revealed that our system was
indeed modeling prompt topic in addition to na-
tive language. In order to further validate this, we
ran a series of experiments in which we omitted a
prompt from the training set in a leave-one-prompt
out scenario. We then fit a classifier on this trun-
cated training data and evaluated it against the en-
tire dev set (i.e., with all prompt information re-
tained). The performance of the classifier varied
greatly depending on which prompt was omitted,
dropping in accuracy between 3% and 20%.

Interestingly, our experiments with omitting
prompt information from the test set (both dev

and test, in separate instances) did not reproduce
such drastic drops in performance. Instead, the
system’s accuracy declined only slightly (as in
the case of P7 omission), if at all. This sug-
gests that, in evaluating the assessment submis-
sions, the evaluation data can consist of a smaller
prompt distribution than the training data, with
only minimal prompt-overfitting observed for the
latter. Conversely, this also means that a system
must be trained on at least the same prompts that
the data against which it is evaluated. Otherwise,
the drop in performance may be unpredictable.

These prompt-omission experiments led us to
conclude that, while it is possible to build a state-

388

of-the-art model, the fact that it is trained and
tested against the same prompt topics likely ren-
ders it unable to generalize towards other, poten-
tially unseen future prompts. Furthermore, it is
improbable that a system trained on one year’s
assessments will come close to replicating simi-
lar results when tested against essays from other
years, due to the discrepancy in potential prompts.
Certainly, this is to say that, in order to obtain a
true metric of how well any of the submitted sys-
tems would fare in practical scenarios (i.e. NLI on
future year’s TOEFL essays), it is vital that they
be tested against a data set that contains different
and unseen prompts.

References
Johannes Bjerva, Barbara Plank, and Johan Bos.

2016. Semantic tagging with deep residual
networks. In Proceedings of COLING 2016,
the 26th International Conference on Computa-
tional Linguistics: Technical Papers. The COL-
ING 2016 Organizing Committee, pages 3531–
3541. http://aclweb.org/anthology/C16-1333.

Julian Brooke and Graeme Hirst. 2012. Robust, lexi-
calized native language identification. In Proceed-
ings of COLING 2012.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault, and
Yann Lecun. 2016. Very deep convolutional net-
works for natural language processing. arXiv
preprint arXiv:1606.01781 .

Jacob Eisenstein, Amr Ahmed, and Eric P Xing. 2011.
Sparse additive generative models of text .

Sylviane Granger, Estelle Dagneaux, Fanny Meunier,
and Magali Paquot. 2009. International corpus of
learner english.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Identity mappings in deep residual net-
works. arXiv preprint arXiv:1603.05027 .

Radu Tudor Ionescu, Marius Popescu, and Aoife
Cahill. 2014. Can characters reveal your native lan-
guage? A language-independent approach to native
language identification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for Com-
putational Linguistics.

Scott Jarvis, Yves Bestgen, and Steve Pepper. 2013.
Maximizing classification accuracy in native lan-
guage identification. In BEA@ NAACL-HLT . pages
111–118.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Moshe Koppel, Jonathan Schler, and Kfir Zigdon.
2005. Determining an author’s native language by
mining a text for errors. In Proceedings of the
eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining. ACM, pages
624–628.

Shervin Malmasi and Mark Dras. 2017. Native lan-
guage identification using stacked generalization.
arXiv preprint arXiv:1703.06541 .

Shervin Malmasi, Keelan Evanini, Aoife Cahill, Joel
Tetreault, Robert Pugh, Christopher Hamill, Diane
Napolitano, and Yao Qian. 2017. A Report on the
2017 Native Language Identification Shared Task.
In Proceedings of the 12th Workshop on Building
Educational Applications Using NLP. Association
for Computational Linguistics, Copenhagen, Den-
mark.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajic, Christopher D
Manning, Ryan T McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, et al. 2016. Universal de-
pendencies v1: A multilingual treebank collection.
In LREC.

Terence Odlin. 1989. Language transfer: Cross-
linguistic influence in language learning. Cam-
bridge University Press.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual Part-of-Speech Tagging with
Bidirectional Long Short-Term Memory Models and
Auxiliary Loss. In ACL 2016, arXiv preprint
arXiv:1604.05529. http://arxiv.org/abs/1604.05529.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

Joel R Tetreault, Daniel Blanchard, and Aoife Cahill.
2013. A report on the first native language identi-
fication shared task. In BEA@ NAACL-HLT . pages
48–57.

Chris Thornton, Frank Hutter, Holger H Hoos, and
Kevin Leyton-Brown. 2013. Auto-weka: Combined
selection and hyperparameter optimization of clas-
sification algorithms. In Proceedings of the 19th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, pages 847–
855.

389

