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Abstract

Our team—Uvic-NLP—explored and
evaluated a variety of lexical features
for Native Language Identification (NLI)
within the framework of ensemble
methods. Using a subset of the highest-
performing features, we train Support
Vector Machines (SVM) and Fully Con-
nected Neural Networks (FCNN) as base
classifiers, and test different methods for
combining their outputs. Restricting our
scope to the closed essay track in the NLI
Shared Task 2017, we find that our best
SVM ensemble achieves an F1 score of
0.8730 on the test set.

1 Introduction

Native Language Identification (NLI) is the task
of identifying a person’s native language (L1)
based on a sample of their writing or speech in
a second language (L2). The underlying intu-
ition is that those with the same L1 tend to use
similar language patterns during L2 production.
This is known as cross-linguistic influence (Or-
tega, 2014).

NLI can accelerate second language acquisition
by giving students L1-specific feedback on their
written or spoken samples (Malmasi et al., 2014).
In forensic linguistics, NLI can be applied to iden-
tify the L1 of anonymous texts (Perkins, 2015).

The NLI Shared Task 2013—the first of its
kind—was based on written essays (Tetreault
et al., 2013), while the 2016 Computational Par-
alinguistics Challenge was based on spoken re-
sponses (Schuller et al., 2016). The NLI Shared
Task 2017 organizers provided a dataset of both
essays and transcriptions of verbal responses
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(Malmasi et al., 2017). As our team—Uvic-
NLP—participated in the closed essay track, we
performed classification on essays only.

We begin our analysis by comparing various
lexical features and focus on two high-performing
classifiers: Support Vector Machines (SVM) and
Fully Connected Neural Networks (FCNN). Then,
we explore different ensemble methods for com-
bining outputs of individual classifiers. We present
and discuss three of our best systems for this task:
a single SVM classifier, an SVM ensemble, and an
FCNN ensemble.

2 Related Work

NLI is generally conceptualized as a multi-
class supervised classification problem, where the
classes represent the set of possible L1s. One of
the first NLI systems trained SVMs on a variety of
stylistic features (Koppel et al., 2005).

The NLI Shared Task 2013 introduced a corpus
designed specifically for NLI (Blanchard et al.,
2013). Use of a standardized dataset and eval-
uation metric allowed for the effective compar-
ison of different models, and the results con-
firmed the usefulness of SVMs for NLI (Tetreault
et al., 2013). Popular features included word, part
of speech (POS), and character n-grams; higher-
order n-grams were shown to be especially useful.
Four of the top five teams used at least 4-grams,
with the top team using up to 9-grams. String ker-
nels using 5- to 8-grams at the character-level also
worked well, and were one of the best performing
models for this task (Ionescu et al., 2014).

A trend in recent work is the use of ensem-
ble methods, which combine the predictions of
a set of classifiers, giving more accurate results
than a single classifier trained on a combination of
different features (Tetreault et al., 2012; Malmasi
et al., 2013). Malmasi and Dras (2017) used meta-
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classifier ensembles, where results from base clas-
sifiers are fed to an ensemble of meta-classifiers.
Such models are the current state of the art for
NLI.

3 Data

The dataset for the essay track of the NLI Shared
Task 2017 was collected by Educational Testing
Services, and consists of written responses to a
standardized assessment of English proficiency for
academic purposes.

13,200 response essays from test takers were
separated into three sets: 11,000 for training
(TRAIN), 1,100 for development (DEV), and 1,100
for testing (TEST). Each set of documents
is equally distributed among eleven L1s: Ara-
bic (ARA), Chinese (CHI), French (FRE), Ger-
man (GER), Hindi (HIN), Italian (ITA), Japanese
(JPN), Korean (KOR), Spanish (SPA), Telugu
(TEL), and Turkish (TUR).

4 Features

Previous work demonstrates that a variety of lex-
ical and syntactic features are useful for NLI
(Tetreault et al., 2012). In addition to incorporat-
ing lexical features known to be effective for this
task, we also extract phonemes. Here, we describe
each of the features in turn.

Word n-grams Where topic bias is pervasive,
word n-grams are not useful features for classifica-
tion (Brooke and Hirst, 2011), but have been used
successfully in topic-balanced corpora (Tetreault
et al., 2012). Our dataset is balanced across top-
ics, making word n-grams useful.

Lemma n-grams Lemmas are the dictionary
representation of words, i.e. words that are
stripped of morphological marking. The lemma-
tized versions of all words in our corpus were at-
tained using Natural Language Toolkit’s WordNet
interface (Bird et al., 2009; Feinerer and Hornik,
2016; Wallace, 2007; Fellbaum, 1998).

Character n-grams Tsur and Rappoport (2007)
achieved good results on the NLI task using only
character bigrams as features. Methods working at
the character level were also the previous state of
the art (Ionescu et al., 2014). Character n-grams
can be generated from text within or across word
boundaries.

Part of speech n-grams Koppel et al. (2005)
found rare part of speech (POS) bigrams to be
a useful feature; many teams in the 2013 Shared
Task also made use of this feature (Tetreault et al.,
2013). We use the Stanford Tagger to extract POS
features (Toutanova et al., 2003).

Function words Function words are a closed
class of words that serve a grammatical function
in sentences, whose use for NLI was explored
early on (Koppel et al., 2005). These include ar-
ticles, determiners, conjunctions, and auxiliaries.
These were extracted based on a list provided in
the ModErn Text Analysis Toolkit (Massung et al.,
2016).

Spelling errors Spelling errors were extracted
by finding the difference between misspelled
words before and after they were corrected using
the autocorrect package (Jonas, 2013). We coded
a subset of the spelling errors defined by Koppel
et al. (2005): repeated letter, double letter appears
only once, letter replacement, letter inversion, in-
serted letter, and missing letter.

Phoneme n-grams Phonemes are representa-
tions of sounds in a language. In English, one
sound can be represented using many different let-
ters (e.g. cat and kick). For mapping orthogra-
phy onto phonemes, we used the Carnegie Mel-
lon Pronouncing Dictionary (Weide, 2005). To our
knowledge, phonemes have not yet been explored
as a feature.

5 Classifiers

We evaluated classifier performance across fea-
tures types and found that the SVM and FCNN
classifiers consistently outperformed other classi-
fiers, such as Perceptron and Multinomial Naive
Bayes. As such, we focus on these two classifiers
in subsequent experiments.

Ensemble methods involve combining the out-
puts of multiple classifiers to yield a final pre-
diction (Polikar, 2006). Three types of ensemble
methods which have been shown to be useful for
NLI are explored here (Malmasi and Dras, 2017).
At a high level, SVM and FCNN outputs are com-
bined using (1) a voting scheme, (2) a Linear Dis-
criminant Analysis (LDA) classifier trained on the
outputs, and (3) multiple LDA classifiers—trained
on random subsets of the outputs—whose predic-
tions are in turn combined using a voting scheme.
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Table 1: Comparison of individual feature types
using SVM and FCNN classifiers, using F1 scores
on DEV. The highest F1 score for each feature set
is indicated in bold.

Feature type SVM FCNN

Word unigram 0.6936 0.7645
Word bigram 0.7228 0.8027
Word trigram 0.6705 0.6790

Lemma 0.6703 0.7481

Character bigram 0.4787 0.5818
Character trigram 0.6360 0.7381
Character 4-gram 0.7213 0.7836
Character 5-gram 0.7363 0.8081

POS bigram 0.4286 0.4081
POS trigram 0.4723 0.4472

Function words 0.3036 0.5646

Spelling errors 0.2201 0.2509

Phoneme bigram 0.5356 0.5509
Phoneme trigram 0.6697 0.6654
Phoneme 4-gram 0.7089 0.6727
Phoneme 5-gram 0.7241 0.6654

Combined 0.8183 0.7784

5.1 Support Vector Machine (SVM)

SVMs (Joachims, 1998) are frequently used for
text classification and have been applied success-
fully to NLI (Tetreault et al., 2013). We use
a scikit-learn SVM implementation: LinearSVC
(Pedregosa et al., 2011).

5.2 Neural Networks

Since we found little previous work applying neu-
ral networks to NLI, this paper strives to fill this
gap by constructing a FCNN using TensorFlow
(Allaire et al., 2016) and the Keras (Chollet et al.,
2015) framework.

The network is comprised of one hidden layer
of 128 nodes that uses a tanh activation function
and an input dropout of 0.2. The optimal dropout
value was established empirically. Following the
hidden layer, there is an 11 node output layer that
uses the softmax activation function. The entire
network uses a cross entropy loss function and the
Adam optimization algorithm.

Due to memory constraints, we limit analysis to
only the 100,000 most important features, selected
by performing an ANOVA F-test on the entire fea-

ture set (Harwell et al., 1992).
In addition to the FCNN, we test another type of

neural network for this task. Following the archi-
tecture described by Wang et al. (2016), we train
a pipeline consisting of a convolutional neural net-
work (CNN) which transforms the input data at the
character-level and a Long Term Short Memory
(LSTM) neural network which performs classifi-
cation on the output of the CNN. We also trained
an LSTM on word vectors (Mikolov et al., 2013).
In both cases, however, we found results to be
lacking in accuracy.

5.3 Ensemble construction

For any given SVM or FCNN, the output for 11-
way classification can be represented as a vector
of 11 numbers. For the SVM, output is in the
form of confidence scores for each class, which
is equivalent to the signed distance of that sample
to each class’s hyperplane (Weston and Watkins,
1998). Similarly, each FCNN prediction is in the
form of confidence values for each class, derived
from the softmax output layer.

Using the best feature combination and rep-
resentation from the previous experiments, we
trained two sets of base classifiers—FCNNs and
SVMs—on different features and combined each
set of outputs using three different voting schemes
(Polikar, 2006):

• Mean: Final label is the class corresponding
to the greatest average confidence score.

• Median: Final label is the class correspond-
ing to the greatest median confidence score.

• Plurality vote: Final label is the class with
the greatest number of votes. In a tie, we
choose the class that comes first alphabeti-
cally.

In line with previous work, we achieve the high-
est accuracy using the mean rule (Malmasi et al.,
2013), as shown in Table 3.

5.4 Meta-classifier

Another way to combine the outputs of several
base classifiers is to feed their outputs into an-
other classifier, also known as a meta-classifier. To
obtain outputs from SVMs and FCNNs, we split
the training set into ten folds and perform cross-
validation. This gave us a set of meta-features
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that were then used as input to an LDA meta-
classifier, which was found to outperform other
algorithms for meta-classification in Malmasi and
Dras (2017).

5.5 Meta-classifier ensembles

Building on the idea of ensembles and meta-
classification, we experiment with ensembles of
meta-classifiers (Malmasi and Dras, 2017). SVM
and FCNN outputs—meta-features—are gener-
ated in the same way as in section 5.4. How-
ever, instead of training a single meta-classifier on
these features, we use bagging (bootstrap aggre-
gating) to train multiple LDAs on random subsets
of the base classifier outputs. A grid search was
performed to find the optimal number of meta-
classifiers and optimal percentage of samples to
train each LDA on. The predictions from multiple
LDAs were then combined using voting schemes
described in section 5.3.

6 Results and Discussion

In this section we present our results on single fea-
tures, feature combinations, single classifiers, and
classifier ensembles.

6.1 Individual features

The results of SVM and FCNN classifiers trained
on different features are shown in Table 1. For
these experiments, features were represented by
their frequency count. We observe a general trend
within different feature types: F1 scores increase
as n-gram order increases (see Table 1). This is not
unexpected, given the success of NLI models that
make use of higher-order n-grams (Jarvis et al.,
2013; Tetreault et al., 2013). One exception to this
trend is that there seems to be a upper-bound for
word n-grams at the bigram level, where accuracy
drops for word trigrams. This may be attributed in
part to the increased sparsity of features when we
move from bigrams to trigrams at the word-level.

Interestingly, spelling errors were less informa-
tive than what we had expected. Although we
did not evaluate the accuracy of the autocorrect
package we used for spelling correction, we sus-
pect that it did not perform well since it operates
naively, without looking at context (Jonas, 2013).
Additionally, the types of errors we defined might
have not been fine-grained enough to capture dif-
ferences unique to groups of L1 writers.

6.2 Single classifier results

As in Malmasi et al. (2013), we measure the ef-
fectiveness of different feature representations. Of
the feature types described above, we include in
our final system only a subset of the highest per-
forming features. Thus, analysis is limited to this
subset of features.

With frequency counts as a baseline, we com-
pare the performance of classifiers trained on three
different combinations of high-performing fea-
tures. These groups are:

• Word: Lemmas, words (1-, 2-, and 3-grams).

• Char: Characters (4- and 5-grams).

• Phoneme: Phonemes (4- and 5-grams).

Each group of features is tested with and with-
out term frequency-inverse document frequency
(TF-IDF) weighting. Further, we examine the ef-
fects of binarization, L1 normalization, and L2
normalization on the same feature set. Note that
L1 and L2 normalization refer to the vector norms
across each input row. These results are summa-
rized in Table 2.

Comparing classifiers trained on individual fea-
tures (Table 1) to those trained on combinations of
features (Table 2), it is evident that better results
are achieved by training a single classifier on mul-
tiple features than on any single feature type. Fur-
ther, Table 2 shows that the best performing clas-
sifiers use L2-normalized features with TF-IDF.

Our official submission to the NLI Shared Task
2017 used a single SVM classifier, which requires
less time and fewer computational resources to
train compared to a FCNN. An SVM on words (1-,
2-, and 3-grams) and characters (4- and 5-grams)
achieves an F1 score of 0.8633 on TEST (see Table
4). The features were binarized, L2-normalized
and TF-IDF weighted. The confusion matrix is
shown in Figure 1.

6.3 Ensembles

The results detailed in this section were not sub-
mitted as part of the NLI Shared Task 2017, and
were obtained after the test phase ended.

At the most basic level, individual classifiers are
combined in a straightforward manner using a vot-
ing scheme. As we increase the complexity of the
model, first by training an LDA meta-classifier on

220



Table 2: Comparison of feature representations for SVM and FCNN classifiers, using F1 scores on DEV.
The best feature representation for each classifier is indicated in bold.

Word Char Phoneme

SVM FCNN SVM FCNN SVM FCNN

TF

Binarized 0.7983 0.8190 0.6932 0.8172 0.7550 0.6950
Frequency counts 0.8090 0.8090 0.6931 0.8003 0.7056 0.6971
L1 Normalized 0.6167 0.6372 0.4921 0.4427 0.4270 0.4604
L2 Normalized 0.7736 0.7854 0.7629 0.7610 0.7677 0.6971

TF-IDF

Binarized 0.8092 0.7872 0.6837 0.7693 0.7489 0.6623
Frequency counts 0.7772 0.7579 0.6834 0.7560 0.7085 0.6578
L1 Normalized 0.6954 0.7845 0.5911 0.3794 0.5325 0.2919
L2 Normalized 0.8049 0.8155 0.7709 0.8048 0.7812 0.7059
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Figure 1: SVM confusion matrix on TEST. The
SVM was trained on words (1-, 2-, and 3-grams)
and characters within word boundaries (4- and 5-
grams).

the outputs, and then by constructing an ensem-
ble of meta-classifiers, we observe a slight perfor-
mance gain for both SVMs and FCNNs at each
step, consistent with the results in Malmasi and
Dras (2017). Table 3 summarizes our results from
using different ensemble methods to combine in-
dividual classifiers trained on words (2- and 3-
grams), characters (4- and 5-grams) and phonemes
(4- and 5-grams).

Further experiments with SVMs and FCNNs
were conducted by selecting different features to
combine on a trial and error basis. The decision to
use character n-grams within as opposed to across
word boundaries was made arbitrarily. All fea-
tures are binarized, L2-normalized, and TF-IDF

Table 3: Comparison of different ensemble meth-
ods to combine outputs of SVM and FCNN clas-
sifiers: voting schemes, LDA meta-classifier, and
an ensemble of LDA meta-classifiers. F1 scores
on DEV are shown. The best result for each classi-
fier is indicated in bold.

SVM FCNN

Voting
scheme

Plurality vote 0.8285 0.8109
Mean 0.8417 0.8345
Median 0.8313 0.8363

Meta-
classifier

LDA 0.8448 0.8534

Meta-
classifier
ensembles

Plurality-LDA 0.8449 0.8507
Mean-LDA 0.8475 0.8544
Median-LDA 0.8475 0.8544

weighted. The results of our best ensemble classi-
fiers on DEV and TEST are displayed in Table 4.

While an ensemble of meta-classifiers outper-
forms both a simple voting scheme and a single
meta-classifier, we do not observe the same per-
formance gain with respect to FCNNs (see Table
3).

Our best SVM ensemble consists of an ensem-
ble of meta-classifiers. SVMs are trained on words
(2- and 3-grams), characters within word bound-
aries (4- and 5-grams), and phonemes (4- and 5-
grams), giving a total of six classifiers. The out-
puts of these individual classifiers are fed to an
ensemble of LDAs, as described in 5.5. Finally,
the LDA predictions are combined using the mean
rule. The F1 score on TEST for this model is
0.8730.

Our best FCNN ensemble applies a voting
scheme to classifier outputs. Four FCNN networks
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Table 4: F1 scores on TEST and on DEV for final
systems. Ensemble results were obtained after the
test phase. The best result for each dataset is indi-
cated in bold. ∗ = Official submission to the NLI
Shared Task 2017.

System DEV TEST

Random baseline 0.9090 —
Official baseline 0.7104 —
SVM∗ 0.8168 0.8633
SVM ensemble 0.8475 0.8730
FCNN ensemble 0.8576 0.8560

are trained on the following combination of fea-
tures: (1) word bigrams and lemma trigrams, (2)
word bigrams, (3) character 5-grams, (4) charac-
ter 5-grams within word boundaries. The outputs
from these individual networks are combined us-
ing the mean rule, yielding an F1 score of 0.8560
on TEST.

Additionally, we created an ensemble of differ-
ent SVM and FCNN classifiers but found no im-
provement over pure ensembles of either type.

7 Future work

We excluded from our system individual features
that did not perform well in our experiments. It
would be helpful to evaluate the influence of these
less accurate features and determine whether they
would be useful to include in ensemble classifiers.
Further, we tested a limited number of combina-
tions of features. One facet of the problem in-
volves developing a systematic approach to search
for a good feature set.

Although we trained several FCNNs on differ-
ent feature types, its utility as a meta-classifier has
not been examined.

A CNN-LSTM model shown to perform well
for sentiment analysis (Wang et al., 2016) did
not achieve good results for NLI. While senti-
ment classification typically involves five or fewer
classes, there were 11 classes for the NLI Shared
Task 2017. It may may be that additional classes
increase the possibility of error. Further investi-
gation is required to explain why a CNN-LSTM
architecture performs worse relative to a FCNN
model.

Our results show the utility of various features
for this task and confirm that ensemble methods
perform better than single classifiers trained on
multiple features. They also offer several new di-

rections to further improve NLI systems.
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