
COLING 2016

The 26th International Conference on Computational
Linguistics (COLING 2016)

Proceedings of the 5th Workshop on
Cognitive Aspects of the Lexicon (CogALex-V)

December 12, 2016
Osaka, Japan



Copyright of each paper stays with the respective authors (or their employers).

ISBN978-4-87974-721-1

ii



Preface

Whenever we read a book, write a letter or perform a (web or dictionary) search, we always use lexical
items (words or more complex constructions), the expressive shorthand versions of more or less abstract
thoughts. Yet, lexemes are not only expressive means, i.e. vehicles transporting thoughts, they are also
means to conceive them. They are mediators between language and thought, allowing us to move quickly
from one idea to another, summarizing, expanding or specifying possibly underspecified thoughts. Of
course, lexemes can do a lot more, allowing us to organize, memorize and access knowledge, and even
reveal hidden meanings via information contained in the target or its surrounding words (subliminal
communication). No doubt the lexicon is a key component of language.

Lexical items are generally viewed as objects, yet when it comes to speaking, reading or writing, they
are processes, that is, they carry meaning which they convey via an abstract (part of speech) and concrete
form (phonemes, graphemes). Obviously, in order to access a lexeme (at least) its form must be stored.
This is done holistically in the case of external resources (paper or electronic dictionary), which represent
word forms as single tokens, and distributed in the case of the human brain, which decomposes the form
into syllables and phonemes. While knowing the form is important, its storage is by no means sufficient.
We may still fail to access it when needed. More importantly, when consulting a dictionary (off-line
processing) other types of knowledge are used, most prominently meta-knowledge and cognitive states.
Meta-knowledge is revealed by the fact that search is generally initiated via a close neighbor of the
target lexeme, to be continued then via one of the links connecting the source and the target (synonym,
hypernym, etc.). Cognitive states are revealed by the information given at the onset of the search. They
express the information available at that very moment. As psychologists have shown, authors always
know something concerning the eluding word. Alas, what information is available when being in this
state varies from person to person and from moment to moment. It is unpredictable knowledge. Hence
the importance of building a resource flexible enough to accommodate any of them, allowing the user to
start from anywhere and to access the target via many diverse routes.

Ironically, although – once expressed – many of these observations sound obvious, most of them have
been overlooked by the various communities dealing with the lexicon, its acquisition, usage or modeling
(e.g. lexicographers and computational linguists). Nevertheless one must admit that things have actually
changed quite a bit, and some of these changes are so deep, fast and wide-ranging that it is sometimes
hard to keep track of them, and be aware of the new problems and possibilities. As this evolution is in
full swing, and in order to contribute to its dynamism, we organize CogALex (Cognitive Aspects of the
Lexicon), whose mission is to build a bridge between the different communities. More precisely, our
goal is to provide a forum for computational lexicographers, researchers in NLP, psychologists and users
of lexical resources to share their knowledge and needs concerning the construction, organization and
use of a lexicon by people (lexical access) and machines (NLP, IR, data mining).

History, topics of interest and focus of the current workshop

Starting at Coling 2004 (Geneva) with the workshop Enhancing and Using Electronic Dictionaries,
there have been four follow-up events so far (CogALex I–IV), each co-located with Coling (Manchester,
UK, 2008; Beijing, China, 2010; Mumbai, India, 2012, and finally, Dublin, UK, 2014). Encouraged
by the enthusiasm and interest expressed by the participants of these CogALex events, we decided to
organize another edition of the workshop. Like in the past, we invited researchers to address various
unsolved problems. This time we put stronger emphasis though on relations (lexical/conceptual) and on
distributional semantics, to explore their relevance with respect to a cognitive model of the lexicon.

The interest in distributional approaches has grown considerably over the last few years, both in
computational linguistics and cognitive sciences. An additional boost has come from the recent
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popularity of deep learning and neural embeddings. While all these approaches seem to have great
potential, their added value in addressing cognitive and semantic aspects of the lexicon still needs to be
demonstrated.

We were also interested in the organization of the mental lexicon and its potential to enhance lexical
resources. Given recent advances in the neurosciences, it appears timely to seek inspiration from studies
concerning the human brain. There is also a lot to be learned from other fields using graphs and networks,
even if their object of study is something else than language, for example biology, economy or society.

As two years ago we proposed a shared task, or rather a “friendly competition”. The goal of this
year’s edition was the automatic identification of semantic relations from corpus data (see below for
details). Also, like in the past, we were interested in the enhancement of lexical resources and electronic
dictionaries, so we invited contributions from researchers involved in the building of such tools. The
idea is to discuss modifications of existing resources by taking the users’ needs and knowledge states
into account. Given the diversity of our goals we solicited papers including, but not limited to the
following topics, each of which can be considered from various viewpoints: linguistics (theoretical
or practical), neuro- or psycholinguistics (tip-of-the-tongue problem, associations), network related
sciences (sociology, economy, biology), mathematics (vector-based approaches, graph theory, small-
world problem), etc.

Organization, i.e. structure of the lexicon

• Micro- and macrostructure of the lexicon;
• Indexical categories (taxonomies, thesaurus-like topical structures, etc.);
• Distribution of information and relations between words.

The meaning of words and techniques for revealing it

• Lexical representation (holistic, decomposed);
• Meaning representation (concept based, primitives);
• Distributional semantics (count models, neural embeddings, etc.).

Analysis of the input given by a dictionary user

• What information do language producers provide when looking for a word (terms, relations)?
• What kind of relational information do they give: typed or untyped relations?
• Which relations are typically used?

Methods for crafting dictionaries or additional functions like indexes

• Manual, automatic or collaborative building of dictionaries (crowd-sourcing, serious games, etc.);
• (Semi-)automatic induction of the link type (e.g. synonym, hypernym, association, etc.);
• Extraction of associations from corpora to build semantic networks supporting navigation.

Dictionary access (navigation and search strategies)

• Search based on sound (rhymes), meaning or functionally related words (associations);
• Determination of appropriate search space based on user’s knowledge, etc.;
• Identification of typical word access strategies (navigational patterns) used by people.
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Shared task on the corpus-based identification of semantic relations

The shared task was organized by Stefan Evert, Alessandro Lenci and Enrico Santus, with the precious
help of Anna Gladkova. Its goal was the automatic identification of semantic relations from corpus data,
which has great potential: it promises an efficient and scalable solution to NLP tasks, while (possibly)
providing a cognitively plausible model for human acquisition and usage of such relations.

Semantic relations play a central role in human lexical retrieval (navigation) and the organization of
words in the lexicon, the resource within which search takes place. Hence learning about them may
shed some light on the mental lexicon and the knowledge people have when searching for a word.
Discovering whether words are semantically related and how so (which kind of relation holds between
them?) is also an important task in natural language processing (NLP) by and large, with a wide range
of applications, such as automatic thesaurus creation, natural language generation (automatic creation of
outlines), ontology learning, paraphrase generation, etc.

The aim of this “friendly competition” was not so much to find the team with the best-performing system,
as to test different distributional models and other corpus-based approaches on a challenging semantic
task, in order to gain a better understanding of their respective strengths and weaknesses.

The task was split into two subtasks:

1. Given a pair of words (e.g. dog – fruit), decide whether they are semantically related or not.

2. For each word pair (e.g. cat – animal), decide which of the following semantic relations holds
between them: synonymy, antonymy, hypernymy, meronymy, or none (random combination).

The organizers provided a data set based on WordNet and ConceptNet, which was then cleaned by native
speakers in a CrowdFlower task. The remaining word pairs were split into a training set and test set, and
evaluation was carried out in terms of precision, recall and their harmonic mean (F1). In subtask 2, the
overall score was determined as the weighted average over all four semantic relations.

Outcome of the call and a word of thanks

We received 30 submissions, of which seven were accepted as full papers with oral presentation, eight as
poster presentations, and seven as shared task papers.

We would like to take this opportunity to express our sincerest thanks to all the members of the
Programme Committee. Their expertise was invaluable to ensure a good selection of papers despite
the tight schedule. Their reviews were helpful not only for us to make the decisions, but also for the
authors, helping them to improve their work.

Last, but not least, we would like to thank Chris Biemann for having accepted to be our invited speaker.
His talk – Vectors or Graphs? On Differences of Representations for Distributional Semantic Models –
fits perfectly well in this workshop.

We hope that the work presented here will inspire you, generate fruitful discussions, and possibly lead to
new ideas, insights and collaborations.

The CogALex-V Organizers
Michael Zock, Alessandro Lenci, Stefan Evert
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Abstract

Distributional Semantic Models (DSMs) have recently received increased attention, together with
the rise of neural architectures for scalable training of dense vector embeddings. While some of the
literature even includes terms like ’vectors’ and ’dimensionality’ in the definition of DSMs, there
are some good reasons why we should consider alternative formulations of distributional models.
As an instance, I present a scalable graph-based solution to distributional semantics. The model
belongs to the family of ’count-based’ DSMs, keeps its representation sparse and explicit, and
thus fully interpretable. I will highlight some important differences between sparse graph-based
and dense vector approaches to DSMs: while dense vector-based models are computationally
easier to handle and provide a nice uniform representation that can be compared and combined in
many ways, they lack interpretability, provenance and robustness. On the other hand, graph-based
sparse models have a more straightforward interpretation, handle sense distinctions more naturally
and can straightforwardly be linked to knowledge bases, while lacking the ability to compare
arbitrary lexical units and a compositionality operation. Since both representations have their
merits, I opt for exploring their combination in the outlook.

1 Introduction

Rooted in Structural Linguistics (de Saussure, 1966; Harris, 1951), Distributional Semantic Models
(DSMs, see e.g. (Baroni and Lenci, 2010)) characterize the meaning of lexical units by the contexts they
appear in, cf. (Wittgenstein, 1963; Firth, 1957). Using the duality of form and contexts, forms can be
compared along their contexts (Miller and Charles, 1991), giving rise to the field of Statistical Semantics.
A data-driven, unsupervised approach to representing word meaning is attractive as there is no need
for laborious creation of lexical resources. Further, these approaches naturally adapt to the domain or
even language at hand. Desirable, in general, is a model that provides a firm basis for a wider range of
(semantic) tasks, as opposed to specialised solutions on a per-task basis.

While most approaches to distributional semantics rely on dense vector representations, the reasons
for this seem rather technical than well-justified. To de-bias the discussion, I propose a competitive
graph-based formulation. Since all representations have advantages and disadvantages, I will discuss
some ways of how to fruitfully combine graphs and vectors in the future.

1.1 Vectors – a solution to Plato’s Problem?
Vector space models have a long tradition in Information Retrieval (Salton et al., 1975), and heavily
influence the way we think about representing documents and terms today. The core idea is to represent
each document with a bag-of-words vector of |V | dimensions with vocabulary V , counting how often

This work is licensed under a Creative Commons Attribution 4.0 International Licence. License details: http://creativecommons.
org/licenses/by/4.0/
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each word appears in the respective document. Queries, which are in fact very short documents, can be
matched to documents by appropriately comparing their vectors. Since V is large, the representation is
sparse – most entries in the vectors are zero. Note, however, that zeros are not stored in today’s indexing
approaches. When Deerwester et al. (1990) introduced Latent Semantic Analysis (LSA), its major feature
was to reduce the dimensionality of vectors, utilising the entirety of all documents for characterising
words by the documents they appear in, and vice versa. Dimensionality reduction approaches like Singular
Value Decomposition (SVD) and Principal Component Analysis (PCA) map distributionally similar words
(occurring in similar contexts) to similar lower-dimensional vectors, where the dimensionality typically
ranges from 200 to 10’000. Such a representation is dense: there are virtually no zero entries in these
vectors. A range of more recent models, such as Latent Dirichlet Allocation (LDA), are characterised
in the same way – variants are distinguished by the notion of context (document vs. window-based
vs. structured by grammatical dependencies) and the mechanism for dimensionality reduction. With
the advent of neural embeddings such as word2vec (Mikolov et al., 2013), a series of works showed
modest but significant advances in semantic tasks over previous approaches. Levy and Goldberg (2014b),
however, showed that there is no substantial representational advance in neural embeddings, as they
approximate matrix factorisation, as used in LSA. The advantage of word2vec is rather its efficient and
scalable implementation that enables the processing of larger text collections. Improvements on task
performance can mostly be attributed to better tuning of hyperparameters1 – which however overfits the
DSM to a task at hand, and defies the premise of unsupervised systems of not needing (hyper)supervision.

But there is a problem with all of these approaches: the fallacy of dimensionality2, following from a
simplification that we should not apply without being aware of its consequences: there is no ’appropriate
number’ of dimensions in natural language, because natural language follows a scale-free distribution on
all levels (e.g. (Zipf, 1949; Steyvers and Tenenbaum, 2005; Mukherjee et al., 2008), inter al.). Thus, a
representation with a fixed number of dimensions introduces a granularity – ’major’ dimensions encode
the most important distinctions while ’minor’ distinctions in the data cannot be modelled if the granularity
is too coarse. This is why the recommended number of dimensions depends on the task, the dataset’s
size and even the domain. In principle, there are two conclusions from studies that vary the number of
dimensions to optimise some sort of a score: (a) in one type of study, there is a sweet spot in the number
of dimensions, typically between 50 and 2000. This means that the dimension is indeed task-dependent,
(b) the ’optimal’ number of dimensions is the highest number tested, indicating that it probably would
have been better to keep a sparse representation. Interestingly, the most frequent reason researchers state,
if asked why they did not use a sparse representation, is a technical one: many machine learning and
statistical libraries do not natively operate on sparse representations, thus run out of memory when trying
to represent all those zeros.

2 Graph-based Sparse Representations

Since I am proposing to de-bias the discussion on DSMs from the domination of vectors towards a more
balanced view, I am exemplifying a graph-based DSM in this section. The JoBimText (Biemann and Riedl,
2013) framework is a scalable graph-based DSM implementation, developed in cooperation with IBM
Research (Gliozzo et al., 2013). It is defined rather straightforwardly: lexical items j ∈ J are represented
by their p most salient contexts B j, where saliency is measured by frequency or a statistical measure that
prefers frequent co-occurrence, such as LMI (Evert, 2004) or LL (Dunning, 1993). Similarity of lexical
items is defined as the overlap count of their respective contexts: sim( jk, jl) = |(x|x ∈ B jk &x ∈ B jl )|. We
call the graph of all lexical items with edges weighted by this similarity a distributional thesaurus (DT).
Despite its simplicity, or maybe because of that, this DSM compares favourably to other DSMs (Riedl,
2016), including Lin’s thesaurus (Lin, 1998), Curran’s measure (Curran, 2004), and word embeddings
(Mikolov et al., 2013; Levy and Goldberg, 2014a) on word similarity tasks, especially for large data. It
was further successfully used for word expansion in word sense disambiguation (Miller et al., 2012), as a

1”If you want to get good results, you should tune your hyperparameters. And if you want to make good science, don’t forget
to tune your baselines’ hyperparameters too!” - Omer Levy, pers. communication

2not to be confused with the curse of dimensionality, which refers to adverse phenomena when representing problems in too
high-dimensional spaces
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entry similar terms hypernyms context
mouse:NN:0 rat:NN:0, rodent:NN:0, monkey:NN:0, ... animal:NN:0, species:NN:1, ... rat::NN:conj and, white-footed:JJ:amod, ...
mouse:NN:1 keyboard:NN:1, computer:NN:0, printer:NN:0 ... device:NN:1, equipment:NN:3, ... click:NN:-prep of, click:NN:-nn, ....
keyboard:NN:0 piano:NN:1, synthesizer:NN:2, organ:NN:0 ... instrument:NN:2, device:NN:3, ... play:VB:-dobj, electric:JJ:amod, ..
keyboard:NN:1 keypad:NN:0, mouse:NN:1, screen:NN:1 ... device:NN:1, technology:NN:0 ... computer:NN:nn, qwerty:JJ:amod ...

Table 1: Examples of PCZ entries for “mouse:NN” and “keyboard:NN” based on dependency contexts (cf.
(Erk and Padó, 2008)) from a newspaper corpus. Trailing numbers indicate sense identifiers. Similarity
and context scores are not shown for brevity.

feature for lexical substitution (Szarvas et al., 2013), for multiword identification (Riedl and Biemann,
2015), decompounding (Riedl and Biemann, 2016) and for resolving bridging mentions in co-reference
(Feuerbach et al., 2015).

The key to a scalable implementation is rooted in the pruning parameter p (typically p=1000), which
has two functions: it reduces noise in the representations by only keeping the most salient contexts, and
it limits the size of the representation, which is a list of key-value-pairs of fixed length (as opposed to a
vector of fixed length). In other words: While there is a maximum size of the representation, as given by p,
it is not the case that the information is compressed in a vector of fixed dimensionality, since ’dimensions’,
if one wants to call them such, are different for each represented item.

Of course, it would be possible to represent item-contexts or the distributional thesaurus in sparse
matrices of very high dimensionality, but this view would not take the inherent sparseness into account
and might obscure possible optimizations.

Using the JoBimText DSM as a core, we extend this model in several ways. First, we perform word
sense induction (WSI) on the ego-networks of lexical items in the DT (Biemann, 2006), utilising the
property of many graph clustering algorithms that do not require the number of clusters as input (like e.g.
k-Means). Further, we add taxonomic links (hypernyms) from Hearst-pattern-like extractions (Hearst,
1992). WSI allows us to disambiguate the model, which results in what we call a Proto-conceptualization
(PCZ) (Faralli et al., 2016), see Table 1. The PCZ consists of entries that correspond to word senses, a
list of similar senses, a list of hypernyms and a list of contexts that are salient for the sense. Note that
it is straightforward to add these and other typed, weighted relationships in a graph-based framework,
cf. (Hovy, 2010). Furthermore, it is straightforward to link this kind of structure to existing structured
resources, such as lexical-semantic networks and ontologies, see (Pavel and Euzenat, 2013; Faralli et al.,
2016).

While it is possible to represent the similarity graph of terms or concepts of a graph-based DSM
with real-valued matrices, it is not straightforward to convert it into a metric space since the overlap
similarity measure is not a distance measure. For example3, we find the most similar word to ”anaconda”
to be ”python” in the snake sense with a similarity score of 36 and ”snake” with a similarity score of 31.
However, ”python” snake’s list of most similar terms starts with ”snake, serpent, rattlesnake, cobra...”,
with ”anaconda” appearing at rank 26.

3 Comparison of Graph-based and Vector-based DSMs

Above, I already hinted at fundamental differences between vector-based (VDSMs) and graph-based
(GDSMs) distributional semantic models. In this section, these differences and their consequences are
described in more detail. Most differences are rooted in the fact that VDSMs encode lexical items in
a metric space, where a point in the n-dimensional space corresponds to the coordinates given by the
n-dimensional vector. This is not the case for GDSMs for lack of fixed dimensionality. In all of the
aspects discussed below, there exist solutions for both representations, but in many cases, one of the
representations is more suitable than the other.

Word Similarity In word relatedness or similarity evaluations, where the global similarity ranking
of word pairs should be predicted by the DSM, VDSMs excel since the graph-based model does not
relate lexical items that are dissimilar at all, therefore not being able to discern a difference in degree of

3using the Google Books Syntactic Dependencies model on www.jobimtext.org/jobimviz-web-demo/
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relatedness e.g. between rooster:voyage and asylum:fruit (from RG65; (Rubenstein and Goodenough,
1965)). On the other hand, the ability of the GDSM only return a set of minimally similar items has been
experimentally shown to be advantageous when using DSM similarity for lexical expansion (cf. (Miller et
al., 2012)).

Similarity Computation and Semantic Neighbourhood Similarity computation in the metric space
of the VDSM is computationally expensive and needs engineering solutions like K-d-trees (Bentley, 1990)
or approximation (Sugawara et al., 2016) to make it feasible to return the top-n-similar list of items, which
is a frequently used function in statistical semantics. In GDSMs, on the other hand, similarity is directly
read off the representation. Pre-computation of all similarities in VDSMs is possible, but does not scale
well, cf. (Panchenko et al., 2016).

Word Sense Representations Another consequence of the metric space is that neighbourhoods of
lexical items are populated with similar lexical items across all frequency bands. This leads to the
following situation when trying to induce word senses: Suppose we hypothesise for a lexical item like
”bank” that it has more than one sense and we want to cluster the neighbourhood to get two sense
representations. As for most ambiguous words, the sense distribution is biased: in our hypothetical
collection, the monetary sense of bank is much better represented than the river bank sense. In this
situation, the vector for ”bank” is surrounded by other money-bank-terms (such as names of banks). The
larger the underlying corpus, the higher is the amount of these terms, most of them rare (see e.g. (Pelevina
et al., 2016)). We either do not find river-bank terms in the neighbourhood or we have to extend the
neighbourhood until we pull in a lot of unrelated words into our subspace we use for clustering. This
might be a reason why in word sense induction, graph-based algorithms are very popular while there
are only few approaches that determine the number of sense embeddings per item automatically (as e.g.
(Neelakantan et al., 2014)).

Word analogy and other arithmetics Word analogy tasks are a classic use-case for word embeddings,
and there are further works, which learn vector operations that represent semantic relations. While many
of these approaches in fact learn prototypical heads of the respective relation (Levy et al., 2015), word
analogy and relational arithmetics are much less straightforward in GDSMs.

Compositionality This is another task where the VDSM representation is more suited than GDSMs.
While in general, a scalable computation in GDSMs allows to compute representation and similarities for
frequent multi-word units (Riedl and Biemann, 2015), the computation of compositional vectors from
single vectors in VDSMs is more attractive since it generalises to unseen combinations, even phrases and
sentences (Bentivogli et al., 2016).

Interpretability and Robustness of Representation The lack of interpretability of vectors and their
dimensions is one of the strongest points of critique on dense vectors: while sometimes, post-hoc
explanations for some of the dimensions are found, it holds in general that most or nearly all latent
dimensions have no direct interpretation, and running the same model on a somewhat different collection
would yield entirely different dimensions and embeddings. This is where sparse models shine, as their
representations are readable. For example, it is possible to query the GDSM described above why anaconda
and python are similar (because they coil up, are snakes, swallow, digest, gorge, tighten, and co-occur
in conjunctions with other snakes, easily readable off the shared context representation) – and the same
’reasons’ for similarity will be found in other corpora as well, assuming they contain a sufficient amount
of snakes.

Learnability and Cognitive Plausibility A cognitively plausible model should be able to learn con-
tinuously and iteratively from an input stream of language. This point is not well-addressed by both
representations. While it is agreed upon that human brains operate on distributed neural representations,
this is where the commonalities between humans and static, per-task neural architectures already end. One
major divergence lies in the epochal training, which humans do not need, especially when extending their
vocabulary. Dense vector representations are either produced by a single operation that requires the entire
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corpus and vocabulary to be known beforehand (e.g. LSA) or by sampling methods that are obtained by
several iterations over the input data, which also require a fixed vocabulary. Count-based sparse methods
do not suffer from the fixed vocabulary restriction; however, it is also implausible that the sparse full
co-occurrence counts are stored, and most of the current implementations are technically implemented in
batch mode, not providing the possibility to update the model through processing further material.

For restrictions of space, this list of differences ends here. There are different criteria and use-cases
for DSMs, and there are solutions or at least circumventions for most of the critical points I have risen.
However, what should become clear is, that there is a substantial difference and some representations are
in fact more adequate than others, depending on the scenario or task.

4 Conclusions and Outlook

Where do we go from here? If this position paper has convinced you as a reader to re-visit the assumption
that DSMs must be represented in vector spaces, then I have already reached my goal. Now that we
hopefully agree that there is value in both vector-based and graph-based representations, the next natural
question is how to combine them to get the best of both worlds. Ideally, depending on the tsk, problem,
and engineering constraints, it would be desirable to switch between both representations, or to inform
one another at construction time.

A starting point to a combination might be to break down methods that use DSMs into their parts and to
gauge which representation is more suitable. For example, take word sense induction and disambiguation:
As mentioned above, it might be advantageous to cluster graphs instead of vectors because there are
straightforward methods that do not require the number of clusters to be set beforehand (which is a ’big
no-no’ in WSI) and because vector space neighbourhoods of words with biased sense distributions might
be overpopulated by the dominant sense. However, for disambiguation, it might be an advantage to use
dense representations since they are less sparse and thus allow a higher recall in sense assignment in
context. Or, for another example, imagine that we would like our systems not only to recognise word
analogies, but also to explain why the system perceives an analogy. While we can use dense vector spaces
to generate/recognise the analogy, we can search for commonalities and differences in the sparse context
representation to yield a plausible and readable explanation.

Finally, what will be really needed in the future in order to support adaptive, interactive, iterative and
contextualised applications also on the level of language processing are semantic models with a robust
representation and are enhanced and improved in the moment new text is processed by the application.
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Abstract

Notwithstanding the success of the notion of construction, the computational tradition still lacks
a way to represent the semantic content of these linguistic entities. Here we present a simple
corpus-based model implementing the idea that the meaning of a syntactic construction is in-
timately related to the semantics of its typical verbs. It is a two-step process, that starts by
identifying the typical verbs occurring with a given syntactic construction and building their dis-
tributional vectors. We then calculated the weighted centroid of these vectors in order to derive
the distributional signature of a construction. In order to assess the goodness of our approach,
we replicated the priming effect described by Johnson and Golberg (2013) as a function of the
semantic distance between a construction and its prototypical verbs. Additional support for our
view comes from a regression analysis showing that our distributional information can be used
to model behavioral data collected with a crowdsourced elicitation experiment.

1 Introduction

In its traditional use, that can be traced back at least to the medieval Modistae school of grammarians
(Goldberg and Casenhiser, 2006), the linguistic notion of Construction (Cxn) can be characterized as the
association between a form and a (semantic or pragmatic) function. As a theoretical tool, linguists used
to resort to this notion in order to refer to quirky phenomena considered to be marginally relevant for
the description of the core properties of language, for instance idiomatic expressions. The prototypical
instantiation of this view is the generative approach (Chomsky, 2000).

The 1980s witnessed the emerging of a new linguistic paradigm that puts the notion of Cxn at the
heart of the study of language, which subsequently led to the evolution of a wide range of Constructionist
approaches (Hoffmann and Trousdale, 2013). Works belonging to this literature see Cxns as linguistic
patterns whose form or function cannot be predicted from their components or from other Cxns. Their
realization spans in size and complexity from fixed idiomatic sequences of words (e.g., a home from
home), to unusual semi-productive patterns (e.g. the Covariational-Conditional Cxn “The Xer the Yer”:
The more I talk, the more I turn into a vegetable), to common productive argument structures (e.g. the
Ditransitive Cxn “Subj V Obj1 Obj2”: She gave him a kiss).

One major breaking point between the Constructionist approaches and former formal linguistic tradi-
tion pertains to the pivotal role played by the main verb in the interpretation of the sentence. Traditionally,
indeed, sentences composed by nonsensical words, such as the example of Vogon poetry in sentence (1),
are expected to be completely meaningless, due to the idea that meaning comes from lexical items alone.

(1) As plurdled gabbleblotchits on a lurgid bee.

Another consequence of the idea that meaning comes solely from lexical items is re assumption that the
structural and semantic properties of a sentence are determined by the syntactic and semantic properties
projected from the main verb. According to this view, the syntactic configurations in the sentences in (2)
are projections of the main verb to slice:

This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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(2) a. He sliced the bread.
b. Pat sliced the carrots into the salad.
c. Pat sliced Chris a piece of pie.
d. Pat sliced the box open. (examples from Goldberg (2006))

This view has been criticized in the Constructionist tradition, following theoretical considerations as
well as psycholinguistics arguments (Goldberg, 1995; Goldberg, 2006). From the theoretical side, for
instance, it has been pointed out that, if argument structure is projected solely by the meaning of the
verb, than it is necessary to stipulate a different meaning for each occurrence of a given verb in various
argument structures. As for the sentences in (2), this view would lead to postulate special senses of this
verb roughly meaning (2a) to cut something with a sharp instrument; (2b) to cut something with a sharp
instrument so as to move it; (2c) to cut something for someone else with a sharp instrument; (2d) to cut
something with a sharp instrument so as to change its state. In a Constructionist perspective, the verb “to
slice” is always used with the intuitive meaning of to cut with a sharp instrument, the additional meaning
coming from the construction in which it occurs, whose semantics can be paraphrased as (2a) something
acting on something else; (2b) something causing something else to move; (2c) someone intending to
cause someone to receive something; (2d) someone causing something to change state (Goldberg, 1995).

Psycholinguistic evidence, on the other side, mostly originates from research on language comprehen-
sion and language acquisition. As for the former, studies like Bencini and Goldberg (2000), Kaschak
and Glenberg (2000), Kako (2006), Goldwater and Markman (2009) and Johnson and Goldberg (2013)
support the idea that the construction of a sentence (rather than the verb only) plays a role in its in-
terpretation. In a sorting experiment, Bencini and Goldberg (2000) showed that, when asked to sort
sentences on the basis of their overall meaning, subjects were as likely to rely on the verb as on the con-
struction. Kaschak and Glenberg (2000) and Goldwater and Markman (2009) tapped into the semantic
content of different syntactic frames by using novel denominal verbs in a comprehension task. Likewise,
Kako (2006) investigated the meaning of six syntactic frames by collecting linguistic judgments over
phrases whose content words were replaced by nonsense words (a.k.a. “Jabberwocky”sentences like The
grack mecked the zarg). While all these works exploited off-line tasks or explicit judgments, Johnson
and Goldberg (2013) demonstrated that the constructional meaning is accessed quickly by asking their
participants to perform a speeded lexical decision task on a target verb, after being exposed to Jabber-
wocky prime sentences. From an acquisition perspective, studies supporting the so-called ‘Syntactic
Bootstrapping” hypothesis show that speakers use their knowledge about the meaning of syntactic pat-
tern in order to infer the semantics of a novel verb (Landau and Gleitman, 1985; Gleitman and Gillette,
1995; Gillette et al., 1999), thus endorsing the idea that argument structures have an abstract semantics
that dynamically interacts with the semantics of the main verb.

The fact that Cxns have independent semantic content raises the question of how their meaning is
acquired. Goldberg (2006) has argued that the learning of the semantic content of argument Cxn heavily
relies on the meaning of high frequency verbs used with them. For instance, the most frequent verb
occurring in an intransitive motion Cxn in a corpus of children’s early speech is to go, which roughly
corresponds to the meaning of this Cxn. The same goes for the ditransitive and the caused-motion Cxns
and their most frequent verbs, i.e. to give and to put, respectively (Goldberg, 1999). The skewed distri-
bution of verbs and Cxns, with a small number of “general purpose” verbs accounting for most of Cxn
tokens, is therefore argued to play a key role in the acquisition of construction meaning. Among the
others, Kidd et al. (2010) showed that 4- to 6-years old children were better able to recall finite sentential
complement Cxn instances when these contained high frequency verbs, as opposed to when they con-
tained low frequency verbs. Experimenting with artificial languages, Casenhiser and Goldberg (2005)
not only showed that 5- to 7-year-old children are able to associate an abstract meaning to a phrasal
form, but also that this process is facilitated when a verb occurs in a Cxn with a disproportionately high
frequency. Barak et al. (2013) provide further support by exploiting a probabilistic computational model
to investigate the acquisition of the English sentential complement Cxns. The obtained results suggest
that the learning of an argument Cxn is influenced by a series of distributional properties of the input,
among which verb frequency, co-occurrence frequency of a verb with the Cxn, and the frequency of each
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semantic verb class with the Cxn.
In this paper, we bring support to such hypothesis with a simple corpus-based method apt to infer the

semantic content of a syntactic Cxn. Our proposal transposes into distributional terms the idea that the
meaning of a Cxn is related to that of the verbs that most frequently appear in it. While traditionally the
meaning of a Cxn has always been described in intuitive terms (see Table 1), our representation allows
for the measurement of the semantic similiarity between a Cxn and other Cxns and/or lexical elements.

In the next section we will present a distributional semantic model to represent the semantic content
of syntactic Cxn. We validate this model on two test beds. In the first experiment, described in sec-
tion 3, we test the ability of our approach to model the Cxn-verb priming effect reported by Johnson and
Goldberg (2013). Section 4 reports a second study in which we investigated whether our distributional
model is able to account for behavioral data concerning the intimate semantic link between a Cxn and its
prototypical verbs. Final remarks and possible improvements are reported in section 5.

2 The distributional signature of a syntactic construction

Distributional Semantic Models (Sahlgren, 2006; Lenci, 2008; Turney and Pantel, 2010, DSMs) are
unsupervised corpus-based models of semantic representation realizing the so-called “Distributional Hy-
pothesis” (Harris, 1954; Miller and Charles, 1991), that takes the similarity of the contexts in which
two linguistic expressions occur as a proxy to their similarity in meaning. DSMs are typically built by
searching all the occurrences of a target expression in a corpus, identifying its contexts of occurrence and
representing the target-by-contexts frequencies as a matrix. Contexts can be words, syntactic relations,
lexicalized patterns, documents and so on, while the vectors composing the final matrix are assumed to
be the distributional representation of the semantics of the target elements. Distributional vectors can be
used to evaluate the semantic distance between lexical elements by means of geometric methods (Bulli-
naria and Levy, 2007; Bullinaria and Levy, 2012; Lapesa and Evert, 2014) or manipulated to represent
more complex linguistic entities (Baroni, 2013).

Our model implements the idea that the meaning of a syntactic Cxn is intimately related to the seman-
tics of its typical verbs. It is a two step process, that starts by identifying the typical verbs that occur in
our target syntactic Cxn and building their distributional−→v vectors. We calculated the weighted centroid
of these verb vectors in order to build a −−→CXN vector encoding the distributional properties of Cxn. The
notion of centroid is the generalization of the notion of mean to multidimensional spaces. In a DSM it
can be intuitively pictured as the prototype of a set of lexical elements, that is as a representation of the
characteristics that are common to the verbs associated with our target Cxn. A positive by-product of a
centroid-based representation is that it allows to soften the influence of the idiosyncratic or non-relevant
properties of the verbs, as well as the influence of the noise produced by verb polysemy. Given the role
of the skewed verb-Cxn frequency distribution, we weighted the salience of each verb in the calculation
of the centroid on the basis of its co-occurrence frequency with the target Cxn. Coherently, then, we
calculated our weighted centroids as:

−−→
CXN =

1
|V |

∑
v∈V

frel(v, CXN) · −→v (1)

where CXN is our target construction, V the set of its top-associated verbs v and frel(v, CXN) the relative
frequency of occurrence of a verb in a construction. For instance, given a Ditransitive target Cxn, whose
associated verbs are to give (frel = 0.75) and to hand (frel = 0.25), its distributional signature would
be estimated as:

−−−−−−−−−−→
DITRANSITIVE =

0.75 · −−→give+ 0.25 · −−−→hand

2
(2)

Our proposal shares a “family resemblance” with the “collostructional analysis” techniques that have
been extensively exploited to study the relationship between a verb and the constructions encoding argu-
ment structures, tense/aspect, mood and modality, both from a theoretical as well as from a psycholin-
guistic perspective (Stefanowitsch, 2013). The aim of our proposal is, however, radically different: while
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the collostructional paradigm has been developed to model the strength of association between a Cxn and
the grammatical structures it occurs in, our primary intent is to derive the meaning of argument Cxns from
the distributional semantic representations of the verbs co-occurring with them.

2.1 Implementing the model

We tested the psycholinguistic plausibility of our model by simulating the behavioral data reported by
Johnson and Goldberg (2013), further reviewed in the first part of section 3. The requirement for our
model is to account for the association between a Cxn and a target verb as a function of their geometric
distance in the distributional semantic space. Given the exploratory nature of the work presented in these
pages, we did not tune all the possible settings and hyperparameters of our DSM. Rather, whenever
possible we relied on what is the common practice in the literature or on our experience.

To implement our proposal we need two kinds of information: the distributional signature of a set of
verbs and their relative frequency with a set of syntactic Cxns. We extracted the latter from VALEX (Ko-
rhonen et al., 2006), an automatically built subcategorization lexicon that encodes information for 6,397
English verbs. From this list we selected, for each of the four Cxns used by Johnson and Goldberg (2013)
reported in Table 1, the set of 75 top associated verbs.

To model the distributional behavior of our verbs we built a syntax-based DSM (Grefenstette, 1994;
Lin, 1998; Padó and Lapata, 2007; Baroni and Lenci, 2010), that is a space in which the linguistic ex-
pressions are characterized on the basis of the parsed text dependency paths in which they occur. For in-
stance, given the sentence The cat ate my homework, in a syntax-based model the distributional entry for
the verb

−→
eat is represented with the dependency:filler patterns subj:cat, obj:homework.

We extracted the raw co-occurrence statistics from the extended arcs of the American English section of
the Google Books Syntactic Ngrams corpus (Goldberg and Orwant, 2013), a 146.2B tokens corpus built
from 1.4M books. Verbs failing to reach the minimal threshold of 500 occurrences were discarded.

The raw co-occurrence matrix has been weighted with Positive Local Mutual Information (Evert, 2008,
PLMI) to calculate the strength of association between a verb and a syntactic pattern. PLMI is defined as
the log ratio between the joint probability of a target v and a context c and their marginal probabilities,
multiplied by their joint frequency, setting to zero all the negative results:

PLMI(c, v) = max

(
0, f(c, v) · log2

p(c, v)
p(c) · p(v)

)
(3)

PLMI corresponds to the Positive Pointwise Mutual Information score (Church and Hanks, 1991) be-
tween the verb and the context, weighted by their joint frequency, and differs from PPMI in avoiding the
bias towards low-frequency events. To ignore unwanted variance and to reduce the processing cost we
adopted the context selection strategy proposed by Polajnar and Clark (2014) and limited the distribu-
tional characterization of each verb to its 240 top-associated contexts. In the final step we fed equation
1 with all the previously collected statistics on each group of 75 top-associated verbs, thus obtaining the
distributional signature of our target Cxns that will be tested in the remaining of the paper.

3 Jabberwocky sentences prime associated verbs

The starting point of the reflections by Johnson and Goldberg (2013, henceforth JG) is the psycholinguis-
tic literature showing that speakers associate semantic knowledge to argument structures, independently
of the linguistic properties of the verb governing it. Moving further, these authors tested the possibility
that this knowledge is used automatically, that is quickly and instinctively, in sentence comprehension.

To this end, they submitted 40 speakers with a lexical decision task in which they were required to
read a Jabberwocky sentence (i.e,. a sentence whose content words have been replace by meaningless
strings) and then to judge as quickly as possible if a target verb was a real lexical element or a non-word.
Table 1 reports the four syntactic constructions investigated by JG, along with an informal representation
of their meaning and the Jabberwocky sentence.

Half of the target words seen by each participant were non-words, while the other half were the target
verbs reported in Table 2, that were further classified into three classes: “High Frequency associate”

11



Construction Structure Meaning Jabberwocky Prime

Ditransitive Subj V Obj1 Obj2 X CAUSES Y TO RECEIVE Z he daxed the norp

Resultative Subj V Obj Pred X CAUSES Y TO BECOME Z she jorped it miggy

Caused-motion Subj V Obj Oblpath X CAUSES Y TO MOVE Z he lorked it on the molp

Removal Subj V Obj Oblsource X CAUSES Y TO MOVE FROM Z she vakoed it from her

Table 1: JG’s experimental constructions. Adapted from Johnson and Goldberg (2013, Tables 1,3).

Construction
High Frequency

associate
Low Frequency

associate
Semantically

Related nonassociate

Ditransitive Gave Handed Transferred

Resultative Made Turned Transformed

Caused-motion Put Placed Decorated

Removal construction Took Removed Ousted

Table 2: JG’s experimental target verbs. Adapted from Johnson and Goldberg (2013, Table 4).

(HF), i.e. a verb that most frequently occurs in a given Cxn; “Low Frequency associates” (LF), i.e. a
verb that frequently occurs in a given Cxn, albeit significantly less than the relevant HF; “Semantically
Related nonassociate” (SR), i.e. a verb whose meaning is related to the semantics of the Cxn, but that
does not occurs in it. Frequencies were estimated from the 400M words COCA corpus (Davies, 2009).
Each target verb could be presented either in a congruent context, i.e. after a Jabberwocky sentence
instantiating the Cxn to which it is associated with (e.g., Gave preceded by a Ditransitive prime), or in an
incongruent condition (e.g., Gave preceded by a Removal prime). In order to simplify the experimental
design, the congruency-incongruency conditions were obtained by opposing either the Ditransitive and
the Removal Cxns, or the Caused-motion and the Resultative Cxns.

The extent of priming was computed for each target verb as the difference between the reaction times
in the congruent condition and the reaction time after the incongruent sentence. JG report a main effect
of congruency, according to which each verb was recognized faster after a related Cxn. HF and LF
associates were recognized faster in a congruent condition, both by-subject and by-item. SR verbs, on
the other side, were recognized faster only in a by-subject analysis, a fact that can be attributed to the
well-known weakness of semantic priming with respect to associative priming. Finally, the priming
effect was recorded for all classes of verbs but those associated with the Resultative Cxn, a null effect
that the authors ascribed to the plausibility of a metaphorical Caused-motion interpretation of these verbs
(??She made/turned/transformed into the room).

All in all, by recording a priming effect of the Jabberwocky sentences instantiating the Cxns in Ta-
ble 1 over their associated verbs, JG showed not only that argument structures have an inherent abstract
meaning independently of their main verb semantics, but also that this knowledge is accessed quickly
and implicitly in the process of sentence comprehension.

3.1 Modeling the priming effect

The effect reported by JG not only is a viable testing ground for our model. Replicating the same results
with distributional semantic methods allows us to draw conclusions concerning the psycholinguistic
plausibility of distributional representations, at the same time supporting the hypothesis that construction
meaning is the result of a usage-based process of abstraction from the meaning of co-occurring verbs.

In our DSM, verb and Cxn vectors lie in the same distributional space, that is, they are described by
means of the same contexts. This allows us to model the “semantic congruency” of a verb and a Cxn as a
measure of the geometric distance between the −−→CXN and the

−−→
verb vectors. Following a common practice

in the literature, we opted to calculate vectors similarity by measuring the cosine of the angle between
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Figure 1: Mean cosine similarity scores as a function of frequency class (High Frequency, Low Fre-
quency and Semantically Related) and experimental condition (congruent vs. incongruent). Vertical
capped lines atop bars indicate standard error of the mean.

them (Bullinaria and Levy, 2007; Lapesa and Evert, 2014).
JG see their priming effect as a proof of the fact that the constructions presented in Jabberwocky

sentences have a meaning strongly associated with the one of the congruent target verbs. Accordingly,
we expect higher similarity scores between the −−→CXN and the congruent

−−→
verb vectors, as opposed to the

similarity scores between the −−→CXN and the incongruent
−−→
verb vectors. A major difference between JG’s

analysis and ours, however, concerns the number of oppositions in the incongruent condition. While in
JG each Cxn the congruency-incongruency conditions were obtained by opposing either the Ditransitive
and the Removal Cxns, or the Caused-motion and the Resultative Cxns, we opted for a one-vs-all design,
in which an incongruent condition is simply a Cxn-verb pairing inconsistent with the pattern in Table 2.
We adopted this solution mainly in order to collect more data points for our analysis.

Coherently with JG, moreover, we expect an effect of the frequency class. That is, we expect higher
similarity scores between the −−→CXN and its High Frequency

−−→
verb vectors, as opposed to the similarity

scores between the −−→CXN and the Semantically Related
−−→
verb vectors, with the case of the Low Frequency−−→

verb vectors falling somehow in the middle.

3.2 Results and discussion
A two-ways ANOVA was conducted to compare the effect of the condition (congruent vs. incongruent)
and of the frequency class (HF, LF and SN) on the similarity between each verb and the centroid of its
class. Following JG, we expected weaker effects due to the relatively low number of items.

We found a significant main effect both for condition F (1, 42) = 15.91, p < .001, and frequency
class F (2, 42) = 4.86, p < .05. Overall, our verbs are more similar to their congruent construction
(m = 0.32, sd = 0.32) than to their incongruent construction (m = 0.13, sd = 0.09). Post-hoc analysis
using Tukey Honest Significant Differences indicated a significant overall difference only between HF
(m = 0.27, sd = 0.27) and SN (m = 0.11, sd = 0.11) cosines (p < .05), but no significant difference
involving the LF verbs (m = 0.16, sd = 0.12).

A significant interaction between the two conditions has been found as well F (2, 42) = 7.79, p < .01
(see Figure 1). Post-hoc analysis using Tukey Honest Significant Differences indicated a significant
difference between congruent (m = 0.6, sd = 0.41) and incongruent (m = 0.155, sd = 0.07) condition
for HF verbs (p < .001), between HF verbs and SN (m = 0.09, sd = 0.06) verbs in their congruent
conditions (p < .001), and between HF and LF (m = 0.28, sd = 0.19) verbs in their congruent
conditions (p < .05), but no other meaningful contrast reaches statistical significance.

A one-way ANOVA was conducted to compare the effect of the Cxn type on the cosine similarity
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between each verb and the centroid of its Cxn. We were interested in assessing whether there was a
significant difference in how similar each Cxn vector is to its 75 most associated verbs, i.e. in how dense
is the semantic space around each Cxn vector. The answer was affirmative: we found a significant main
effect of the Cxn on the cosine similarity for all the four conditions F (3, 277) = 0.0012, p < .01. Post-
hoc analysis using the Bonferroni correction for multiple comparisons indicated a significant (p < .01)
difference in the densities of the removal (m = 0.19, sd = 0.12) and of the resultative constructions
(m = 0.11, sd = 0.13), a significant (p < .05) difference in the difference in the densities of the
removal and of the ditransitive constructions (m = 0.13, sd = 0.12), and a marginally significant
(p < .1) difference in the densities of the removal and of the caused motion constructions (m = 0.14,
sd = 0.12). No significant difference in densities has been found for all the other comparisons. This is
coherent with the null effect on Resultative Cxn that puzzled JG. But while these ascribed it to a design
flaw, i.e. to the fact that Resultative verbs could have a metaphorical Caused-motion interpretation, our
results suggests a different interpretation. The fact that in our design we implemented all the possible
pairwise oppositions, indeed, suggests that the null effect on the Resultative Cxn is due to the low density
of this group of vectors. This is in turn related to the fact that the verbs co-ccurring with the Resultative
construction are less semantically homogenous. An in-depth study of the reasons behind the higher
distance between the prototypical Resultative verbs and the Cxn is left for further investigation.

All in all, we found a pattern that mirrors the priming effect reported by JG. In our DSM, the congru-
ency condition, that in JG leads to faster reaction times, is associated with significantly higher similarity
scores. Apart from being a further confirmation of the link between the meaning of a Cxn and that of its
typical verbs, these results confirm the psycholinguistic plausibility of our centroid-based approach.

4 Isn’t frequency enough? Analyzing crowdsourced production data

Works investigating the acquisition of Cxns usually stress the role played by the top-frequent verbs.
Psycholinguistic findings (Casenhiser and Goldberg, 2005; Kidd et al., 2010) as well as computational
simulations (Barak et al., 2013) stress the importance of many frequency-related characteristics, such as
the marginal frequency for the verb and the relative frequencies of the verb and of the verb semantic class.
Up to this point, one may wonder if the semantic resemblance between a Cxn and its most-associated
verbs may be explained simply as a function of frequency, rather than the distributional similarity be-
tween verb and Cxn vectors. We tested this hypothesis by collecting linguistic production data from
native speakers and assessing whether the inclusion of semantic similarity in a frequency-based model
would result in a significant increase in fit.

4.1 Data collection

Behavioral data were collected from English speakers by crowdsourcing our task through the Crowd-
flower marketplace. 40 Crowdflower certified “highest quality” contributors from the U.K., the U.S.A.
or Canada were recruited. Each participant was allowed to complete only a hit (i.e., a “Human Intelligent
Task”). In each hit the workers were required to generate, for each of the Jabberwocky prime tested by
JG (see Table 1), five verbs that could replace the nonsense main verb of the sentence. They received the
following instructions:

“In this task you will see English sentences containing invented words: e.g. He TREBBED the stig.
Imagine that these sentences were created by a machine that replaced real English words with invented ones.
The capitalized word is a verb. Your task is to guess this verb.
TASK: For each test sentence, write 5 English verbs that could replace the capitalized word.”

Workers were also required to complete, for each Jabberwocky sentence, a language comprehension
question of the form “is ghase an English word?”. Participants failing to provide 5 descriptions for all
the Cxns were not allowed to complete the hit, while participants that did not answer correctly to all the
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Model 1 Model 2 ∆ AIC ∆ BIC RSS F

intercept only frequency -7.19 -4.9 216.1 9.53 ∗∗

frequency frequency + similarity -4.34 -2.05 134 6.35 ∗

frequency + similarity frequency * similarity -9.8 -7.51 220.3 12.1 ∗∗∗

Table 3: Results of the production frequency models comparisons. AIC: Akaike Information Criterion;
BIC: Bayesian Information Criterion; RSS: reduction of residual sum of squares; F: F-test statistics and
significance values (∗ = p < .05; ∗∗ = p < .01; ∗∗∗ = p < .001).

Estimate SE t

(intercept) 7.06 5.85 1.21

frequency -0.73 0.99 -0.74

similarity -64.44 21.39 -3.01 ∗∗

frequency:similarity 10.97 3.15 3.48 ∗∗∗

Table 4: Parameters included in the final model and relevant statistics (∗∗ = p < .01; ∗∗∗ = p < .001).

test questions were rejected. On the average, workers needed approximately 6 minutes (m = 364.075”,
sd = 256.23”) to complete a valid hit. The data collection process took approximately 18 hours.

The workers accepted by the system submitted a total of 800 Cxn-verb pairings, that were subsequently
manually filtered and formatted. This processing phase lead to the removal of the verbs submitted by
one scammer and to the identification of 376 unique Cxn-verb pairings.

4.2 Modeling production frequency

We ran a linear regression analysis on the crowdflower-collected data with production frequency as de-
pendent variable and the joint frequency f(verb, CXN) estimated from VALEX and the verb-Cxn cosine
similarity calculated with our model as predictors. We were interested in assessing whether the frequency
of production of a verb-Cxn in our crowdsourced data could be modeled on the basis of its relative fre-
quency alone or whether the semantic similarity between the Cxn and the verb plays a role as well.

In a preprocessing phase we removed from the crowd-sourced data all those data points corresponding
to verb-Cxn pairings that occurred in VALEX less than 100 times. This reduced our dataset to 73 Cxn-
verb pairings. Moreover, the raw frequency extracted from VALEX were log-transformed to approximate
a normal distribution. Collinearity in the data matrix was evaluated by calculating the Variance Inflaction
Factors (V IF = 1.27) and the Condition Number (κ = 20.76). While a V IF < 5 value is undoubtedly
reassuring, the κ value may be cause for concerns, even if it well below the critical threshold of 30 that
is commonly taken as an indication of the risk of high collinearity (Cohen et al., 2003; Baayen, 2008).

We defined the simplest model as the one in which the only predictor is the log-transformed joint
frequency estimated from the corpus. As shown by Table 3, this model looks significantly better that the
intercept-only model. We then enriched this model by adding the cosine similarity between each verb and
the construction centroid, obtaining significant improvement in the goodness-of-fit. Finally, we added
the interaction between corpus frequency and cosine similarity, thus obtaining our best fitting model
(F (3, 69) = 10.45, p < .001, R2 = 0.312, R2

adj = 0.282). The low R2 values were not unexpected
due to the fact that crucial sources of variance has not been controlled or taken into consideration for the
present study, such as the socio-cultural background of the speakers, the different varieties of the English
language they were proficient in, the time spent in completing the micro-task and so forth. In this
model the significant predictors are the semantic similarity and its interaction with the joint frequency,
as reported in the Table 4.

Figure 2 shows the partial effects of the corpus frequency at different levels of semantic similarity
(top row) and those of the semantic similarity at different levels of corpus frequency (bottom row). At
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Figure 2: Effect displays for the interaction of (log transformed) corpus frequency and semantic similar-
ity. A 95% confidence interval is drawn around the estimated effects.

high levels of similarity and frequency the interaction between these two variables is synergistic, i.e.
their joint effect is superior than the sum of their effects in isolation, while becoming antagonistic at low
levels of similarity and/or frequency.

All in all, we interpret these results as proving that the distributional information encoded in the
distributional semantic representation of Cxns we have tested in this paper is able to model the linguistic
behavior of adult native speaker over and above the variance that can be explained by the joint frequency
of the single verbs in a given Cxn. The analysis of its possible theoretical implications are outside the
scope of this paper, but we take this result as an additional confirmation of the goodness of our proposal.

5 Conclusion

We proposed a simple unsupervised corpus-based model that represents the meaning of a syntactic con-
struction as the weighted centroid of the vectors encoding the distributional behavior of its prototypical
verbs. Given the exploratory nature of this work, we did not explore the full parameter space of our
model, an issue that follow-up studies could investigate, e.g. by comparing the alternative DSM imple-
mentations ability to model the priming effect magnitude (Ettinger and Linzen, 2016).

Our model and experimental results show that distributional semantics is able to provide a usage-based
representation of the semantic content of argument constructions, which is consistent with the available
evidence concerning the psycholinguistic reality of construction semantics (Bencini and Goldberg, 2000;
Kaschak and Glenberg, 2000; Kako, 2006; Goldwater and Markman, 2009; Johnson and Goldberg,
2013) and how this knowledge is acquired (Goldberg, 1999; Casenhiser and Goldberg, 2005; Kidd et al.,
2010). At the same time, the increment in descriptive and explanatory power obtained by moving from a
simple frequency-based measurement to a more complex frequency-based approach like ours shows the
importance of developing a more articulate account of the relationship between a syntactic construction
and its prototypical verbs.
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Abstract

Regular polysemy was extensively investigated in lexical semantics, but this phenomenon has
been very little studied in distributional semantics. We propose a model for regular polysemy
detection that is based on sense vectors and allows to work directly with senses in semantic
vector space. Our method is able to detect polysemous words that have the same regular sense
alternation as in a given example (a word with two automatically induced senses that represent
one polysemy pattern, such as ANIMAL / FOOD). The method works equally well for nouns,
verbs and adjectives and achieves an average recall of 0.55 and an average precision of 0.59 for
ten different polysemy patterns.

1 Introduction

Polysemy is widely spread in natural language. Many studies in linguistics show evidence that certain
word classes share polysemy patterns, which means that there are regularities in the way polysemous
words vary in their meaning (Shmelyov, 1966; Lakoff and Johnson, 1980; Apresjan, 1995; Pustejovsky,
1995; Paducheva, 1998). These regularities can be explained by analogical processes like semantic shifts
(lamb can denote either ANIMAL or FOOD), metonymy (church can denote either ORGANIZATION
or LOCATION) and metaphor (e.g. dirty in contexts such as dirty shoes and dirty words). Because
of its significance, regular polysemy has been extensively investigated in lexical semantics (Apresjan,
1971, 1995; Nunberg and Zaenen, 1992; Nunberg, 1995; Uryson, 2003; Zaliznyak, 2006). However, this
phenomenon has been little studied in computational semantics and even less in distributional seman-
tics. Several studies that aimed to model regular polysemy in semantic vector space were focused on
word vectors. Del Tredici and Bel (2015) proposed a method, based on word embeddings and regular
semantic alternations, that allows detecting polysemous nouns among all nouns and representing them in
a way that accounts for asymmetry in sense predominance. Di Pietro (2013) detected sense alternations
by performing word sense disambiguation using vectors of words that denoted sense domains, such as
ANIMAL or FOOD. Boleda and colleagues (2012b) compare word vectors for polysemous nouns with
average vectors of monosemous words in predefined sense domains. Their study relied on the CoreLex
meta sense inventory that was built using WordNet. Thus, the aforementioned methods all use semantic
word vectors to detect sense alternations.

For the task of regular polysemy detection, we use sense vectors and not word vectors. We believe that
this is a more natural approach to the problem, because it allows us to study regular sense alternations as
they are: we deal directly with senses and their location in semantic vector space. Our approach has two
major advantages: first, we believe that it is less affected by sense skewness than methods based on word
vectors, because vectors of different senses are distinct, even if senses have very different frequencies,
while in case of word vectors, a much more frequent sense will determine the word vector, as noted
by Del Tredici and Bel (2015). Second, theoretically our approach is not limited by regular alternation
between just two senses, as in previous studies (Boleda et al., 2012a, 2012b; Vieu et al., 2015), but can
be naturally extended to three or more senses.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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The sense vectors we use in our study are built automatically on a big corpus. The technique of
automatic word sense induction (WSI) allows us to represent senses as clusters of semantically similar
instances. Usually, the technique does not use any external resources such as dictionaries, thesauri or
sense-tagged data. WSI was successfully applied to the lexicographical task of novel sense detection, i.e.
identifying words which have taken on new senses over time (Lau et al., 2012). Besides, WSI provides
data for the study of diachronic variation in word senses (Bamman and Crane, 2011). Although Boleda
and colleagues (2012b, p. 153) noted that automatic word sense induction could lead to more flexible
and realistic models of regular polysemy, to the best of our knowledge, the WSI technique was not used
in any previous research of this type.

In this study, we propose a model for regular polysemy detection that is based on sense vectors and
allows us to work directly with senses in semantic vector space. We performed an experiment on Russian
nouns, verbs and adjectives and subsequently discuss the limitations of our method.

2 Method

The core of our method can be described as follows: in semantic vector space we take two senses of a
word (sa and sb; with predefined regular alternations such as ANIMAL / FOOD) and search for similar
pairs (si, sj) of another word, where sa is close to si and sb is close to sj . This approach is very similar
to how regular polysemy is defined in (Apresjan, 1995, p. 189). To be more precise, given word w and
its senses sa and sb, and another candidate pair of senses (si, sj) for word wk, we define their pattern
similarity measure PatternSim as:

PatternSim((w, sa, sb), (wk, si, sj)) = min(sim((w, sa), (wk, si)), sim((w, sb), (wk, sj))) (1)

where sim is a cosine similarity measure between sense vectors, and (w, s) is a sense vector. Using
this similarity measure between pairs of senses, we take the top Nlim of all possible candidate pairs
having similarity above threshold δ, where Nlim and δ are hyperparameters of the method.

Sense vectors are produced by the adaptive Skip-gram model AdaGram, which is a non-parametric
extension of Skip-gram word2vec model to word senses. It automatically learns the required number of
representations for all words at a desired semantic resolution (Bartunov et al., 2015). It is able to learn
a dense vector embedding for each sense of a word, where the number of senses is determined using a
constructive definition of the Dirichlet process via the stick-breaking representation. AdaGram has an
efficient online learning algorithm and was evaluated on word sense induction tasks of SemEval-2007
and 2010 (Bartunov et al., 2015, pp. 8-9). Hyperparameter α controls granularity of produced senses,
and other hyperparameters, such as vector dimension and window size, have the same role as in word2vec
algorithm. Sense vectors produced by AdaGram can be represented as words that are nearest neighbors
(e.g. Monty, Perl, Molurus for different senses of the word python) or by context words with the highest
PMI.

In (Lopukhina and Lopukhin, 2016) a qualitative and quantitative evaluation of several WSI methods,
including AdaGram, was performed on 15 Russian nouns. Other methods included LDA, context clus-
tering, clustering of word2vec neighbors. For the quantitative evaluation, the authors measured similarity
of suggested clustering to the existing dictionary senses with Adjusted Rand Index (ARI) and V-measure
scores. For the qualitative evaluation, they assessed the interpretability of the derived senses, the number
of duplicate senses, the number of mixed senses and derivation of rare senses. Trained on a 2 billion
word Russian corpus with α = 0.15, AdaGram discovered the largest number of senses, and was a close
second in both ARI and V-measure. Compared to context clustering, which was first in the quantitative
evaluation, AdaGram is much more efficient and was able to discover even rare senses.

3 Experiment

We aimed to study how well the proposed technique detects polysemous words that have the same regular
sense alternation as in a given example. An example is a word with two automatically induced senses
that represent one polysemy pattern (such as ANIMAL / FOOD). We manually selected ten polysemy
patterns: four for nouns, three for verbs and three for adjectives, nine of them from the most famous
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and reliable description of regular polysemy for Russian, Lexical Semantics by Jury Apresjan (1995),
in which he thoroughly classifies and illustrates more than 80 productive and non-productive regular
polysemy types for the aforementioned parts of speech. We also took one polysemy pattern for verbs
from an ongoing work led by Valentina Apresjan (2016). Besides, we checked that word senses, which
were part of the polysemy pattern in question, were presented in the corpus and were thus detected by
the AdaGram model (e.g. zheleznyj ‘iron’: iron gates is sense #3 in AdaGram / iron will is sense #4 in
AdaGram).

Polysemy patterns for nouns:
ANIMAL / FOOD (e.g. gus’ ‘goose’);
AMOUNT / CONTAINER (e.g. butylka ‘bottle’);
ACTION / RESULT (e.g. ushyb ‘injury’ / ‘bruise’);
MUSIC / DANCE (e.g. val’s ‘waltz ’).

Polysemy patterns for verbs:
AUTONOMOUS RELOCATION / NONAUTONOMOUS RELOCATION (e.g. jehat’ ‘to move (about
a car)’ / ‘to drive (a car)’);
PRODUCE SOUND / SPEAK (e.g. blejat’ ‘to bleat’);
CEASE TO EXIST / RUN OUT OF INNER RESOURCE (e.g. tajat’ ‘to melt’ / ‘to melt away’).

Polysemy patterns for adjectives:
MADE OF SOME MATERIAL / MAKING A SIMILAR IMPRESSION (e.g. derevjannyj ‘wooden’);
SURFACE PROPERTY / HUMAN PROPERTY (e.g. nezhnyi ‘delicate’);
HAVING SOME TASTE / MAKING A SIMILAR IMPRESSION (e.g. kislyj ‘sour’).

Then, for each pattern we selected 4-7 examples that were used for evaluation. All the examples were
extracted from Lexical Semantics (1995) or from (Apresjan, 2016). We were guided by the following
principle: Words should be semantically similar, namely synonyms, antonyms or co-hyponyms. In the
study by Jury Apresjan (1995), polysemy patterns such as ACTION / RESULT embrace a large number
of semantically very different words from ushyb ‘injury’ / ‘bruise’ to risunok ‘drawing’ and ispravleniye
‘correction’. For the purpose of the present study, we chose words from one semantic domain (e.g. ushyb
‘injury’ / ‘bruise’; ukus ‘bite’ / ‘wound’; perelom ‘breaking of a bone’ / ‘fracture’; porez ‘cut’, words
denoting different injuries and their result on/in the human body).

The experimental setup was as follows: Sense vectors were built using AdaGram with α = 0.10,
window size 5, vector dimension 300, maximum number of senses 10 and minimal token frequency
100. Corpus used for training contained about 2 billion tokens and was a combination of ruWac (a
representative snapshot of the Russian Web), lib.ru (a Russian online library) and Russian Wikipedia.
Corpus was lemmatized with Mystem 3, lowercased and cleared of punctuation.

4 Evaluation

In order to study how well our method is able to detect word sense alternations, we evaluated recall and
precision in two separate experiments. In both cases, two words were selected from each polysemous
pattern group as “anchor” words, while other words of the group were treated as “target” words. Each of
the anchor words (with its two senses) was given as input to the method, thus defining a sense alternation
by an example.

In the recall evaluation we checked how many of the target words were actually produced, given the
anchor word. Recall was evaluated with two different limits on the number of detected words Nlim, 5
and 50. Note that we did not expect a high recall with Nlim = 5, as we believe that there can be other
words besides target words that have the same alternation. Another reason is that there were sometimes
more than 5 target words in the group, therefore it was impossible to achieve perfect recall with just
Nlim = 5. Different parts of speech did not show significant variation of recall. The average recall for
ten groups was 0.22 for Nlim = 5 and 0.55 for Nlim = 50.

In order to evaluate precision, we took anchor words and for each of them extracted the top five candi-
dates (Nlim = 5) that were produced by our method. These candidates were checked by a lexicographer:
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if a candidate shared the same polysemy pattern with the anchor word, it was accepted. The average
precision for ten groups was 0.59, with three groups having perfect precision. In most cases, words
that were rejected were semantically similar to the anchor word, but they did not exhibit the polysemy
pattern in focus. For example, wrong candidates for the word ukus ‘bite’ / ‘wound’ were snake, insect
and mosquito, which can be subjects of the action; wrong candidates for the word stakan ‘glass’ were
tea and coffee, which denote the content; and wrong candidates for the word kislyj ‘sour’ were garlicky
and fried, which mean HAVING SOME TASTE, but do not exhibit the meaning MAKING SIMILAR
IMPRESSION.

5 Discussion

The method for detecting words of a predefined polysemy pattern showed promising results in both
precision and recall. The method allows obtaining words with the same sense alternations, given one
example directly from the corpus, and works equally well for nouns, verbs and adjectives. However,
the method we propose has limitations that can be explained by the nature of the method and the way
distributional models are built.

One of these limitations is that some senses of words that are a part of a polysemy pattern can hardly
be distinguished by means of the distributional model and are not clearly represented in a vector space
model. For example, many verbs, as described in Lexical Semantics (1995), have a ‘causation’ compo-
nent in one of their meanings, e. g. lit’ ‘to pour’ in contexts such as He poured the last of the water down
the sink and The water pours from the tap. These two senses can be distinguished syntactically or by
taking word order into account, but this cannot be achieved by our proposed model. Some verbs differ
in the properties of the objects they attach, e. g. varit’ ‘to cook’ in contexts like to cook potatoes (potato
changes its properties) and to cook soup (soup appears); this difference cannot be captured by our model.
The problem of sense discrimination by context is most evident for verbs.

Another limitation is caused by the difference between the notion of “regular polysemy” in theoretical
studies and in its computational implementation. Lexicologists formulate sense alternation principles in
a very general sense and thus, semantically different words may have the same polysemy pattern, e.g.
adjectives gornyj ‘alpine’ in contexts such as alpine range and alpine ski, glaznoj ‘ocular’ / ‘eye’ in
contexts such as ocular fundus and eye drops, and krysinyj ‘rat’ in contexts such as rat tail and rat poison
share the same pattern RELATING TO SMTH / DESIGNED FOR SMTH. Semantically different words
cannot be detected with distributional models because they appear in different contexts, which means
that the method we propose is limited by synonyms, antonyms and co-hyponyms.

We believe that our model for regular polysemy can also be applied to an unsupervised discovery of
patterns. The PatternSim measure defined above (eq. 1) can be used to cluster all pairs of a particular
part of speech, hence each cluster will represent a distinct regular polysemy pattern. Another possible
extension is to change PatternSim in a way that will account for the direction of a vector between two
senses. Given two senses sa and sb of word w and another pair of senses si and sj of word wk, we
believe that these two pairs of senses will be more similar if vectors sa − si and sb − sj have similar
directions.

6 Conclusion

In this study, we describe an approach to the automatic detection of regular sense alternations from the
corpus given an example. Our approach is based on sense vectors and gives the opportunity to deal with
senses directly. It allows finding semantically similar words that share the same polysemy patterns. It
works equally well for nouns, verbs and adjectives and achieves an average recall of 0.55 and average
precision of 0.59 for ten different polysemy patterns.

Our model uses sense vectors that are produced with the AdaGram method and, being a distributional
model, does not fully cover all types of regular alternations that are described in the theoretical literature;
it is only applicable to sense alternations in semantically similar words.

The method we describe can be useful for theoretical studies of regular polysemy and for lexicogra-
phers. It is available online at http://adagram.ll-cl.org/about.
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Abstract

Recognizing various semantic relations between terms is beneficial for many NLP tasks. While
path-based and distributional information sources are considered complementary for this task,
the superior results the latter showed recently suggested that the former’s contribution might have
become obsolete. We follow the recent success of an integrated neural method for hypernymy
detection (Shwartz et al., 2016) and extend it to recognize multiple relations. The empirical
results show that this method is effective in the multiclass setting as well. We further show that
the path-based information source always contributes to the classification, and analyze the cases
in which it mostly complements the distributional information.

1 Introduction

Automated methods to recognize the lexical semantic relation the holds between terms are valuable for
NLP applications. Two main information sources are used to recognize such relations: path-based and
distributional. Path-based methods consider the joint occurrences of the two terms in a given pair in the
corpus, where the dependency paths that connect the terms are typically used as features (A. Hearst, 1992;
Snow et al., 2004; Nakashole et al., 2012; Riedel et al., 2013). Distributional methods are based on the
disjoint occurrences of each term and have recently become popular using word embeddings (Mikolov
et al., 2013; Pennington et al., 2014), which provide a distributional representation for each term. These
embedding-based methods were reported to perform well on several common datasets (Baroni et al.,
2012; Roller et al., 2014), consistently outperforming other methods (Santus et al., 2016; Necsulescu et
al., 2015).

While these two sources have been considered complementary, recent results suggested that path-
based methods have no marginal contribution over the distributional ones. Recently, however, Shwartz et
al. (2016) presented HypeNET, an integrated path-based and distributional method for hypernymy detec-
tion. They showed that a good path representation can provide substantial complementary information
to the distributional signal in hypernymy detection, notably improving results on a new dataset.

In this paper we present LexNET, an extension of HypeNET that recognizes multiple semantic relations.
We show that this integrated method is indeed effective also in the multiclass setting. In the evaluations
reported in this paper, LexNET performed better than each individual method on several common datasets.
Further, it was the best performing system in the semantic relation classification task of the CogALex
2016 shared task (Shwartz and Dagan, 2016).

We further assess the contribution of path-based information to semantic relation classification. Even
though the distributional source is dominant across most datasets, path-based information always con-
tributed to it. In particular, path-based information seems to better capture the relationship between
terms, rather than their individual properties, and can do so even for rare words or senses. Our code and
data are available at https://github.com/vered1986/LexNET.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/

24



X/NOUN/nsubj > be/VERB/ROOT < Y/NOUN/attr

X/NOUN/dobj > define/VERB/ROOT Y/NOUN/pobj< as/ADP/prep <

~op

. . .
average pooling

~vpaths(x,y)
Embeddings:

lemma
POS
dependency label
direction

...

(x, y)

classification
(softmax)

~vxy

~vpaths(x,y)

~vwx

~vwy

~vwx

...

(x, y)

classification

~vwy

~vxy

~vwx

...

(x, y)

classification
(softmax)

~vwy

~vxy

~vpaths(x,y)

(1) PB (2) DS (3) LexNET

~vwx

...

(x, y)

classification
(softmax)

~vwy

~h

~vwy

~vxy

~vwx

...
(x, y)

classification
(softmax)

~h

~vwy

~vxy

~vpaths(x,y)

(4) DSh (5) LexNETh

Figure 1: Illustrations of classification models. Top row: path-based component. A path is a sequence of edges, and each edge
consists of four components: lemma, POS, dependency label and direction. Edge vectors are fed in sequence into the LSTM,
resulting in an embedding vector ~op for each path. ~vpaths(x,y) is the average of (x, y)’s path embeddings.

2 Background: HypeNET

Recently, Shwartz et al. (2016) introduced HypeNET, a hypernymy detection method based on the inte-
gration of the best-performing distributional method with a novel neural path representation, improving
upon state-of-the-art methods. In HypeNET, a term-pair (x, y) is represented as a feature vector, con-
sisting of both distributional and path-based features: ~vxy = [~vwx , ~vpaths(x,y), ~vwy ], where ~vwx and ~vwy

are x and y’s word embeddings, providing their distributional representation, and ~vpaths(x,y) is a vector
representing the dependency paths connecting x and y in the corpus. A binary classifier is trained on
these vectors, yielding c = softmax(W · ~vxy), predicting hypernymy if c[1] > 0.5.

Each dependency path is embedded using an LSTM (Hochreiter and Schmidhuber, 1997), as illustrated
in the top row of Figure 1. This results in a path vector space in which semantically-similar paths (e.g. X
is defined as Y and X is described as Y) have similar vectors. The vectors of all the paths that connect x
and y are averaged to create ~vpaths(x,y).
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dataset dataset relations #instances
K&H+N hypernym, meroynym, co-hyponym, random 57,509
BLESS hypernym, meroynym, co-hyponym, , event, attribute, random 26,546

ROOT09 hypernym, co-hyponym, random 12,762
EVALution hypernym, meronym, attribute, synonym, antonym, holonym, substance meronym 7,378

Table 1: The relation types and number of instances in each dataset, named by their WordNet equivalent where relevant.

Shwartz et al. (2016) showed that this new path representation outperforms prior path-based methods
for hypernymy detection, and that the integrated model yields a substantial improvement over each indi-
vidual model. While HypeNET is designed for detecting hypernymy relations, it seems straightforward
to extend it to classify term-pairs simultaneously to multiple semantic relations, as we describe next.

3 Classification Methods

We experiment with several classification models, as illustrated in Figure 1:

Path-based HypeNET’s path-based model (PB) is a binary classifier trained on the path vectors alone:
~vpaths(x,y). We adapt the model to classify multiple relations by changing the network softmax output c to
a distribution over k target relations, classifying a pair to the highest scoring relation: r = argmaxi c[i].

Distributional We train an SVM classifier on the concatenation of x and y’s word embeddings
[~vwx , ~vwy ] (Baroni et al., 2012) (DS).1 Levy et al. (2015) claimed that such a linear classifier is inca-
pable of capturing interactions between x and y’s features, and that instead it learns separate properties
of x or y, e.g. that y is a prototypical hypernym. To examine the effect of non-linear expressive power on
the model, we experiment with a neural network with a single hidden layer trained on [~vwx , ~vwy ] (DSh).2

Integrated We similarly adapt the HypeNET integrated model to classify multiple semantic relations
(LexNET). Based on the same motivation of DSh, we also experiment with a version of the network with
a hidden layer (LexNETh), re-defining c = softmax(W2 ·~h + b2), where ~h = tanh(W1 · ~vxy + b1) is the
hidden layer. The technical details of our network are identical to Shwartz et al. (2016).

4 Datasets

We use four common semantic relation datasets that were created using semantic resources: K&H+N (Nec-
sulescu et al., 2015) (an extension to Kozareva and Hovy (2010)), BLESS (Baroni and Lenci, 2011),
EVALution (Santus et al., 2015), and ROOT09 (Santus et al., 2016).

Table 1 displays the relation types and number of instances in each dataset. Most dataset relations are
parallel to WordNet relations, such as hypernymy (cat, animal) and meronymy (hand, body), with an ad-
ditional random relation for negative instances. BLESS contains the event and attribute relations, connect-
ing a concept with a typical activity/property (e.g. (alligator, swim) and (alligator, aquatic)). EVALution
contains a richer schema of semantic relations, with some redundancy: it contains both meronymy and
holonymy (e.g. for bicycle and wheel), and the fine-grained substance-holonymy relation. We removed
two relations with too few instances: Entails and MemberOf.

To prevent the lexical memorization effect (Levy et al., 2015), Santus et al. (2016) added negative
switched hyponym-hypernym pairs (e.g. (apple, animal), (cat, fruit)) to ROOT09, which were reported to
reduce this effect.

5 Results

Like Shwartz et al. (2016), we tuned the methods’ hyper-parameters on the validation set of each dataset,
and used Wikipedia as the corpus. Table 2 displays the performance of the different methods on all
datasets, in terms of recall, precision and F1.3

Our first empirical finding is that Shwartz et al.’s (2016) algorithm is effective in the multiclass setting
as well (LexNET). The only dataset on which performance is mediocre is EVALution, which seems to be

1We experimented also with difference ~vwx − ~vwy and other classifiers, but concatenation yielded the best performance.
2This was previously done by Bowman et al. (2014), with promising results, but on a small artificial vocabulary.
3Additional evaluation of the method is available in our CogALex 2016 shared task submission (Shwartz and Dagan, 2016).
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K&H+N BLESS ROOT09 EVALution
method P R F1 P R F1 P R F1 P R F1

PB 0.713 0.604 0.55 0.759 0.756 0.755 0.788 0.789 0.788 0.53 0.537 0.503
DS 0.909 0.906 0.904 0.811 0.812 0.811 0.636 0.675 0.646 0.531 0.544 0.525
DSh 0.983 0.984 0.983 0.891 0.889 0.889 0.712 0.721 0.716 0.57 0.573 0.571
LexNET 0.985 0.986 0.985 0.894 0.893 0.893 0.813 0.814 0.813 0.601 0.607 0.6
LexNETh 0.984 0.985 0.984 0.895 0.892 0.893 0.812 0.816 0.814 0.589 0.587 0.583

Table 2: Performance scores (precision, recall and F1) of each individual approach and the integrated models. To compute the
metrics we used scikit-learn (Pedregosa et al., 2011) with the “averaged” setup, which computes the metrics for each relation,
and reports their average, weighted by support (the number of true instances for each relation). Note that it can result in an F1

score that is not the harmonic mean of precision and recall.

dataset #pairs x y gold label DSh prediction possible explanation

K&H+N 102
firefly car false hypo (x, car) frequent label is hypo

racehorse horse hypo false out of the embeddings vocabulary
larvacean salp sibl false rare terms larvacean and salp

BLESS 275
tanker ship hyper event (x, ship) frequent label is event

squirrel lie random event (x, lie) frequent label is event
herring salt event random non-prototypical relation

ROOT09 562
toaster vehicle RANDOM HYPER (x, vehicle) frequent label is HYPER

rice grain HYPER RANDOM (x, grain) frequent label is RANDOM
lung organ HYPER COORD polysemous term organ

EVALution 235
pick metal MadeOf IsA rare sense of pick

abstract concrete Antonym MadeOf polysemous term concrete
line thread Synonym MadeOf (x, thread) frequent label is MadeOf

Table 3: The number of term-pairs that were correctly classified by the integrated model while being incorrectly classified by
DSh, in each test set, with corresponding examples of such term-pairs.

inherently harder for all methods, due to its large number of relations and small size. The performance
differences between LexNET and DS are statistically significant on all datasets with p-value of 0.01 (paired
t-test). The performance differences between LexNET and DSh are statistically significant on BLESS and
ROOT09 with p-value of 0.01, and on EVALution with p-value of 0.05.

DSh consistently improves upon DS. The hidden layer seems to enable interactions between x and y’s
features, which is especially noticed in ROOT09, where the hypernymy F1 score in particular rose from
0.25 to 0.45. Nevertheless, we did not observe a similar behavior in LexNETh, which worked similarly
or slightly worse than LexNET. It is possible that the contributions of the hidden layer and the path-based
source over the distributional signal are redundant.4 It may also be that the larger number of parameters in
LexNETh prevents convergence to the optimal values given the modest amount of training data, stressing
the need for large-scale datasets that will benefit training neural methods.

6 Analysis

Table 2 demonstrates that the distributional source is dominant across most datasets, with DS performing
better than PB. Although by design DS does not consider the relation between x and y, but rather learns
properties of x or y, it performs well on BLESS and K&H+N. DSh further manages to capture relations at
the distributional level, leaving the path-based source little room for improvement on these two datasets.

On ROOT09, on the other hand, DS achieved the lowest performance. Our analysis reveals that this
is due to the switched hypernym pairs, which drastically hurt the ability to memorize individual single
words, hence reducing performance. The F1 scores of DS on this dataset were 0.91 for co-hyponyms but
only 0.25 for hypernyms, while PB scored 0.87 and 0.66 respectively. Moreover, LexNET gains 10 points
over DSh, suggesting the better capacity of path-based methods to capture relations between terms.

6.1 Analysis of Information Sources

To analyze the contribution of the path-based information source, we examined the term-pairs that were
correctly classified by the best performing integrated model (LexNET/LexNETh) while being incorrectly
classified by DSh. Table 3 displays the number of such pairs in each dataset, with corresponding term-
pair examples. The common errors are detailed below:

4We also tried adding a hidden layer only over the distributional features of LexNET, but it did not improve performance.
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Lexical Memorization DSh often classifies (x, y) term-pairs according to the most frequent relation of
one of the terms (usually y) in the train set. The error is mostly prominent in ROOT09 (405/562 pairs,
72%), as a result of the switched hypernym pairs. However, it is not infrequent in other datasets (47%
in BLESS, 43% in EVALution and 34% in K&H+N). As opposed to distributional information, path-based
information pertains to both terms in the pair. With such information available, the integrated model
succeeds to overcome the most frequent label bias for single words, classifying these pairs correctly.

Non-prototypical Relations DSh might fail to recognize non-prototypical relations between terms, i.e.
when y is a less-prototypical relatum of x, as in mero:(villa, guest), event:(cherry, pick), and attri:(piano,
electric). While being overlooked by the distributional methods, these relations are often expressed in
joint occurrences in the corpus, allowing the path-based component to capture them.

Rare Terms The integrated method often managed to classify term-pairs in which at least one of the
terms is rare (e.g. hyper:(mastodon, proboscidean)), where the distributional method failed. It is a
well known shortcoming of path-based methods that they require informative co-occurrences of x and
y, which are not always available. With that said, thanks to the averaged path representation, PB can
capture the relation between terms even if they only co-occur once within an informative path, while the
distributional representation of rare terms is of lower quality. We note that the path-based information
of (x, y) is encoded in the vector ~vpaths(x,y), which is the averaged vector representation of all paths that
connected x and y in the corpus. Unlike other path-based methods in the literature, this representation
is indifferent to the total number of paths, and as a result, even a single informative path can lead to
successful classification.

Rare Senses Similarly, the path-based component succeeded to capture relations for rare senses of
words where DSh failed, e.g. mero:(piano, key), event:(table, draw). Distributional representations suffer
from insufficient representation of rare senses, while PB may capture the relation with a single meaningful
occurrence of the rare sense with its related term. At the same time, it is less likely for a polysemous
term to co-occur, in its non-related senses, with the candidate relatum. For instance, paths connecting
piano to key are likely to correspond to the keyboard sense of key, indicating the relation that does hold
for this pair with respect to this rare sense.

Finally, we note that LexNET, as well as the individual methods, perform poorly on synonyms and
antonyms. The synonymy F1 score in EVALution was 0.35 in LexNET and in DSh and only 0.09 in
PB, reassessing prior findings (Mirkin et al., 2006) that the path-based approach is weak in recognizing
synonyms, which do not tend to co-occur. DSh performed poorly also on antonyms (F1 = 0.54), which
were often mistaken for synonyms, since both tend to occur in the same contexts. It seems worthwhile to
try improving the model using insights from prior work on these specific relations (Santus et al., 2014;
Mohammad et al., 2013) or additional information sources, like multilingual data (Pavlick et al., 2015).

7 Conclusion

We presented an adaptation to HypeNET (Shwartz et al., 2016) that classifies term-pairs to one of multi-
ple semantic relations. Evaluation on common datasets shows that HypeNET is extensible to the multi-
class setting and performs better than each individual method.

Although the distributional information source is dominant across most datasets, it consistently bene-
fits from path-based information, particularly when finer modeling of inter-term relationship is needed.

Finally, we note that all common datasets were created synthetically using semantic resources, leading
to inconsistent behavior of the different methods, depending on the particular distribution of examples in
each dataset. This stresses the need to develop “naturally” distributed datasets that would be drawn from
corpora, while reflecting realistic distributions encountered by semantic applications.
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Silvia Necsulescu, Sara Mendes, David Jurgens, Núria Bel, and Roberto Navigli. 2015. Reading between the
lines: Overcoming data sparsity for accurate classification of lexical relationships. In Proceedings of *SEM
2015, pages 182–192.

Ellie Pavlick, Johan Bos, Malvina Nissim, Charley Beller, Benjamin Van Durme, and Chris Callison-Burch. 2015.
Adding semantics to data-driven paraphrasing. In Proceedings of ACL 2015 (Volume 1: Long Papers), pages
1512–1522.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word representa-
tion. In Proceedings of EMNLP 2014, pages 1532–1543.

Sebastian Riedel, Limin Yao, Andrew McCallum, and M. Benjamin Marlin. 2013. Relation extraction with matrix
factorization and universal schemas. In Proceedings of NAACL-HLT 2013, pages 74–84.

Stephen Roller, Katrin Erk, and Gemma Boleda. 2014. Inclusive yet selective: Supervised distributional hyper-
nymy detection. In Proceedings of COLING 2014, pages 1025–1036.

Enrico Santus, Qin Lu, Alessandro Lenci, and Churen Huang. 2014. Unsupervised antonym-synonym discrimi-
nation in vector space.

Enrico Santus, Frances Yung, Alessandro Lenci, and Chu-Ren Huang. 2015. Proceedings of the 4th workshop on
linked data in linguistics: Resources and applications. pages 64–69.

Enrico Santus, Alessandro Lenci, Tin-Shing Chiu, Qin Lu, and Chu-Ren Huang. 2016. Nine features in a random
forest to learn taxonomical semantic relations. In LREC.

Vered Shwartz and Ido Dagan. 2016. Cogalex-v shared task: Lexnet - integrated path-based and distributional
method for the identification of semantic relations. In Proceedings of the 5th Workshop on Cognitive Aspects of
the Lexicon (CogALex-V).

Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016. Improving hypernymy detection with an integrated path-
based and distributional method. In Proceedings of ACL 2016 (Volume 1: Long Papers), pages 2389–2398.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2004. Learning syntactic patterns for automatic hypernym
discovery. In NIPS.

29



Proceedings of the Workshop on Cognitive Aspects of the Lexicon,
pages 30–39, Osaka, Japan, December 11-17 2016.

Semantic Relation Classification: Task Formalisation and Refinement

Vivian S. Silva1, Manuela Hürliman2, Brian Davis2,
Siegfried Handschuh1 and André Freitas1

1Department of Computer Science and Mathematics, University of Passau, Passau, Germany
2 Insight Centre for Data Analytics, National University of Ireland, Galway, Ireland

{vivian.santossilva, siegfried.handschuh, andre.freitas}@uni-passau.de

{manuela.huerlimann, brian.davis}@insight-centre.org

Abstract

The identification of semantic relations between terms within texts is a fundamental task in Nat-
ural Language Processing which can support applications requiring a lightweight semantic inter-
pretation model. Currently, semantic relation classification concentrates on relations which are
evaluated over open-domain data. This work provides a critique on the set of abstract relations
used for semantic relation classification with regard to their ability to express relationships be-
tween terms which are found in a domain-specific corpora. Based on this analysis, this work
proposes an alternative semantic relation model based on reusing and extending the set of ab-
stract relations present in the DOLCE ontology. The resulting set of relations is well grounded,
allows to capture a wide range of relations and could thus be used as a foundation for automatic
classification of semantic relations.

1 Introduction

The identification of abstract semantic relations between terms in text has emerged as a Natural Language
Processing technique which is useful in a variety of tasks that depend on the extraction of key semantic
relations from text. In essence, the task of semantic relation classification (SRC) consists in identifying
common abstract relations such as causal, hypernymic and meronymic as relationships between terms in
the text.

This definition puts semantic relation classification in the context of ontology extraction from text,
where the emphasis is on the process of extracting more general and abstract relations, in contrast to
more domain-specific relations.

However, despite the obvious intuition around the utility of the task, the justification on the scoping
of the semantic relations set and their expressive coverage has not been fully grounded with regard to
an ontological framework. In contrast to this situation, the set of relations expressed within foundational
ontologies are more formally axiomatised and built under conceptually well grounded methodologies.

Complementarily, the semantic relation classification task provides a corpus-based analysis on the in-
cidence of these semantic relations on discourse, providing the fine-grained semantic context in which
these abstractions are instantiated. However, when projecting these semantic relations back to the
corpora-level, it can be observed that the majority of the words within a text does not have a direct
semantic relationship connecting them.

Recent semantic interpretation tasks targeting word prediction over broader discourse contexts (Pa-
perno et al., 2016) may require the detection of broader and complex semantic relations. Addressing
these interpretation tasks may strongly benefit from relating terms expressed into the sentence using
compositions of semantic relations.

This work aims at improving the description and the formalisation of the semantic relation classifi-
cation task by grounding it with a foundational ontology and by introducing the concept of composite
semantic relations, in which the relations between terms within a text can be expressed using the com-
position of one or more relations.

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/
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This work focuses on the following contributions:

• Examination of the completeness of the set of semantic relations used for the evaluation of semantic
relation classification (SRC) tasks in the context of a domain-specific corpus.

• Contrasting of the relations used in SRC tasks with regard to relations present in the foundational
ontology DOLCE, in the context of a domain-specific corpora.

• Annotation of terms within sentences from a financial corpus with semantic relations, including
composite semantic relations, and creation of a domain-specific test collection for relation classifi-
cation.

The paper is organised as follows: Section 2 lists related work regarding the semantic relation annota-
tion task. Section 3 presents an analysis of current sets of semantic relations, and describes the relations
provided by the foundational ontology DOLCE. Section 4 describes the corpus-based analysis, followed
by the conclusions and future work in Section 5.

2 The Semantic Relation Classification Task

Semantic Relation Classification is usually framed under the context of a supervised classification prob-
lem. Best practices for creating relation inventories have been subject to much discussion (O’Seaghdha,
2007). Inventories can either be organised under a hierarchical (Rosario and Hearst, 2001), (Nastase and
Szpakowicz, 2003), (Masolo et al., 2003) or under a flattened approach (Moldovan et al., 2004).

The number of relations in a given inventory varies widely, ranging from binary classification (Lapata,
2002) to 35 classes (Moldovan et al., 2004) to open (inference-based) approaches (Sabou et al., 2008).

There are several test collections for Semantic Relation Classification. Task 8 in SemEval 2010 (Hen-
drickx et al., 2009) focuses on multi-way semantic relation classification between pairs of nouns. Nine
relations with broad coverage were selected1, with a focus on practical interest. Patterns were used to
collect relation candidates from the web, which were then classified by two annotators. In the context of
Distributional Semantics, BLESS (Baroni and Lenci, 2011) is a test collection which is designed to eval-
uate Distributional Semantic Models (DSMs) on the task of Semantic Relation Classification. BLESS
provides a benchmark for evaluating the lexical semantic capabilities of DSMs: it provides concept,
relation, relatum triples for a large range of common concepts. There are five lexical semantic rela-
tions (co-hyponym, hypernym, meronym, attribute and event) and three random relations (random-noun,
random-verb, random-adjective), which provide additional value for discriminativeness assessments.
Some work has been done on SRC for specific domains, with a focus on the medical domain. Stephens
et al. (2001) distinguish 17 relations holding between genes. Rosario and Hearst (2001) classify relations
between noun compounds in the medical domain, while Rosario et al. (2002) undertake a similar endeav-
our using the MeSH hierarchy. Rosario and Hearst (2004) explore SRC for biomedical texts, focusing
on relations between treatments and diseases such as “prevents”, “cures” or less specific effects.

3 A Critique of Existing Sets of Semantic Relations

3.1 SemEval-2010 Task 8

Although the Semeval-2010 Task 8 semantic relations set was developed with the aim of covering “real
word” situations (Hendrickx et al., 2009), some of the constraints imposed to overcome the structural and
lexical factors that can affect the truth of a relation, described next, can bring considerable limitations. In
those cases, it is necessary to identify other classes of semantic relations between terms covering other
lexical categories.

1Cause-Effect (CE), Instrument-Agency (IA), Product-Producer (PP), Content-Container (CC), Entity-Origin (EO), Entity-
Destination (ED), Component-Whole (CW), Member-Collection (MC), Message-Topic (MT)
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3.1.1 Focus on Nominals
The first point to be noted refers to the entities involved in the classification: the task focuses on semantic
relations between pairs of nominals, that is, the relation arguments are only noun-phrases where the head
is a common-noun.

3.1.2 Locality Constraint
The data used in the Semeval classification task also relies on a locality constraint, which means that
only nominal expressions considered “local” to one another were chosen, excluding relations whose
arguments occur in separate sentential clauses. Although in a few cases a long distance between the
arguments can indeed indicate the absence of a proper relation, in our financial data we note many
sentences where the concepts are not local to one another, and nevertheless it is possible to assign a
relation to them. For example, consider the pair “debt” and “creditworthiness” in Example 1, or the
concepts “credit union” and “caisse populaire” in Example 2.

(1) “Your debt problem won’t go away, but your creditworthiness will. ”

(2) “In Quebec 70 per cent of the population belongs to a caisse populaire, while in Saskatchewan
close to 60 per cent belongs to a credit union”.

In both cases, the concepts are located in different clauses within the sentences, but it is possible to
identify a relation between them which could be indirect reference and sibling concept, respectively. In
this case, no Semeval relation fits, and custom relations are necessary to better express the relationship.

3.1.3 Focus on Concrete Relations
Although not stated as a constraint, most Semeval relations seems to refer specifically to physical ob-
jects. For example, the relation Content-Container (CC) is described as “An object is physically stored
in a delineated area of space”. In Instrument-Agency (IA), Product-Producer (PP), Entity-Origin (EO)
and Entity-Destination (ED), all the mentioned examples involve physical objects as instruments, a ma-
terial product being produced or a concrete objects physically moving to/from a place. This focus on
concrete relations poses challenges to the classification of semantic relations within certain domains,
since concepts representing abstract entities or quantitative/qualitative roles, such as “credit”, “debit”,
“investment”, “demand”, “profit”, “interest”, “capital” or “price”, to mention a few, are very frequent.

3.1.4 Conditionals
Finally, the exclusion of conditional clauses also imposes unnecessary generality constraints. The Se-
meval task considers, for example, that in Example 3 the presence of the "bleach solution" inside the
"bottle" is a situation being described as holding in a counterfactual hypothetical world, so it is not
possible to assign a relation that can be seen as true regardless of hypothesis confirmation.

(3) “Suppose you were given a bottle that contains 400 grams of a 3.0% bleach solution.”

Conditional clauses are frequent in many domains, for example within the financial domain. This
domain involves many variables and frequently a scenario is being described based on them and the
possible values they can assume. Therefore, condition indeed seems to be a suitable relation between
certain concepts, as in Example 4, where the relation arguments are “term” and “bought”.

(4) “TIPS can be held to maturity and have a minimum term of ownership of 45 days if bought
through TreasuryDirect”

In the light of these limitations, adopting a richer conceptual meta-model, such as the one provided
by the DOLCE ontology (Masolo et al., 2003), allow us to cover a broader range of categories instead
of focusing only on physical objects, and consequently bring us a wider variety of relations to link those
categories. Since all relations have a well defined domain and range, we can also ensure that they are
valid for a given pair of concepts. Our analysis of the dataset has also shown that a complementary
set of custom relations is of substantial importance to express the correct relationship between domain-
specific concepts or even between concepts that, although being very common, interact among them in
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very domain-specific situations. In Section 3.2 below, we therefore describe the DOLCE ontology and
its relations.

3.2 DOLCE relations

DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering) is an upper level ontology
developed as a module of the WonderWeb library of foundational ontologies (Masolo et al., 2003). It has
a clear cognitive bias, that is, it aims at capturing the ontological categories underlying natural language
and human common sense.

The most fundamental distinction in DOLCE is that between endurants and perdurants. DOLCE
relations are organised in a hierarchical structure.There are two toplevel relations: immediate-relation,
defined as a relation that holds without mediating individuals, and mediated-relation, a relation that (im-
plicitly) composes other relations. Two additional branches, namely immediate-relation-i and mediated-
relation-i, cover all the inverse relations (only 4 relations do not have an inverse, and 14 relations have
themselves as inverse, i.e., they are symmetric).

The immediate-relation branch has 23 sub-relations at its second level, many of them being also subdi-
vided into further levels. Among them are worth highlighting: part, the most general meronym relation;
participant, the immediate relation holding between endurants and perdurants and which, through the
sub-relations of its sub-relation functional-participant, can define the role played by the endurant in the
perdurant, for instance: patient, target, theme, performed-by, instrument, resource, etc. ; and references,
a relation holding between non-physical objects and any other kind of entity (including non-physical
objects themselves), which can be seen as a type of association where the non-physical object carries
some kind of information that involves the referenced entity.

The mediated-relation branch has 25 sub-relations at its second level, with again some of them subdi-
vided into further sub-relations. Among them are worth noting: co-participates-with, a relation between
two endurants participating in the same perdurant; generic-location, a relation defining the physical or
abstract location of an entity; and temporal-relation, a relation between perdurants which, through its
sub-relations, describe how two occurrences are related with respect to their temporal locations: pre-
cedes, temporally-coincides, temporally-includes, temporally-overlaps, etc.

The relations having more generic classes as domain and range, that is, classes at higher levels in the
hierarchy, proved to be more useful for the semantic annotation task (cp. Section 4 below). As most of
the relations have an inverse, it is almost always possible to assign a suitable property regardless of the
arguments order, without the need to indicate the direction of the relation.

DOLCE relations show to be a suitable set for SRC tasks because, as an upper level ontology, DOLCE
aims at covering entities in any domain of knowledge. Since any entity can be mapped to a DOLCE high
level category, it is always possible to find a relation (or a subset of candidate relations) between two
entities, which will be the relation(s) between their upper level DOLCE categories. When the relation
is defined specifically for a class, it determines in a meaningful way what kind of relationship this class
can have with another one. On the other hand, when the relation is inherited from an ancestor class,
the kind of relationship can become too general. To address this issue and avoid the use of semantically
vague relations, a small set of custom relations was proposed to complement the DOLCE relations set
(cp. Section 4.2.1). Notwithstanding, this complementary set was designed to be as domain-independent
as possible, in order to fit not only the context where it was defined, but to be also useful in any SRC
task.

4 Corpus-based Analysis

The analysis methodology presented in this section consists in the annotation of semantic relations with
the help of a corpus. The corpus focuses on financial discourse and was crawled considering two types
of discourse: glossaries and encyclopedic articles.

In the sections below, we describe the construction of our financial corpus including word pair selec-
tion and annotation (Section 4.1) and the extensive manual classification analysis (Section 4.2).
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4.1 Corpus Construction

We created a financial corpus by crawling two distinct types of sources: a) definitions, comprising three
sources: the Bloomberg financial Glossary2 (8324 definitions; 212,421 tokens), SGM Glossary3 (1007
definitions; 43,638 tokens) and Investopedia Definitions4 (15476 definitions; 2,462,801 tokens), b) ar-
ticles from two sources: Investopedia5 (5890 articles; 5,129,793 tokens) and Wikipedia (articles on
Investment6 and Finance7; 8306 articles; 6,714,129 tokens). Overall, our corpus contains 14,580,803
tokens.

After the creation of the financial corpus, we selected word pairs for relation classification according
to the following methodology: Splitting the corpus into sentences, the first word of the pair was randomly
selected amongst the tokens in the sentence, with the only constraint that it was listed in one of the three
financial glossaries. Then, the second word was manually selected. The sentence context was preserved
for manual classification analysis (see Section 4.2 below).

4.2 Manual Classification Analysis

Our semantic relation classification comprised 300 pairs of words, each associated with a sentence con-
text (see Section 4.1 above). First, for each pair, a class from the foundational ontology DOLCE (Masolo
et al., 2003) was assigned to both concepts. These classes represent the primary, highest level category
that the concept belongs to. This concept-ontology class alignment was performed with the aid of the
WordNet-DOLCE alignment (Gangemi et al., 2003). For each concept, the correct sense and its corre-
sponding DOLCE class were manually identified and assigned to it. For simplicity, all adjectives and
adverbs were assigned the class quality.

After classifying both concepts, it is possible to search for the most suitable relation between them,
which is a property from DOLCE having the classes assigned to the concepts as domain and range. For
example, if one concept represents an agent, and the other one an action, the possible relations between
them could be performs, meaning that the agent performs the action, or prescribes, signifying that the
agent does not perform the action him/herself, but somehow causes it to happen and to be performed
by other agent(s). Besides the domain and range information, the sentence context where the concepts
appear also helps to identify the correct relation. This also means that the relation assigned represents the
relationship between those concepts in a particular sentence; the same pair of words could have different
meanings and/or show a different kind of relationship in other sentence. When no suitable relation could
be found in DOLCE, a new relation or a composite relation was suggested. When suggesting a new
relation, we tried to make it as general as possible, that is, not too tied to a specific context, so it could be
later reused by other concept pairs. The manual classification was performed by an expert in conceptual
modelling and later independently reviewed by a second expert.

Following this methodology, three scenarios occurred: (1) there was a direct relationship between the
two concepts, so either a DOLCE relation or a custom suggested relation could be directly assigned to
them; (2) there were no direct relations, but the concepts were indirectly related through other concepts,
then a composition of (DOLCE or suggested) relations was drawn, building a path made of intermediate
concept pairs linking the concepts; (3) no relation between the two concepts could be found at all, because
they were too far away from each other in the same clause, or because they were in different clauses in
a sentence, or in different sentences in a paragraph. In the final classification, 72. 67% (218 pairs) of
the pairs were assigned a direct relation, 24.67% (74 pairs) were linked through an indirect relation, and
only 2.66% (8 pairs) were not classified. The classification results are summarised in Table 1.

2http://www.isotranslations.com/resources/Bloomberg\%20Financial\%20Glossary.pdf
3http://www.sapient.com/content/dam/sapient/sapientglobalmarkets/pdf/

thought-leadership/SGM_Glossary_2014_final.pdf
4http://www.investopedia.com/terms/a/
5http://www.investopedia.com/articles/pf/
6https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Investment
7https://en.wikipedia.org/wiki/Wikipedia:WikiProject_Finance
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Table 1: Relation classification results

Relation type DOLCE relations Custom relations Total
# of pairs % # of pairs % # of pairs %

Direct 77 35.32 141 64.68 218 72.67
Compositea 36 48.65 38 51.35 74 24.67
Unclassified - - - - 8 2.66

aThe numbers refer only to the first pair in each composite relation chain

4.2.1 Direct Relations
For most concept pairs it was possible to assign a direct semantic relation. Out of the 218 pairs where
this scenario occurred, 35.32% (77 pairs) were assigned a DOLCE property as a semantic relation, and
for 64.68% (141 pairs) of the pairs no DOLCE property fit, so a suggested relation was assigned to each
of them. The suggested relations are listed in Table 2, and the DOLCE properties are well documented
in the ontology itself8.

Table 2: Descriptions and examples of suggested semantic relations

Relation Description Example
Common ownership Both concepts have the same owner Not only has the territory taken on increasing debt in the 21st cen-

tury but it has less revenue coming in to pay that debt.
Condition The existence or occurrence of one concept is conditioned

by the existence or occurrence of the other concept, or by a
broader condition involving that concept

If that’s you, having a solid credit history can help you get funding
for a start-up or establish a home-equity line of credit to get your
project off the ground.

Co-occurring quali-
fier

Both qualifiers occur at the same time in the same entity These models are based upon historical market data.

Coreference Syntactic reference between concepts, where one of them
(usually a relative pronoun) refers to the other one

[It] is one of two Federal Reserve Bank of Cleveland branch offices
(the other is in Cincinnati).

Correlated variation Both concepts represent measures, and the variation in one of
them affects the variation in the other one

It also decreases the value of the currency - potentially stimulating
exports and decreasing imports - improving the balance of trade.

Destination One concept is the destination of the other one, which can
be an (physical or abstract) object itself, or an event causing
some object to move towards it

Through LIFFE CONNECT, LIFFE took its market to its cus-
tomers wherever they were in the world.

Indirect ownership One concept is a part or a kind of representation of an agent
or organisation, who/which has the ownership of the other
concept

When Birmingham Midshires became part of the Halifax in April
1999 it had savings balances of £5.9 billion and mortgage assets
of £9.2 billion.

Indirect qualifier One concept is a quality of something that has the other con-
cept as a part or as a direct quality

The Crummey letter qualifies the transfer for the annual gift tax
exclusion . . . .

Indirect reference One concept makes some kind of reference to the other one,
having other events and/or objects as intermediates

Characteristics and risk types of human capital differ for different
individuals.

Indirect result One concept indirectly produces the other one, having other
events and/or objects as intermediates

The acquisition created the largest provider of brokerage and in-
vestment services in Greece.

Indirect target One concept indirectly affects the other one through one or
more events, which can also involve other (physical or ab-
stract) objects

The firm employs shareholder activism to push for structural
changes in target companies.

Instantiation One concept is an instance of a class represented by the other
one

The FICO score is the most commonly used of the credit scores.

Membership One concepts is a member of a group or organisation repre-
sented by the other one

In 2004, Mary Mitchell, the president at the time, retired after a 60
year career at the bank, starting as a teller in 1944.

Opposition One concept is an antonym of the other one . . . and beggar thy neighbour policies that serve “national con-
stituencies at the expense of global financial stability”.

Ownership One concept has the ownership of the other one The lessor is the legal owner of the asset.
Qualifier One concept is a quality of the other one It’s got speculators searching for quick gains in hot housing mar-

kets.
Represented in One concept has some kind of (physical or abstract) represen-

tation expressed in/by the other one
All details of that transaction are stored in the one-time code.

Sibling concept Both concepts belong to same category and play similar roles
in a given context

Operating activities include net income, accounts receivable, ac-
counts payable and inventory.

Source One concept is the source of the other one, which can be an
(physical or abstract) object itself, or an event causing some
object to move from it

As of May 2014, AirHelp had raised a $400000 seed round from
business angels.

Specialisation One concept is a more specific subconcept of the other one If a value other than market value is appropriate . . . .
Theme component One concept is something that demands complementary in-

formation to make clear what it is about, and the other one is
a piece of the whole information

The downside to this is that one review doesn’t tell a customer very
much about the product.

Used for Both concepts represent (physical or abstract) objects, and
one is used as an instrument to accomplish the other

Look for receipts for medical costs not covered by insurance or re-
imbursed by any other health plan , property taxes, and job-related
and investment-related expenses.

8http://www.loa.istc.cnr.it/old/DOLCE.html
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Value component One concept represents a measure (something to which a
value can be assigned), and the other one is something that,
along with other parameters, determines its final value

Valuation of life annuities may be performed by calculating the
actuarial present value of the future life contingent payments.

Affects The existence or occurrence of one concept has some kind of
effect on the other concept

If the option they have written gets exercised several things can
happen: for both put and call writers if an option expires unexer-
cised or is bought to close it is treated as a short-term capital gain.

Among the DOLCE relations, the most frequent ones are patient and its inverse patient-of, as well
as target and its inverse target-of, covering around 42% (32 pairs) of the pairs in this scenario. These
relations refer to the association between events and the (abstract or physical) objects they affect. The
patient relation means that the object has a relatively static role in the event. Target is a specialisation of
patient, and can be seen as an object to which an event is more intentionally directed.

This can give us an idea about the most frequent kind of concept that the events in this domain take
as objects. The most common classes occurring as patient or target of an event are legal-possession-
entity, such as “money”, “loan”, “shares”, “income” or “investment”, description, like “deal”, “trend” or
“agreement”, and situation, such as “merger”, “integration” or “asset management”, being affected by
events like “pay”, “buy”, “invest”, “complete”, “manage” and “deliver”, for example.

The suggested relations provide an abstract structural framework to express unnamed (implicit) re-
lations between concepts within the text, without the need to commit to a domain-specific ontological
model. Among the suggested relations, the most recurrent ones are qualifier, indirect target and owner-
ship, accounting for 47.5% (67 pairs) of the pairs in this scenario. The high frequency of the qualifier
relation can give us a hint about what concepts commonly modifies/are modified by other concepts. Ad-
jectives like “solvent”, “failed” and “eligible” are usually associated with social-roles, like “company”
or “bank”, while nouns denoting legal-possession-entities frequently modifies other legal-possession-
entities, specialising them, as in the pairs “mortgage” and “line [of credit]”, and “capital” and “account”.

The indirect target relation reinforces the high frequency of the “affecting-affected entity” pairs ob-
served in the DOLCE-based classification, but in this case having some kind of intermediate between
them, and also accepting (abstract or physical) objects, and not only events, as affecting entity. In this
case, an event serves as intermediate, for example: “accountant” has as indirect target “funds”, mediated
by the event “examination”, that is, “accountant” directly performs the action “examination”, which in
turn has as direct target “funds”. Similarly, “liquidator” has as indirect target “company” through the
event “liquidation”, “recruiters” indirectly targets at “candidate” through “hire”, and so on.

Another frequent suggested relation worth noting is ownership, which is very recurrent between
social-roles, such as “company” and “bank”, or socially-constructed-persons, like “employers”, “sell-
ers” or “manager” as the owner (both classes denote roles, the first being played by a juridical entity, and
the second by a physical person), and legal-possession-entities, such as “assets”, “funds”, “insurance”,
“money” and “account” as the owned entity.

4.2.2 Relation Composition
When no direct relation between the two concepts could be found, the other concepts standing between
them were analysed, and, instead of a single relation, a chain of concept pairs, each of them with its
suitable direct relation, linked the two concepts from the original pair. Note that this scenario is different
from the ones where direct, suggested relations such as indirect target, indirect ownership or indirect
qualifier, for instance, were applied. In those cases, even having other events or objects as intermediates,
a close relationship could be identified between the concepts. A composition of relations was necessary
only when the only cohesive association from one concept to another is achieved by a direct mention of
relation chains.

Considering the 74 concept pairs where only indirect relations applied, the average length of the re-
lations chain is 2.66, that is, this is the average number of concept pairs necessary to link the concepts,
where the first pair contains one of the concepts and the last one contains the other. For example, in Ex-
ample 5, no direct relation between “type” and “month” can be inferred, but, analysing the intermediate
concepts, the following chain can be drawn: “type [references] financing, financing [used-in] payments,
payments [happens-at] month”.
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(5) “With another type of developer financing you make regular payments each month”

The most common classes in this scenario are event and quality, which means that, even in a short
sentence, sometimes a concept is not affected by an event at all, having only a relatively weak relation
to the one that does. For qualities, the most probable reason is the distance between the concepts, as
qualities are more likely to appear close to the concepts they qualify, having no meaningful relation with
concepts far away within the sentence.

Regarding the relations in the compositions, 53.3% (111 auxiliary pairs) of them were classified using
DOLCE relations, and 43.7% (86 auxiliary pairs) using suggested relations. Again, patient and target,
and their inverses patient-of and target-of are predominant, but here the relation performs also stands out.
As all of these relations have event as domain or range, we can infer that, when no apparent relation exists
between the concepts, possibly an event can help to explain why they co-occur. Among the suggested
relations, qualifier and ownership were the most frequent semantic relations, again, due to the high
occurrence of concepts belonging to the categories quality, what leads to the qualifier relation, and social-
role and socially-constructed-person, which, along with the also frequent category legal-possession-
entity, in this sample showed to be very likely to appear as the “owner-owned entity” pair.

4.3 Correlation between Semantic Relations and Semantic Relatedness
In order to further investigate the properties of the three relation categories direct, composite, unassigned
we correlate them in terms of their semantic relatedness scores. Two human annotators scored each of
the 300 concept pairs for semantic relatedness on a scale from 0 (unrelated) to 10 (identical or highly
related), where the average of their scores was taken as the final score of the concept pair. Note that the
relatedness scoring, unlike the semantic relation assignment, was done without reference to the sentence
context in order to obtain a general semantic relatedness assessment (replicating the methodology of
(Finkelstein et al., 2001)).

If we consider the types of direct relations with regard to semantic relatedness, we find that the
most highly related ones are Specialisation (9.5; custom), Component-of (9; DOLCE), Descriptive-
place-of (9; DOLCE), Product (9; DOLCE), Use-of (8.5; DOLCE), Part-of (8.25; DOLCE), Unit-of
(DOLCE; 8.25). In more general lexical semantic terms, they are instances of hyponymy (Speciali-
sation), meronymy (Component-of, Part-of ), (abstract) location (descriptive-place-of ), and association
(Unit-of, Use-of ) and thus scored as highly related in our annotation schema. The relations whose con-
cepts on average display lowest relatedness are Happens-at (3; DOLCE), Involves (3.5; DOLCE), Result
(3.5; DOLCE), Source (3.66; custom).Happens-at has temporal characteristics, which do not necessi-
tate high relatedness. Involves, Result and Source have a low number of concept pairs in our data (one
instance each for Involves and Result, three for Source), which is why these results do not generalise.

5 Conclusions and Future Work

The semantic relation classification (SRC) task is a fundamental step in the construction of lightweight
semantic models for Natural Language Processing applications. Current SRC tasks focus on very general
relations that deal well with common sense data, but whose expressivity proves to be limited when ap-
plied to domain-specific information. We presented an analysis of the semantic relations from SemEval-
2010 (task 8), a widely used relations set in SRC tasks, evaluating its coverage and ontological soundness
to assess its suitability to domain-specific data.

Given the drawbacks identified in our evaluation and guided by a corpus-based analysis, we proposed a
set of semantic relations made up by the properties of the foundational ontology DOLCE, complemented
by a set of custom relations, and used it to classify a set of 300 pairs of terms from a financial dataset. As
a result, besides the direct ontology-based relations, we introduced the concept of composite relations, a
combination of one or more relations intended to link terms for which no direct relationship exists. The
direct relations show us how the concepts interact and the composite relations help us to explain how
terms that seem to be unrelated interact within a given context.

In addition to the manual relation classification, the pairs also received a score to indicate their se-
mantic relatedness, independent of the context where they appear. Comparing the results of both classi-
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fications, we noted that pairs in a direct relationship have, on average, the highest semantic relatedness
scores. The most predominant scenarios express how concrete or abstract objects are targeted by an
event, are owned by an agent, or are modified/qualified by other objects. In contrast, pairs involved in
a composite relationship present, on average, the lowest semantic similarity scores, showing that their
relatedness is highly dependent on the context and can only be determined through a set of intermediate
terms.

This initial classification shows that a conceptually well-grounded set of relations based on an ontolog-
ical model can bring more expressivity and more flexibility for domain-specific data than that provided
by the Semeval relations set. As future work, we intend to expand our analysis also to the correla-
tion between contextual semantic and syntactic relations, as well as to extend our dataset, annotating a
larger number of concept pairs and using this data to train an automatic classifier, capable of identifying
semantic relations in large-scale corpora.
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Abstract

The interaction between roots and patterns in Arabic has intrigued lexicographers and morphol-
ogists for centuries. While roots provide the consonantal building blocks, patterns provide the
syllabic vocalic moulds. While roots provide abstract semantic classes, patterns realize these
classes in specific instances. In this way both roots and patterns are indispensable for under-
standing the derivational, morphological and, to some extent, the cognitive aspects of the Arabic
language. In this paper we perform lemmatization (a high-level lexical processing) without re-
lying on a lookup dictionary. We use a hybrid approach that consists of a machine learning
classifier to predict the lemma pattern for a given stem, and mapping rules to convert stems to
their respective lemmas with the vocalization defined by the pattern.

1 Introduction

Roots and patterns in Arabic are essential for understanding the derivational aspects of the lexicon. In
Arabic, roots and patterns function like meta data. Lemmas or lexical entries recorded in dictionaries
only represent a static lexicon at a fixed point in time, while roots and patterns (as part of the mental
lexicon) have stronger dynamic role in the creation of new entries and the prediction of their semantic
paradigms. So, derivation in Arabic is about the construction of a large semantic forests of concepts that
are related through a single grand-parent or a super-lemma, that is the root.

The power of roots and patterns has not yet been fully utilized or understood in Natural Language
Processing (NLP). They are traditionally considered as a convenient way for listing words in dictionaries
or teaching Arabic for second language learners, but they have a great potential for automatic processing,
due to their strong generalizing capacity and their function as an instrument for decomposing word forms.
Roots and patterns are the hidden layers through which Arabic speakers organize, memorize and access
the Arabic lexicon.

In many NLP tasks, using surface word forms is found to be inefficient as it significantly adds to
sparsity, especially in highly inflected languages; thus, some form of normalization is necessary. Nor-
malization in general, and lemmatization in particular, are meant to reduce the variability in word forms
by collapsing related words. This has been shown to be beneficial for information retrieval (Larkey et
al., 2002; Semmar et al., 2006), parsing (Seddah et al., 2010), summarization (Skorkovská, 2012; El-
Shishtawy and El-Ghannam, 2014), document clustering (Korenius et al., 2004), keyphrase extraction
(El-Shishtawy and Al-Sammak, 2012), and text indexing and classification (Hammouda and Almarimi,
2010).

From a lexical point of view, normalization can be conducted at the level of the root, stem or lemma.
Lemmatization relates surface forms to their canonical base representations (or dictionary lookup form)
(Attia and van Genabith, 2013). It is the inverse of inflection (Plisson et al., 2004), as it renders words to a
default and uninflected form, or as is the case with Arabic, a least marked form. A lemma is the common
denominator (Kamir et al., 2002) of a set of forms that share the same semantic, morphological and
syntactic composition, where it represents the least marked word form without any inflectional affixes.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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In Arabic, a verb lemma is chosen to be the perfective, indicative, 3rd person, masculine, and singular
such as �Q

�
º ��� $akara1 “to thank”. Whereas a nominal lemma (namely, nouns and adjectives) is in the

nominative, singular, masculine (where possible), such as I. Ë�A£ TAlib “student”.
Stemming and lemmatization are quite distinct processes, albeit frequently confused the terms are

sometimes used interchangeably (Brits et al., 2005). Stemming strips off prefixes and suffixes leaving
a bare stem with no guarantee that the resulting form is a valid standalone word, while lemmatization
renders word forms (inflected forms) in their dictionary citation forms. To illustrate this with an example,
consider the Arabic verb form 	àðQ 	¢�J 	�K
 ‘yanotaZiruwn’ “they wait”. Stemming will remove the present

prefix ‘ya’ and the plural suffix ‘uwn’ and leave Q 	¢�J 	K ‘notaZir’ which is a non-word in Arabic. By
contrast, full lemmatization will reveal that the word has gone through a morphological alteration process
and return the canonical Q 	¢�J 	K @ ‘AinotaZar’ “to wait” as the base form.

The root, by contrast, is the three (or four) radical based form from which a word is formed, that is Q 	¢	�
nZr for the above example. Kamir et al. (2002) assume that the relationship between a root and a lemma
is purely diachronic (related to the historical derivation of words and their semantic net). However, we
show that the relationship is not only diachronic, but also synchronic related to inflection, as root radicals
remain the pivots for inflectional affixes.

In our approach we treat the lemmatization as a classification problem relying mainly on word patterns.
Unlike previous work, we do not use lexicons or morphological rules or analyzers. Our methodology is
based on the powerful and instrumental component that patterns play in the Arabic morphology system.
For example, verb lemmas are derived from roots selected from 10 morphological patterns and 35 phono-
logical patterns, see Section 3.1. Additionally, verbs are also inflected for the imperfective, passive voice
and imperative through patterns. Noun and adjective lemmas are similarly derived either from roots or
from verbs through patterns. Nouns are also inflected for the plural (broken plural) selected from a large
set of 83 phonological patterns.

This paper shows how the process of derivation is closely tied to a compact list of patterns with a
backward and forward movement directions. For the benefit of the research community we make our list
of morpho-phonological patterns publicly available for download2.

1.1 Arabic Morphological System

Arabic words are originally formed from roots (triliteral or quadriliteral consonantal base), which are
passed through different stages of derivation, inflection, and clitic attachment until they finally appear as
surface forms. A root is not a word, as it does not carry vocalization or Part of Speech (POS) category,
but it serves as an underlying representation of words, and the pivot on which morphological processes
take place. Beside roots, patterns play a fundamental part in Arabic morphology, as they provide the
vocalic mold (or scheme) for the root cardinals to be placed.

Patterns are divided into two paradigms: derivational and inflectional. Derivational patterns are re-
sponsible for the choice of syntactic (POS) and semantic structures, and they produce dictionary entries.
Inflectional patterns are the ones that express morpho-syntactic features (such as gender, number, tense,
mood, voice, etc.), i.e. creating variations within the same dictionary entry. For example �PX drs is a

root for the semantic net relating to studying/teaching; �� �P �X darasa is a verb “to study” following the

pattern R1aR2aR3a, �� �P �Y��K tadorusu is an inflected verb “she studies” following the inflection pattern
taR1oR2uR3u, and so on. The root can be considered as the super-lemma relating words within the same
semantic field (Kamir et al., 2002), while a lemma is realized by furnishing the root with a POS and
derivational pattern, and the word form (or surface form) is realized by applying the inflectional patterns
and attaching clitics.

Figure 1 shows the two layers and six tiers involved in the composition of the Arabic morphological
system. The derivation layer is non-concatenative and opaque in the sense that it is a level of abstraction

1We use the Buckwalter Arabic Transliteration system (http://www.qamus.org/transliteration.htm).
2https://sourceforge.net/projects/arabicpatterns/
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Derivation
Root �PX drs
POS V N
Pattern R1aR2aR3a maR1R2aR3ap
Lemma daras ’study’ madrasap ’school’

Inflection Pattern yaR1oR2iR3 R1aR2aR3 iR1oR2iR3 maR1AR2iR3

Inflected word yadoris’studies’ daras ’study’ {idoris ’study!’ madAris ’schools’

Table 1: Root and Pattern Interdigitation

that affects the choice of a POS, and it does not have a direct explicit surface manifestation. By contrast,
the inflection layer is more transparent. It applies both concatenative and non-concatenative morphotac-
tics. Non-concatenative morphotactics (or templates) are used to express the imperfective aspect, passive
voice and the imperative mood for verbs as well as broken plural forms for nouns. Concatenative mor-
photactics are used to express number and gender for both verbs and nouns (in the case of dual and sound
plurals) and person for verbs.

Figure 1: Multi-tier Structure of the Arabic Morphology

A pattern is a conso-vocalic scheme with empty slots, and a root is a sequence of ordered consonants
(called radicals), and these radicals are the fillers which occupy the slots according to their linear order.
This process of insertion is called interdigitation (Beesley and Karttunen, 2003). An example is shown
in Table 1.

To show how the Arabic Lexicon is organized, we can examine the Buckwalter Morphological An-
alyzer (BAMA) (Buckwalter, 2004) that contains 40,657 entries words, 35,330 (or 87%) of which are
derived from 4,494 roots (with an average 7.86 words per root). The remaining words (5,327 or 13%)
are not derived and cover function, borrowed and other fixed words.
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1.2 Vowelization

Arabic short vowels are pronounced in speech, but their representation (Diacritics, or vowel marks) are
typically skipped in written text. The lack of diacritization in modern writing is the source of significant
ambiguity. For example, the word ÕÎ« “Elm” can be either �ÕÎ�

�« Ealima “to know”, Õ
�
Î �« Eal~ama “to

teach”, �ÕÎ�
�« Eulima “be known”,ÕÎ�

�« Eul~ima “be taught” or Õ
�
Î �« Elam “flag”. Arabic readers intuitively

disambiguate based on context. For natural language processing tasks, this disambiguation is necessary,
but at the same time not easily achievable.

The Arabic Treebank (ATB) comes with two versions: non-vowelized and fully vowelized. The Buck-
walter Morphological Analyzer (BAMA) (Buckwalter, 2004) also provides possible vowelization for
words. Together they allow the statistical systems to be trained on a model for vowelization.

Vowelization is an important aspect in the Arabic morphological patterns (which are sometimes re-
ferred to as vocalic scheme). Our list of 377 unique patterns is reduced to 175 patterns when vowel
marks are removed.

Automatic vowelization, or diacritic restoration, has been discussed in a number of papers. For exam-
ple, Bebah et al. (2014) describe a hybrid method for automatic vowelization using the Al-Khalil mor-
phological analyzer and a hidden Markov model (HMM) to disambiguate. Some researchers use purely
statistical methods for restoring diacritics (Nelken and Shieber, 2005; Elshafei et al., 2006; Ameur et al.,
2015; Rashwan et al., 2011).

2 Related Work

Lemmatization has been discussed for morphologically rich languages, such as Setswana (Brits et al.,
2005), Croatian (Tadić, 2006), Slovene, Serbian, Hungarian, Estonian, Bulgarian and Romanian (in
addition to other languages) (Juršič et al., 2007), French (Seddah et al., 2010), Portuguese (da Silva,
2007), Finnish (Korenius et al., 2004), Turkish (Ozturkmenoglu and Alpkocak, 2012) and even English
(Balakrishnan and Lloyd-Yemoh, 2014). Plisson et al. (2004) and Juršič et al. (2007) treat lemmatization
as a machine learning problem and apply Ripple Down Rule (RDR) induction algorithm to a lexicon of
words and their normalized forms to learn lemmatization rules.

Due to the high inflectional nature of the language, it is almost impossible to treat Arabic texts without
some sort of normalization. From the implementation point of view, there are basically three approaches
for normalizing Arabic: dictionary-based normalization, and statistical normalization, and hybrid nor-
malization.

Dictionary-based normalization. The Buckwalter Arabic Morphological Analyser (BAMA) (Buck-
walter, 2004) is the most widely used analyser in the literature. The Khoja stemmer (Khoja and Garside,
1999) is a mid-level analyser that falls between a full morphological analyser and a shallow stemmer.
It recognizes prefixes and suffixes of a word, and uses patterns to determine the POS tag and extract
the root. Hossny et al. (2008) develop an Arabic morphological rule induction system to predict mor-
phological rules using inductive logic programming on sets of example pairs (stem and inflected form)
with their feature vectors. El-Shishtawy and El-Ghannam (2012) build a rule-based system that exploits
Arabic language knowledge in terms of roots, patterns, affixes, and a set of morpho-syntactic rules to
generate lemmas for surface word forms.

Hybrid normalization. (Hajič, 2000) argues for the use of a dictionary as a source of morphological
analyses for training a statistical POS and morphological tagger for inflectionally rich languages, such
as Romanian, Czech, or Hungarian. The method was later applied to Arabic (Hajic et al., 2005). (Roth
et al., 2008) develop a system (MADA) that uses statistical methods (SVM classifiers) to perform full
morpho-syntactic tagging, along with lemmatization (LexChoice), by selecting the best candidate from
the list of competing analyses generated by BAMA (Buckwalter, 2004).

Statistical normalization. The Stanford Tagger (Toutanova and Manning, 2000) is a Maximum
Entropy POS tagger that has been extended for Arabic, but the problem with this tagger is that it does
not perform segmentation of Arabic clitics. AMIRA 2.1 (Diab, 2007; Diab, 2009) uses a supervised
SVM-based machine learning method for POS tagging, tokenization, and base phrase chunking. The
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Tokens No alterations Alterations %
Nouns 128,294 103,363 19.43
Verbs 31,667 16,276 48.60
Adjectives 53,177 32,599 38.70
Proper Nouns 22,245 20,840 6.32
Function Words 65,089 59,060 9.26
Total 300,472 232,138 22.74

Table 2: Frequency of alterations in Arabic words

tokenization in AMIRA 2.1 only separates clitics and does not split off inflectional affixes. Abdul-
Mageed et al. (2013), develop ASMA, a Memory-Based Learning system that performs fine grained POS
tagging and automatic segmentation (stemming) by splitting both inflectional morpheme and clitics, but,
like AMIRA, it does not return the lemma of the word.

So far, purely statistical approaches succeeded at developing solutions for normalization at the root
and stem levels, but they stopped short of lemmatization. In this paper we introduce the first attempt to
treat lemmatization in Arabic as a machine learning classification problem.

3 Approach

The use of a machine learning (ML) classifier to directly map words to their lemmas is not feasible in
Arabic, due to the fact that Arabic inflection contains change to the internal buildup of the word, as
opposed to the straightforward suffixation and prefixation. Table 2 shows the frequency of mismatch
between the stem and the lemma in the ATB (Maamouri et al., 2010). We notice that verbs have the
highest rate of alterations, or mismatches, (48.6%) followed by adjectives then nouns.

In our work, we use a machine learning classifier to predict the pattern of the lemma for any given
surface form (ideally if the words are diacritized and stemmed). In our view the pattern functions as the
pivot, or the bridge, between the surface form and the lemma. Our lemmatization is based on two levels
of mapping. First, we map the stem to the pattern of the lemma, then we map the pattern of the lemma
to the actual lemma form, by extracting the radicals from the stem and filling the slots in the pattern. For
training our model, we use the ATB which comes already annotated with lemmas.

Figure 2 shows the architecture of our system. The output to our system is tokenized and POS tagged
words, which are then enriched with lemmas and formatted into features that are passed to our machine
learning (ML) classifiers. The ML classifiers predict lemmas for given stems, which are then passed into
our mapping rules to finally generate the lemmas by merging the stems with the predicted patterns.

Figure 2: Architecture of the lemmatization system

3.1 The Pattern Database

We create a pattern database for all Arabic derivational and broken plural forms. The number of patterns
in the database is 655. These are not unique patterns because of the many-to-many relationship between
broken plural and singular patterns.

In our work we make a distinction between morphological patterns and phonological patterns. Phono-
logical pattern makes allowance for alterations due to the existence of weak letters, gemination (dou-
bling) and hamzah’s (glottal stops). For example, the verb ÈA�̄ qAl “to say” will have the phonological
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Word Type No. of patterns Example Pattern Example word
Broken Plural 256 (87 unique) R1aR2A}iR3 EajA}iz ‘elderly’
Nouns taking broken plural 135 R1iR2oR3AR4 EimolAq ‘giant’
Nouns taking feminine plural 26 miR1aR2~ap miDax~ap ‘pump’
Nouns taking no plural 20 taR1oR2AR3 taokAr ‘remembering’
Active participle É«A 	®Ë @ Õæ� @ 26 muR1AR2iR3 muqAtil ‘fighter’

Passive participle Èñª 	®ÖÏ @ Õæ� @ 22 muR1aR2~aR3 muwaj~ah ‘directed’

Verbal nouns PY�ÖÏ @ 42 {inoR1iR2AR3 {ino$iTAr ‘spreading’

Nouns of instrument �éË
�
B@ Õæ� @ 8 miR1oR2AR3 mino$Ar ‘saw’

Nouns of Instance �èQÖÏ @ Õæ� @ 6 <iR1AR2ap <iEAnp ‘assistance’

Adjectives of hyperbole �é 	ªËAJ. ÖÏ @ 	©J
� 11 R1aR2iyR3 xabiyr ‘expert’

Attributive adjective �éîD. ��ÖÏ @ �é 	®�Ë@ 21 R1aR2oR3 Daxom ‘huge’
Verbs 45 {iR1otaR2aR3 {ijotamaE ‘meet’
Names of place 	àA¾ÖÏ @ Õæ� @ 3 maR1oR2aR3 makotab ‘office’

Elative Adjectives ÉJ
 	� 	®�JË @ Õæ� @ 3 >aR1oR2aR3 >akoram ‘more generous’
Miscellaneous 8 maR1oR2aR3An mahorajAn ‘carnival’

Table 3: Categorization of Arabic patterns

pattern “R1AR3”, while it has the morphological pattern “R1aR2aR3”. Matching via the phonological
pattern is computationally more straightforward than matching against the morphological pattern.

The number of unique patterns is 379 (227 are purely morphological patterns, and 152 are purely
phonological patterns). Phonological patterns are related to morpho-phonological alteration operations
related to the existence of either weak letters or doubling. Weak letters are any of the long vowels
(alif, waw, yaa) or hamzah (glottal stop). The traditional Arabic way of representing the root radicals is
through the letters f, E, l in their respective order (f = R1, E = R2 and l = R3). Morphological patterns are
the representative productive and generic patterns that apply to the majority of words, while phonological
patterns are exception sub-branches of the morphological patterns that apply to specific cases where a
radical happens to be replaced by a weak letter (long vowel) or hamzah (glottal stop).

In our database we make a fine grained classification of patterns based on their morpho-syntactic
functions. Table 3 shows the count of patterns for each type based on POS and plurality paradigm. It
is to be noted that in our system proper nouns and foreign Arabized words that do not follow any of the
known Arabic patterns and are passed without any further processing.

3.2 Dataset and Features

It is hard to directly predict lemmas from stems due to the very fine granularity level. Thus, we generate
patterns for all stems and lemmas, which are relatively limited in numbers in comparison to the actual
lexical items rendering the search space for the classifier, therefore more manageable. We have two types
of patterns: a) automatic patterns generated by replacing all consonants in a word with placeholders,
and b) morpho-phonological patterns which only replaces the consonantal base with placeholders. For
example, the verb ��Ê¢	� @ inoTalaq will be replaced by .i.o.a.a. in the automatic pattern, while it will be
replaced by ino.a.a. in the morpho-phonological patterns which correctly identifies the sequence ino
outside of the consonantal base. The number of unique automatic lemma patterns is 77, the number of
automatic stem patterns is 225, and the number of morpho-phonological lemma patterns is 43 for verbs
and 209 for nominals. Then for each stem pattern, we predict the Lemma-pattern (either automatic or
morpho-phonological pattern).

The features used in our classifier are the stem, autoStemPattern (the pattern automatically generated
from the stem by replacing consonants with placeholders), and affixes (PREF0, PREF1, . . . , PREFn,
SUFF0, SUFF1, . . . , SUFFm), where n and m are based on the maximum number of prefixes and suffixes,
respectively, in the data.

Note that the prefixes and suffixes refer to both clitics (coordinating conjunctions, prepositions and
particles) and morphological markers (related to number, gender, person, aspect, mood, etc.), as depicted
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Affixes Description Type List
PREF0 Conjunctions pro-clitic fa, wa
PREF1 Particle pro-clitic li, sa, la, mA

PREF2 Perfective marker prefix a, >u, na, nu, ta,
tu, ya, yu, |

SUFF0 mood, number,
and gender marker suffix

A, Ani, a, at, atA, aw,
awoA, awona, ayo, iy,
iyna, nA, na, o, ta, ti,
tu, tum, u, uw, uwA, uwna

SUFF1 Accusative pronouns enclitic
hA, hi, him, himA, hu,
hum, humA, ka, ki, kum,
kumA, kun∼a, nA, niy

Table 4: List of affixes for verbs

in Table 4 which shows the affixes for verbs.
Then we compare the performance of two machine learning classifiers to predict the morpho-

phonological pattern or the automatic pattern of the lemma for each stem using the features specified
above. The results are discussed in Section 4.

Figure 3: Stem-pattern-lemma Mapping

3.3 Mapping from lemma pattern to actual lemma
Using the ML classifier to predict the correct lemma pattern for each stem, we need, given the stem,
to map the lemma pattern to the actual realization. We use deterministic rules to map the stem to the
lemma using the predicted lemma pattern. We take the radicals from the stem and fill them in place of
the pattern’s slots in a reverse manner, i.e. starting from the end to the beginning of the string. The rules
follow these procedures:

1. Remove prefixes and suffixes from stem

2. Remove diacritics (~, a, i, u, o) from stem

3. Remove weak letters (A, y, w)

4. From end to beginning replace the slot in the pattern with the radical from stem

For example, given the word yanoTaliq “set off” which has the lemma pattern inoR1aR2aR3, first we
remove the prefix ya, and the diacritics, that result in nTlq. Then, from the end to the beginning we fill
the slots in the pattern with letters from the stem until all slots are consumed, thus replacing R3 with q,
R2 with l, and R1 with T. The same goes for yasotaTiyE, except that we additionally ignore the weak
letters y and A. Figure 3 shows the mapping process for two words: the first with a morphological pattern
(no weak letters), and the second with a phonological pattern (with weak letters).

4 Experiments and Evaluation

The method we develop is meant as a proof-of-concept that shows the usability of patterns in the sub-
task of retrieving lemmas. It takes as input tokenized and POS-tagged texts. Due to the fact that we are
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not developing a full scale morphological processor, we cannot compare our results with state-of-the-art
applications, such as MADA (Roth et al., 2008), and therefore we use intrinsic evaluation.

We evaluate our approach on the diacritized and undiacritized version of the ATB. For the baseline we
consider the stem as the lemma without any further processing. Our data contains 128,293 nouns, 31,666
verbs, and 35,176 adjectives. We divide the data into 80% for training, 10% for development, and 10%
for testing. The results in this section are reported against the test set.

Our method consists of two steps. First we use ML classifier to predict the lemma pattern for a given
stem. For the ML step we notice that the results in general are remarkably better than the baseline.
We conduct two classification experiments. In the first we take the set of morpho-phonological patterns
(morphPtrn) as the prediction class, and in the second we use patterns automatically generated from
the lemmas by removing cardinal letters (autoPtrn). For example, an autoPtrn can be generated from the
lemma ÈA�®�J 	K @ AinotiqAl “moving”, which can be transformed into an autoPtrn by replacing all consonants
with a placeholder “Ai.o.i.A.”. This allows us to automatically generate a list of patterns without being
constrained by a manually constructed list.

Baseline 72.35
diac nodiacclassifier/

template tmpl_pred lemma_mapping tmpl_pred lemma_mapping
Tree_morphPtrn 98.45 98.23 94.4 89.35
Tree_autoPtrn 98.67 94.12 94.34 94.03
extraTree_morphPtrn 97.73 92.98 90.38 77.36
extraTree_autoPtrn 99.05 90.14 94.28 81.54

Table 5: Verbs Results

We tested two ML algorithms: Decision Trees (C4.5) and Extra Trees classifier. We notice that using
C4.5 produces significantly better results than Extra Trees. The second step is related to the reconstruc-
tion of the actual lemma from combining the stem and the predicted pattern using mapping rules. The
results of this step show a marginal loss on the output of the prediction step. The experimental results
are shown in Tables 5, 6 , and 7, for verbs, nouns and adjectives respectively, and for both diacritized
undiacritized words. The overall results are largely higher than the baseline with diacritized texts. For
example, the baseline for verbs is 72.35% while our best result is 98.23%, with similar results for both
adjectives and nouns.

With undiacritized words, the performance of the process varies with the type of entries. With verbs
and nouns our results are higher than the baseline, with adjectives the prediction scores for patterns re-
mains consistently high (mostly above 95%). But the mapping from pattern to lemma seems to fall below
the baseline. Our justification is that adjectives do not undergo as many non-concatenative derivation.
Moreover, mapping rules for undiacritized adjectives needs more improvement.

One of the interesting results we found in these experiments is that results with autoPtrn are comparable
to (and sometimes even better than) morphPtrn which is an indication that patterns are machine learnable
and that we do not need to rely solely on hand-crafted lists of Arabic templates.

Baseline 81.95
diac nodiacclassifier/

template tmpl_pred lemma_mapping tmpl_pred lemma_mapping
Tree_morphPtrn 97.93 94.6 96.48 86.59
Tree_autoPtrn 98.22 93.29 96.51 70.64
extraTree_morphPtrn 95.66 87.2 95.59 79.2
extraTree_autoPtrn 96.93 87.55 92.84 63.18

Table 6: Nouns Results
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Baseline 93.10
diac nodiacclassifier/

template tmpl_pred lemma_mapping tmpl_pred lemma_mapping
Tree_morphPtrn 93.32 96.61 97.04 79.60
Tree_autoPtrn 99.09 97.92 96.7 86.20
extraTree_morphPtrn 98.16 91.64 97.4 76.01
extraTree_autoPtrn 99.81 96.13 96.47 82.61

Table 7: Adjectives Results

5 Conclusion

We develop successful lemmatization method for Arabic without a dictionary or morphological analyzer.
Our approach can serve as a plug-in to stemming applications and POS taggers. It needs to be fed the
vowelized (diacritized) stem, the surrounding affixes and the POS tag to be able to return the correct
lemma.

Although patterns have occupied center stage in traditional grammar and second language teaching
for generations, they have been largely ignored in natural language processing. In this paper we have
shown how the complex derivational and inflectional morphological system for Arabic can be modeled
by machine learning methods when using patterns as an abstraction level to generalize on the variant
surface forms. We also show how the cardinals of the root obey the linear order in various derivations
and inflection, making filling the slots in the patterns a straightforward job. This paper describes the first
attempt to relate surface forms to their lemmas in Arabic using probabilistic methods.

The recent few years have seen intense interest in deep learning and neural embeddings. In future
work we want to handle the same problem with LSTM-based sequence-to-sequence models such as the
neural encoder-decoder for morphological re-inflection explained in Kann and Schütze (2016), and test
if direct mapping from words to lemmas is feasible, or patterns still represent a necessary component to
mediate the process.
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Jan Hajič. 2000. Morphological tagging: Data vs. dictionaries. In Proceedings of the 1st North American chapter
of the Association for Computational Linguistics conference, pages 94–101. Association for Computational
Linguistics.

Faten Khalfallah Hammouda and Abdelsalam Abdelhamid Almarimi. 2010. Heuristic lemmatization for Arabic
texts indexation and classification 1.

Ahmad Hossny, Khaled Shaalan, and Aly Fahmy. 2008. Automatic morphological rule induction for Arabic. In
Proceedings of the LREC’08 workshop on HLT & NLP within the Arabic world: Arabic Language and local
languages processing: Status Updates and Prospects, pages 97–101.
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Abstract

In this paper we present a clean, yet effective, model for word sense disambiguation. Our ap-
proach leverage a bidirectional long short-term memory network which is shared between all
words. This enables the model to share statistical strength and to scale well with vocabulary
size. The model is trained end-to-end, directly from the raw text to sense labels, and makes ef-
fective use of word order. We evaluate our approach on two standard datasets, using identical
hyperparameter settings, which are in turn tuned on a third set of held out data. We employ no ex-
ternal resources (e.g. knowledge graphs, part-of-speech tagging, etc), language specific features,
or hand crafted rules, but still achieve statistically equivalent results to the best state-of-the-art
systems, that employ no such limitations.

1 Introduction

Words are in general ambiguous and can have several related or unrelated meanings depending on con-
text. For instance, the word rock can refer to both a stone and a music genre, but in the sentence ”Without
the guitar, there would be no rock music” the sense of rock is no longer ambiguous. The task of assigning
a word token in a text, e.g. rock, to a well defined word sense in a lexicon is called word sense disam-
biguation (WSD). From the rock example above it is easy to see that the context surrounding the word
is what disambiguates the sense. However, it may not be so obvious that this is a difficult task. To see
this, consider instead the phrase ”Solid rock” where changing the order of words completely changes the
meaning, or ”Hard rock crushes heavy metal” where individual words seem to indicate stone but together
they actually define the word token as music. With this in mind, our thesis is that to do WSD well we
need to go beyond bag of words and into the territory of sequence modeling.

Improved WSD would be beneficial to many natural language processing (NLP) problems, e.g. ma-
chine translation (Vickrey et al., 2005), information Retrieval, information Extraction (Navigli, 2009),
and sense aware word representations (Neelakantan et al., 2015; Kågebäck et al., 2015; Nieto Piña and
Johansson, 2015; Bovi et al., 2015). However, though much progress has been made in the area, many
current WSD systems suffer from one or two of the following deficits. (1) Disregarding the order of
words in the context which can lead to problems as described above. (2) Relying on complicated and
potentially language specific hand crafted features and resources, which is a big problem particularly for
resource poor languages. We aim to mitigate these problems by (1) modeling the sequence of words
surrounding the target word, and (2) refrain from using any hand crafted features or external resources
and instead represent the words using real valued vector representation, i.e. word embeddings. Using
word embeddings has previously been shown to improve WSD (Taghipour and Ng, 2015; Johansson and
Nieto Piña, 2015). However, these works did not consider the order of words or their operational effect
on each other.

∗Authors contributed equally.
This work is licenced under a Creative Commons Attribution 4.0 International License. License details: http:
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1.1 The main contributions of this work include:

• A purely learned approach to WSD that achieves results on par with state-of-the-art resource heavy
systems, employing e.g. knowledge graphs, parsers, part-of-speech tagging, etc.

• Parameter sharing between different word types to make more efficient use of labeled data and make
full vocabulary scaling plausible without the number of parameters exploding.

• Empirical evidence that highlights the importance of word order for WSD.

• A WSD system that, by using no explicit window, is allowed to combine local and global informa-
tion when deducing the sense.

2 Background

In this section we introduce the most important underlying techniques for our proposed model.

2.1 Bidirectional LSTM

Long short-term memory (LSTM) is a gated type of recurrent neural network (RNN). LSTMs were intro-
duced by Hochreiter and Schmidhuber (1997) to enable RNNs to better capture long term dependencies
when used to model sequences. This is achieved by letting the model copy the state between timesteps
without forcing the state through a non-linearity. The flow of information is instead regulated using
multiplicative gates which preserves the gradient better than e.g. the logistic function. The bidirectional
variant of LSTM, (BLSTM) (Graves and Schmidhuber, 2005) is an adaptation of the LSTM where the
state at each time step consist of the state of two LSTMs, one going left and one going right. For WSD
this means that the state has information about both preceding words and succeeding words, which in
many cases are absolutely necessary to correctly classify the sense.

2.2 Word embeddings by GloVe

Word embeddings is a way to represent words as real valued vectors in a semantically meaningful space.
Global Vectors for Word Representation (GloVe), introduced by Pennington et al. (2014) is a hybrid ap-
proach to embedding words that combine a log-linear model, made popular by Mikolov et al. (2013),
with counting based co-occurrence statistics to more efficiently capture global statistics. Word embed-
dings are trained in an unsupervised fashion, typically on large amounts of data, and is able to capture
fine grained semantic and syntactic information about words. These vectors can subsequently be used to
initialize the input layer of a neural network or some other NLP model.

3 The Model

Given a document and the position of the target word, i.e. the word to disambiguate, the model computes
a probability distribution over the possible senses corresponding to that word. The architecture of the
model, depicted in Figure 1, consist of a softmax layer, a hidden layer, and a BLSTM. See Section 2.1
for more details regarding the BLSTM. The BLSTM and the hidden layer share parameters over all
word types and senses, while the softmax is parameterized by word type and selects the corresponding
weight matrix and bias vector for each word type respectively. This structure enables the model to share
statistical strength across different word types while remaining computationally efficient even for a large
total number of senses and realistic vocabulary sizes.

3.1 Model definition

The input to the BLSTM at position n in document D is computed as

xn = W xv(wn), n ∈ {1, . . . , |D|}.

Here, v(wn) is the one-hot representation of the word type corresponding to wn ∈ D. A one-hot
representation is a vector with dimension V consisting of |V | − 1 zeros and a single one which index
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xn−1xn−2xn−3x0

...

xn+1 xn+2 xn+3 x|D|

...

a

y(n)

Figure 1: A BLSTM centered around a word at position n. Its output is fed to a neural network sense
classifier consisting of one hidden layer with linear units and a softmax. The softmax selects the corre-
sponding weight matrix and bias vector for the word at position n.

.

indicate the word type. This will have the effect of picking the column from W x corresponding to that
word type. The resulting vector is referred to as a word embedding. Further, W x can be initialized using
pre-trained word embeddings, to leverage large unannotated datasets. In this work GloVe vectors are
used for this purpose, see Section 4.1 for details.

The model output,

y(n) = softmax(W ay
wn

a + bay
wn

),

is the predicted distribution over senses for the word at position n, where W ay
wn and bay

wn are the weights
and biases for the softmax layer corresponding to the word type at position n. Hence, each word type will
have its own softmax parameters, with dimensions depending on the number of senses of that particular
word. Further, the hidden layer a is computed as

a = W ha[hL
n−1; hR

n+1] + bha

where [hL
n−1; hR

n+1] is the concatenated outputs of the right and left traversing LSTMs of the BLSTM at
word n. W ha and bha are the weights and biases for the hidden layer.

Loss function The parameters of the model, Ω = {W x,ΘBLSTM , W
ha,bha, {W ay

w ,bay
w }∀w∈V , },

are fitted by minimizing the cross entropy error

L(Ω) = −
∑
i∈I

∑
j∈S(wi)

ti,j log yj(i)

over a set of sense labeled tokens with indices I ⊂ {1, . . . , |C|} within a training corpus C, each labeled
with a target sense ti,∀i ∈ I.

3.2 Dropword

Dropword is a regularization technique very similar to word dropout introduced by Iyyer et al. (2015).
Both methods are word level generalizations of dropout (Srivastava et al., 2014) but in word dropout the
word is set to zero while in dropword it is replaced with a<dropped> tag. The tag is subsequently treated
just like any other word in the vocabulary and has a corresponding word embedding that is trained. This
process is repeated over time, so that the words dropped change over time. The motivation for doing
dropword is to decrease the dependency on individual words in the training context. This technique can
be generalized to other kinds of sequential inputs, not only words.
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4 Experiments

To evaluate our proposed model we perform the lexical sample task of SensEval 2 (SE2) (Kilgarriff,
2001) and SensEval 3 (SE3) (Mihalcea et al., 2004), part of the SensEval (Kilgarriff and Palmer, 2000)
workshops organized by Special Interest Group on the Lexicon at ACL. For both instances of the task
training and test data are supplied, and the task consist of disambiguating one indicated word in a context.
The words to disambiguate are sampled from the vocabulary to give a range of low, medium and high
frequency words, and a gold standard sense label is supplied for training and evaluation.

4.1 Experimental settings

The hyperparameter settings used during the experiments, presented in Table 1, were tuned on a sep-
arate validation set with data picked from the SE2 training set. The source code, implemented using
TensorFlow (Abadi et al., 2015), has been released as open source1.

Hyperparameter Range searched Value used

Embedding size {100, 200} 100
BLSTM hidden layer size [50, 100] 2 ∗ 74
Dropout on word embeddings xn [0, 50%] 50%
Dropout on the LSTM output [hL

n−1; hR
n+1] [0, 70%] 50%

Dropout on the hidden layer a [0, 70%] 50%
Dropword [0, 20%] 10%
Gaussian noise added to input [0, 0.4] ∼ N (0, 0.2σi)

Optimization algorithm - Stochastic gradient descent
Momentum - 0.1
Initial learning rate - 2.0
Learning rate decay - 0.96
Embedding initialization - GloVe
Remaining parameters initialized - ∈ U(−0.1, 0.1)

Table 1: Hyperparameter settings used for both experiments and the ranges that were searched during
tuning. ”-” indicates that no tuning were performed on that parameter.

Embeddings The embeddings are initialized using a set of freely available2 GloVe vectors trained
on Wikipedia and Gigaword. Words not included in this set are initialized from N (0, 0.1). To keep the
input noise proportional to the embeddings it is scaled by σi which is the standard deviation in embedding
dimension i for all words in the embeddings matrix, W x. σi is updated after each weight update.

Data preprocessing The only preprocessing of the data that is conducted is replacing numbers with a
< number > tag. This result in a vocabulary size of |V | = 50817 for SE2 and |V | = 37998 for SE3.
Words not present in the training set are considered unknown during test. Further, we limit the size of
the context to max 140 words centered around the target word to facilitate faster training.

4.2 Results

The results of our experiments and the state-of-the-art are shown in Table 2. 100JHU(R) was developed
by Yarowsky et al. (2001) and achieved the best score on the English lexical sample task of SE2 with a
F1 score of 64.2. Their system utilized a rich feature space based on raw words, lemmas, POS tags, bag-
of-words, bi-gram, and tri-gram collocations, etc. as inputs to an ensemble classifier. htsa3 by Grozea
(2004) was the winner of the SE3 lexical sample task with a F1 score of 72.9. This system was based
mainly on raw words, lemmas, and POS tags. These were used as inputs to a regularized least square

1Source for all experiments is available at: https://bitbucket.org/salomons/wsd
2The employed GloVe vectors are available for download at: http://nlp.stanford.edu/projects/glove/
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classifier. IMS+adapted CW is a more recent system, by Taghipour and Ng (2015), that uses separately
trained word embeddings as input. However, it also relies on a rich set of other features including POS
tags, collocations and surrounding words to achieve their reported result.

Our proposed model achieves the top score on SE2 and are tied with IMS+adapted CW on SE3. More-
over, we see that dropword consistently improves the results on both SE2 and SE3. Randomizing the
order of the input words yields a substantially worse result, which provides evidence for our hypothesis
that the order of the words are significant. We also see that the system effectively makes use of the infor-
mation in the pre-trained word embeddings and that they are essential to the performance of our system
on these datasets.

F1 score
Method SE2 SE3

BLSTM (our proposed model) 66.9 73.4

100JHU(R) 64.2 -
htsa3 - 72.9
IMS+adapted CW 66.2 73.4

BLSTM without dropword 66.5 72.9
BLSTM without GloVe 54.6 59.0
BLSTM, randomized word order 58.8 64.7

Table 2: Results for Senseval 2 and 3 on the English lexical sample task.

5 Conclusions & future work

We presented a BLSTM based model for WSD that was able to effectively exploit word order and achieve
results on state-of-the-art level, using no external resources or handcrafted features. As a consequence,
the model is largely language independent and applicable to resource poor languages. Further, the system
was designed to generalize to full vocabulary WSD by sharing most of the parameters between words.

For future work we would like to provide more empirical evidence for language independence by
evaluating on several different languages, and do experiments on large vocabulary all words WSD, where
every word in a sentence is disambiguated. Further, we plan to experiment with unsupervised pre-
training of the BLSTM, encouraged by the substantial improvement achieved by incorporating word
embeddings.
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Abstract 

Language production is largely a matter of words which, in the case of access problems, can be 
searched for in an external resource (lexicon, thesaurus). In this kind of dialogue the user 
provides the momentarily available knowledge concerning the target and the system responds 
with the best guess(es) it can make given this input. As tip-of-the-tongue (ToT)-studies have 
shown, people always have some knowledge concerning the target (meaning fragments, number 
of syllables, ...) even if its complete form is eluding them. We will show here how to tap on this 
knowledge to build a resource likely to help authors (speakers/writers) to overcome the ToT-
problem. Yet, before doing so we need a better understanding of the various kinds of knowledge 
people have when looking for a word. To this end, we asked crowdworkers to provide some 
cues to describe a given target and to specify then how each one of them relates to the target, in 
the hope that this could help others to find the elusive word. Next, we checked how well a given 
search strategy worked when being applied to differently built lexical networks. The results 
showed quite dramatic differences, which is not really surprising. After all, different networks 
are built for different purposes; hence each one of them is more or less suited for a given task. 
What was more surprising though is the fact that the relational information given by the users 
did not allow us to find the elusive word in WordNet better than without it.  

1 The problem : word access in language production  

Communication is largely based on words which encode various sorts of information, conceptual (lex-
ical semantics, encyclopedic knowledge), linguistic (word forms, part of speech), ... If ever we lack 
any of this information we may reach for a dictionary, a thesaurus or an encyclopedia in the hope to 
find what we are looking for. Information access works generally quite well for readers, but much less 
for authors. Obviously, readers and writers have different needs, and while both provide words as in-
put, they clearly pursue different goals. Readers start from word forms in the hope to get meanings, 
while authors go the opposite direction: starting from meanings (or meaning fragments), broader topi-
cal categories (thesaurus) or specific target-related words (associations, co-occurrences) they hope to 
find the elusive word (target). We will be concerned here with this latter kind of search. 

There are two major access modes, one being automatic, and the other deliberate. The former relies 
solely on our brain (on-line processing when speaking or writing) whereas the latter uses an additional, 
external resource (paper or electronic dictionary). In general we resort to this second strategy only if 
spontaneous access fails. Alas, most dictionaries are not very well suited for this purpose (see Section 
3). Yet, even if we had such a dictionary, we are still faced with the problems of input and size. What 
information shall the user give to allow the resource to guess the elusive word? Since dictionaries are 
generally quite large, arises the question of how to reduce the entire set of words (scope of the lexicon) 
to one, the target. This leads to the next question: how to reduce quickly the initial space to a subspace 
which is neither too big nor too small, that is, how to ensure that the output contains only a reasonable 
set of candidates (not too big), yet still potentially relevant information? Inconsiderate filtering 
  

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: 
http://creativecommons.org/licenses/by/4.0/ 

57



might eliminate promising candidates, in which case the space gets too small. To answer these ques-
tions, it is interesting to take a look at the Tip-of-the-Tongue problem (Brown & McNeill, 1996), 
henceforth ToT. 

2 The Tip-of-the-tongue problem 

There are different sorts of impairment hindering wordfinding (aphasia, anomia, ....). One of the best 
known and most intensively studied ones is the ToT-problem (Brown, 1991). Someone is said to be in 
this state when he knows what to say, he also knows the corresponding form, but for some reason he 
simply is not able to access it in time, at the very moment of speaking or writing. To get a better 
understanding of the problem and process at hand, let us replace the task in its natural context, 
language production.1 After all, words are generally used in this situation.  

Language production involves three major tasks (Bock, 1996; Levelt, 1989), most of which apply 
not only for sentence generation, but also for the production of words. Hence, we start from an image 
or a concept (Level1), which can be very abstract and be linguistically unspecified. Neither nor have 
information concerning part of speech, or phonology at this level. Indeed, at this stage we may have 
something like ‘move’ or ‘reptile’ but not their concrete lexical forms, for example: ‘walk/limp/run’. 

Hence, the speaker must add sufficient information to be able to decide whether, in the case of rep-
tiles, he wants to refer to an ‘alligator, ‘caiman’, or ‘crocodile’. These are lexical concepts, i.e. entries 
in the mental lexicon, also called a lemmas (Level2). Note that at this stage we have only an abstract 
form containing the meaning, part of speech and some general information concerning the phonologi-
cal form (number of syllables, intonation, …). Yet, it is only at the next step (Level3) that the brain 
specifies the phonological form, to yield a lexeme, the word’s concrete form. This allows us then to 
compute the required motor program to carry out the necessary steps to produce a written or spoken 
form. A tip-of-the-tongue state occurs if there is an interruption between Level2 and Level3.2 

ToT problems can be seen as a puzzle which can be solved by providing or priming the missing el-
ements. This can be done indirectly (cf. Abrams et al., 2007). James and Burke (2000) designed a pro-
tocol to do precisely this. They presented some pictures or definitions asking their subjects to find the 
corresponding word. Those who failed, but knew the word, i.e. those who were in a ToT-state, were 
used for the main part of the experiment. This group was then divided in two equal parts. Half of par-
ticipants were asked to read aloud a list of words that cumulatively contained all of the syllables of the 
ToT word. Suppose someone failed to retrieve the target abdicate, in this case he would be asked to 
read the following list of ten words, abstract, indigent, truncate, tradition and locate, each of which 
contains a syllable of the target. The other half was also given a list of 10 words, but phonologically 
unrelated. Having done this exercise, participants were asked to try again to retrieve the target. And 
this time most of the members of the group being exposed to phonologically related words succeeded, 
while the other group did not.  

Obviously, in a natural situation we can neither wait for the phonological primes to occur, nor can 
we provide them as James et al. did, as this would require knowledge of the target. Yet if we knew the 
target then we would give it, since this is what the author is looking for. To conclude, we cannot pro-
vide the missing parts or offer form-related cues (for example, phonological cues), what we can do 
though is to provide semantically related words, associations, i.e. words related to the user input.  

3 Related work 

Concerning lexical access, several communities are concerned: engineers from the natural language 
generation community (NLG), psychologists, computational linguists and lexicographers. Space 
constraints prevent us from referring to all this work. Hence, we will focus here mainly on the work 
                                                
1 For a broad view from a psycholinguistic or neuroscientist’s perspective, see (Levelt, 1989; Rapp and Goldrick, 2006; 
Goldrick, et al., 2014). The equivalent, but from an engineering point of can be found in (Dale & Reiter, 2000, Krahmer and 
Theune, 2010). For a recent state of the art paper see (Bateman and Zock, 2016). 
2 Levelt's word production model (Levelt et al., 1999) is actually quite a bit more sophisticated. It requires the following six 
steps : (1) conceptual preparation → lexical concept ; (2) lexical selection (abstract word) → lemma; (3) morphological 
encoding → morpheme ; (4) phonological encoding (syllabification) → phonological word; (5) phonetic encoding → phonet-
ic gestural code ; (6) articulation → sound wave. Note that it postulates two knowledge bases: the mental lexicon, vital for 
lemma retrieval, and the syllabary, important for phonetic encoding. 
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done in lexicography. Note though, that the problem addressed by the NLG community deals with ’lex-
ical choice’, but not with ‘lexical access’. Yet, before choosing a word, one must have accessed it. 

How words are stored and processed in the human mind has extensively been dealt with by 
psychologists (Aitchinson, 2003; de Deyne and Storms, 2015; deDeyne et al. 2016). Yet, while there 
are many papers dealing with the tip-of-the-tongue phenomenon (Brown & McNeill, 1996), or the 
problem of lexical access (Levelt et al. 1999), they do not consider the use of computers for helping 
people in their task (our goal). 

Lexicographers bridge this gap. Unfortunately, until recently most of their tools have been built for 
the language receiver. Nevertheless, nowadays there are also some tools for the language producer. 
For example, Roget’s thesaurus (Roget, 1852) or its modern incarnation built with the help of corpus 
linguistics (Dornseiff, 2003). There are also the Language Activator (Summers, 1993), the Oxford 
Learner’s Wordfinder Dictionary (Trappes-Lomax, 1997), and various network-based lexical 
resources: WordNet, henceforth WN (Miller,1990), Framenet (Fillmore et al. 2003); MindNet 
(Richardson et al., 1998), and HowNet (Dong & Dong, 2006;). Finally, there are collocation dictionar-
ies (Benson et al., 2010), and web-based tools like Lexical FreeNet3 or Onelook (Beeferman, 2003), 
which, like BabelNet (Navigli & Ponzetto, 2012) combines a dictionary (WN) and an encyclopedia 
(Wikipedia), though putting the emphasis on onomasiological search, access by meaning. Reverse dic-
tionaries have been built by hand (Bernstein, 1975) and with the help of machines (Dutoit and Nugues, 
2002). In both cases, one draws on the words occurring in the definition. Thorat and Choudhari (2016) 
try to extend this idea by introducing a distance-based approach to compute word similarity. Given a 
small set of words they compare their approach with Onelook and with dense-vector similarity. While 
we adopt part of their methodology in our evaluation scheme, we are more reserved with respect to 
their architecture. Since it requires a fully computed similarity matrix for the entire vocabulary, their 
work cannot scale up: it is unreasonable to assume that the lexicon is stored in a fully connected simi-
larity matrix, which grows quadratically in the size of the vocabulary. Note that while dense represen-
tations are easily compared, proximity search is not. It is computationally simply too expensive.  

As one can see, a lot of progress has been made during the last two decades, yet more can be done 
especially with respect to indexing (organization of the data) and navigation.  

4 Navigation, a fundamentally cognitive process 

As we will show in this section, navigation in a lexical resource is above all a knowledge-based pro-
cess. Before being able to use a word, we must have acquired it. It is only then that it has become part 
of our knowledge. Yet, storage does not guarantee access (Zock & Schwab, 2011). This fact has not 
received the attention it deserves by lexicographers. Note also that there are several kinds of 
knowledge: declarative, meta-knowledge (not necessarily linguistic) and knowledge states.  
• Declarative knowledge is what we acquire when learning words (meaning, form, spelling, usage), 

and this is the information generally encoded in dictionaries. Obviously, in order to find a word or 
to find the information associated with it, they must be stored, though this is not enough. 

• Next, there is meta-knowledge, which also needs to be acquired. Being generally unavailable for 
in(tro)spection, meta-knowledge reveals itself in various ways. For example, via the information 
available when we fail to access a word (Schwartz, 2006), or via the query we provide at the mo-
ment of launching a search. As word association experiments have shown (Aitchison, 2003) words 
always evoke something. Since this is true for all words one can conclude that all words are con-
nected in our mind, which implies that all words are accessible from anywhere like in a fully con-
nected graph.4 All we have to do is to provide some input (source word, available information) and 
follow then the path linking this input to the output (target). Interestingly, people hardly ever start 
from words remotely related to the target. Quite to the contrary, they tend to start from a more or 
less direct neighbor of the target, the distance between the two, exceeding rarely the distance of 2.5 

                                                
3 http://www.lexfn.com  
4 Note that this does not hold for WN, as WN is not a single network, but a set of networks. There are 25 for nouns, and at 
least one for all the other parts of speech 
5 This is probably one of the reasons why we would feel estranged if someone provided as cue ‘computer’, while his target 
‘mocha’. The two are definitely not directly connected, though, there is a path between them, eventhough it is not obvious 
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Also, dictionary users often know the type of relationship holding between the input (prime) and 
the target. These two observations clearly support our idea that people have a considerable amount 
of (meta-) knowledge concerning the organization of words in their mind, i.e. their mental lexicon.  

• The idea of relationship has been nicely exploited by WN, which due to this feature keeps the 
search space, i.e. a set of candidates among which the user has to choose, quite small. The idea of 
relatedness has led lexicographers already in the past to build thesauri, collocation- and synonym 
dictionaries. Obviously an input consisting only of a simple word is hard to interpret. Does the us-
er want a more general/specific word, a synonym or antonym? Is the input semantically or phonet-
ically related to the target, or is it part of the target word’s definition (dog-animal)? In each case 
the user is expecting a different word (or set of words) as output. Hence, in order to enable a sys-
tem to properly interpret the users’ goals we need this kind of metalinguistic information (neighbor 
of the target, i.e. source word + relation to the target) at the input.6 If ever the user cannot provide 
it, the system is condemned to make a rough guess, presenting all directly connected words. Obvi-
ously, such a list can become quite large. This being so, it makes sense to provide the system this 
kind of information to produce the right set of words, while keeping the search space small.  

• Knowledge states, refer to the knowledge activated at a given point in time, for example, when 
launching a search. What has been primed? What is available in the user's mind? Not all infor-
mation stored in our mind is equally available or prominent anytime. The fact that peoples' 
knowledge states vary is important, as it co-determines the way a user proceeds in order to find the 
information he is looking for. This being so, it is important to be taken into consideration by the 
system designer. In conclusion, all this knowledge must be taken into account as it allows us to de-
termine the search space, reducing its scope, which otherwise is the entire lexicon. 

The example here below illustrates to some extent these facts with regard to wordfinding in an elec-
tronic resource. Suppose you are looking for a word conveying the idea of a large black-and-white 
herbivorous mammal of China. Yet, for some reason you fail to retrieve the intended form, Panda, 
even though you know a lot concerning the target. People being in this state, called the ToT-problem, 
would definitely appreciate if the information they are able to access could be used to help them find 
the target. Figure 1 illustrates the process of getting from a visual stimulus to its expression in lan-
guage via a lexical resource. Given an external stimulus (A) our brain activates a set of features (B) 
that ideally allow us to retrieve the target form. If our brain fails, we use a fallback strategy and give 
part of the activated information to a lexical resource (C) expecting it to filter its base (D) in the hope 
to find the target (panda) or a somehow related word (E). As one can see, we consider look-up basical-
ly as a two-step process. At step one the user provides some input (current knowledge) to which the 
system answers with a set of candidates, at step two the user scans this list to make her choice. 

A: perceptual 
input, i.e. target 

B: associated features  
in the brain 

C: input to 
lexical resource 

D: lexical  
resource 

E: output of 
lexical resource 

 

 type :  bear 
 lives_in :  China 
 features :  black patches 
 diet :  eats bamboo 

 
bear 

China 

aardvark ... 
... panda ... 

... theorem ... 
zygote 

 
panda 

polar bear 

Figure 1: Lexical access a two-step process mediated by the brain and an external resource (lexicon). 

5 A Framework for Dictionary Navigation  

In this section we will try to answer briefly the following three questions: What should a resource look 
like to allow for the search described in the figure here above? How to build and how to use it? 

                                                                                                                                                   
(The chosen elements are always underlined.): computer → (Java, Perl, Prolog ; mouse, printer ; Mac, PC ) ; (1) Java → 
(island, programming language) ; (2) Java (island) → (coffee; Kawa Igen); (3) coffee → (Cappucino, Mocha, Latte). Note 
that ‘Java’ could activate ‘Java beans’, a notion inherent to JAVA, the programming language. In this case it would lead the 
user directly to the class (hypernym) containing the desired target word (mocha).  
6 This has of course consequences with respect to the resource. To be able to satisfy the different user needs (goals, stratgies) 
we probably need to create different databases: Obviously, to find a target on the basis of sound (rhymes), meanings 
(meaning-fragments) or related words (co-occurrences), requires networks encoding a different kind of information. 
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(a) What should a resource look like to allow for this? We would need a fully connected graph, or, 
more precisely, an association thesaurus (AT) containing typed and untyped links. Both kinds of links 
are necessary for filtering, i.e. to ensure that the search space is neither too big (typed links), nor too 
small (untyped links). Untyped links are a necessary evil: they are necessary to address the fact that 
two words evoke each other eventhough we are not able qualify the nature of the link. 

(b) How to use it? Imagine an author wishing to convey the name of a beverage typically served in 
coffee shops. Failing to evoke the desired form (’mocha’), he reaches for a lexicon. Since dictionaries 
are too huge to be scanned from cover (letter A) to cover (Z), we will try to reduce the search space 
incrementally. Having received some input from the user, say ‘coffee’, — which is the word coming 
to his mind while failing to access the target,— the system answers with a set of words among which 
the user chooses. Iff the input and the target are direct neighbors in the network, and iff the user knows 
the link between the two (source + target), then the search space is generally quite small. In the oppo-
site case, that is, if the user cannot specify the link, then the system is condemned to make an exhaus-
tive search, retrieving all direct neighbors of the input. However, the system could cluster the words 
by affinity and give names to these categories, so that the user, rather than navigating in a huge flat list 
navigates in a categorial tree, which avoids scanning long lists. 

(c) How to build it? While there are quite a few resources, in particular, association thesauri, they 
are too small to allow us to solve the ToT-problem. Projected resource would still have to be built, and 
while one could imagine the use of combined resources, like Babelnet (Navigli and Ponzetto, 2012), or 
the combination of WN with other resources like topic maps (Agirre et al. 2001), Roget’s Thesaurus 
(Mandala, 1999) or ConceptNet (Liu and Sing, 2004), it is not easy to tell which combination is best, 
all the more as besides encyclopedic knowledge, we also need episodic knowledge (Tulving, 1983). 

One straightforward solution might be co-occurrences (Wettler & Rapp, 1993; Lemaire & Denhière, 
2004; Schulte im Walde & Melinger, 2008). While co-occurring words contain many appropriate clue 
– target pairs, they also contain many unrelated terms that hamper access – even after application of 
appropriate significance measures. More severely, there are no structural elements that generalize 
across queries.  

Another solution could be lexical functions (Mel'čuk, 1996) or semagrams (Moerdijk, 2008) which 
are reminiscent of the lexical-semantic networks produced by Fontenelle (1997) on the basis of the 
Collins-Robert dictionary enriched with Melcuk's lexical functions. Semagrams represent the 
knowledge associated with a word in terms of attribute-values. Each semantic class has its type tem-
plate and corresponding slots. For instance, the type template for animals contains the slots ‘parts, be-
havior, color, sound, size, place, appearance, function’, etc., whereas the one for beverages has slots 
for ‘ingredient, preparation, taste, color, transparency, use, smell, source, function, ‘composition’, etc. 
While it is unlikely that we can infer or mine semagrams automatically, chances are that we can popu-
late them mechanically, which would then be seen as an alternative route of building an association 
thesaurus, but in a fairly controlled way. 

6 Experimental Setup 

In this section, we describe the experimental set-up to answer the following research questions: (a) 
When being in the ToT-state what cues do people provide to help the system find the target? (b) How 
good are existing lexical resources for retrieving the targets by using these cues? (c) How big is the 
added value of knowing the relationship between the cue (source word) and the target? Put different-
ly, does it enhance retrieval precision and speed? 

6.1 Lexical Graphs as Dictionaries 

For our experiments we used three different lexical networks: WN, distributional semantic models 
using word similarity and word co-occurrence. They were chosen deliberately to cover different struc-
tural aspects, different amounts of effort to construct them manually, and different degrees of lan-
guage-dependence. Note, that we could have chosen other resources, for example, the Edinburgh As-
sociation Thesaurus,7  but the E.A.T lacks typed relations and it is quite old (Kiss et al. 1973), 8 cover-
ing only a subset of the words used in our experiment. 
                                                
7 Available at: http://www.eat.rl.ac.uk 
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• WordNet: WN 3.0 (Fellbaum, 1998) is a high-coverage, manually built lexical-semantic network 
of English. Words are organized in terms of synsets, i.e. sets of synonyms, which are linked in var-
ious ways depending on the part of speech. We used a subset of these links (synset, hyponymy, 
derivation, etc.) and domain categories in the hope to be able to retrieve the target. 

• Word Similarity: We used the JoBimText distributional semantic model, its similarity score being 
based on common dependency parse contexts, which requires a language-specific parser. The 
JoBimText distributional thesaurus9 (Biemann and Riedl, 2013) contains in ranked order the 200 
most similar terms of a newswire corpus of 100 million sentences in English. We expect this re-
source to be suitable for most associative queries, that is to help us find words occurring in con-
texts like “X is somehow like a Y or a Z” (e.g. “a panda is somehow like a koala or a grizzly”). 
This example illustrates ‘co-hyponymy’, a relation not directly encoded in WordNet. Similarities 
(for example, panda/koala vs. panda/dog) are ranked by context overlap. 

• Word Co-occurrence: We compute statistically significant sentence-based word co-occurrences 
using the same corpus as here above, and following the methodology of (Quasthoff et al., 2006)10. 
We expect this resource to be suited for free associations, i.e. cue words whose link to the target 
cannot be specified. This resource has by far the highest rate of relations across different word 
classes, as they may occur in patterns like “With Xs, especially with Y ones, you can Z and W” 
(e.g. “with mochas, especially with iced ones, you can chill and have cookies”). Co-occurrences 
are ranked by the log-likelihood significance measure (Dunning, 1993).  

6.2 Network Access 

Given the structural differences of our resources, our networks are accessed with different query strat-
egies. The general setup is to query the resource via a cue and to insert then the retrieved terms into a 
ranking. As long as the system has not found all the desired words, it will keep going by querying with 
words according to their rank, inserting previously un-retrieved terms below the ranking.  
• WordNet: Having noticed that people tend to use hypernyms (flower) as cues to find the hyponym 

(rose, the target), we defined a heuristic supporting queries using this relation. We start by query-
ing for ‘synonyms’ of the cue, putting results first in the ranking. Next, we proceed along the sense 
numbers, senses being ordered by frequency in WN, which ensures that we start with the most 
common senses. Third, we add (in this order) direct ‘hyponyms’, ‘meronyms’ and ‘domain mem-
bers’. This order seems to be justified by the fact that most people tend to go from general to spe-
cific, starting by a more general term when launching a search. Finally, we add other relations like 
‘similar’, ‘antonyms’, ‘hypernyms’, ‘holonyms, ‘domains’, etc. For example, for the cue “pro-
nouncement”, the target “affirmation” is found by first checking the cue’s ‘synonyms’ (“dictum”, 
“say-so”), before checking the direct hyponym and hypernym (directive, declaration). Next we nav-
igate through directly related words of “dictum”, synonym of “pronouncement”, to find then the 
target as a direct hypernym of “say-so” in its first sense, resulting in rank 12. 

• Word Similarity: We retrieve the most similar terms per query, ranked by their similarity. Note that 
due to structure limitations of the resource only 200 similar words can be retrieved per query. 

• Word Co-occurrence: Having filtered out the 200 most frequent stopwords, we retrieve terms co-
occurring at least twice with a minimum log-likelihood score of 6.63.  

Each cue returns a ranking of the full vocabulary. Working with three cues per target (see Section 6.3), 
we explore two different combinations of target ranks (minimum rank and merged rank) from query-
ing with the three cues. Regarding minimum rank, the rationale is that for each cue, a retrieval process 
                                                                                                                                                   
8 For example, if you provide ‘terrorism’ as key, you will get the following list of ranked words as answer : Guerilla, Gun, 
Soldier, War, Guerrilla, Anarchist, Evil, Fear, Fighting, Rebel, Tyrant, Vandal, Vietnam, Abroad, Activities, Activity, Arab, 
Arson, Bandit, Blood, Bomb, Che, Che Guevara, Congo, Czech, Fight, Fighter, Gangster, Gorilla, Greek, Guerillas, Guns, 
Hooligan, Kill, Killer, Madness, Man, Mao, Maoist, Mexico, Night, Police, Regime, Revolution, Revolutionary, Rioter, 
Russian, Shoot, Terror, Tourist, Tree, Trotsky, Vietcong, Vietnamese, Wog. As one can see ‘associations’ change over time. 
The words we would associate nowadays with ‘terrorism’ are not the same as the ones people had associated in the seventees, 
the moment of history where this resource was built.  
9 Available at www.jobimtext.org  
10 Available at http://corpora.informatik.uni-leipzig.de  
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is started in parallel, terminating when the ToT target is encountered for the first time. Actually, only 
the rank of the 'best' cue is used. For merged rank, the rationale is as follows: we use all cues and 
merge the three rankings by a) adding the ranks per word and sorting by sum or b) multiplying the 
ranks and sorting by product. For more details, see Section 6.4.  

6.3 Dataset 

Since it is not trivial to put people in the ToT state, we have reformulated the problem in the follow-
ing way: we ask people to describe a given target to other people who may not know the word (e.g. 
language learners), by providing three cues. Crowdworkers were asked to provide single-word cues 
rather than descriptions or definitions. Note that the idea was not the creation of a resource, but rather 
the creation of a set of data to see how well they would behave with respect to our three resources 
(section, 6.1). Also, in order to get a clearer picture concerning our third question, i.e. the added value 
of the relation between cue and target, we asked subjects to also specify the relationship between the 
target and each one of the given three cues. Relations were defined indirectly, i.e. via examples. They 
comprise synonyms, hypernyms/hyponyms, meronyms/holonyms, typical properties, typical roles 
(verb-subject, verb-object) and free associations.  

Data acquisition was done via the Crowdflower crowdsourcing platform.11 In order to check wheth-
er crowdworkers had given the right answer and understood the target, we presented the latter together 
with three definitions. For our experiment we used only trials that the crowdworkers had fully under-
stood, that is, for which they had picked the correct definition. After data collection, we excluded data 
from crowdworkers that deliberately had ignored our instructions. For the targets and definitions we 
used the 208 common nouns listed in (Abrams et al., 2007; Harley and Bown, 1998), who examined 
the ToT state from a psychological angle. Full data, instructions and judgments are available online.12 

Data collection yielded a total of 1186 cue triplets, provided by 65 participants, who worked on 3 to 
132 targets. After manual correction of typos and lemmatization, cue triplets were filtered by eliminat-
ing words outside of the vocabulary of the respective resource used in the experiments. Inspection of 
the data revealed that crowdworkers generally chose the cues quite well, but many of them had a hard 
time to assign the appropriate relation, which is not all that surprising, as this requires quite a bit of 
metalinguistic knowledge. It is also possible that some participants had chosen the relation without 
taking the needed care since we did not perform any quality checks during the task. We probably need 
a different kind of experiment to validate this or measure the extent to which linguistically innocent 
users can accurately classify semantic relations.  

Table 1 below shows the distribution of relations expressed in the first 200 cue triplets (target range 
‘a-c’, i.e. abacus – calisthetics, in alphabetical order) containing also some manually assigned rela-
tions. The results show the importance of taxonomic relations, a fact well exploited by WN. Repre-
senting nearly 46% of the relations, they confirm the intuition that paradigmatic associations are an 
important means to access the desired word. However, the next largest class are syntagmatic, i.e. un-
typed, associations (37%). Note that about 17% of the cues come from a different word class than the 
targets.  

Relation  associated hyponym synonym quality object meronym holonym subject hypernym 
Ex.: cue - 

target 
tea -  

afternoon 
story - 

anecdote 
horoscopy 
- astrology 

white - 
albatross 

share - 
anecdote 

letters - 
anagram 

day - 
afternoon 

cheer - 
audience 

zombie - 
cadaver 

Typ. POS N N N A V N N V N 

% 36.8% 23.5% 13.3% 8.2% 5.2% 4.3% 4.2% 3.8% 0.6% 

Table 1: Distribution of relations between target and cue, as well as typical part of speech (POS) for 
the cue (N: Noun, V: Verb, A: Adjective), manually assigned by the authors.  

                                                
11 www.crowdflower.com 
12 A full description of the crowdsourcing interface is contained in the ‘Companion data’, see https://www.inf.uni-
hamburg.de/en/inst/ab/lt/resources/data/cogalex16-tot.html  
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6.4 Evaluation Methodology 

Our methodology is very similar to the one of Thorat and Choudhari (2016): we query the lexical net-
work with cues and retrieve then a ranked list of potential ToT targets. With more appropriate cues 
and better lexical resources, our targets will probably get a boost, appearing higher in the list.  

Our vocabulary of WN comprises 139,784 terms, including multiwords, which can be mutually 
reached through the query procedure described above was used in the first experiment. The intersec-
tion of the vocabulary of the three networks consists of 34,365 terms, all of them being single words, 
just as the ones used in the second experiment. Here below are the criteria used in our evaluation: 
• Minimum rank per cue (MinRank): if all cues were processed strictly in parallel, when would the 

target appear for the first time? 
• Target rank in sum of ranks (+Rank): if the retrieval time depends on the average rank per cue, 

we sum the ranks of the three cues and sort the list of terms in ascending order, reporting the po-
sition of the target. Note that this score is strongly influenced by negative outlier cues. 

• Target rank in multiplication of ranks (*Rank): To model a multiplicative instead of an additive 
combination, we multiply the target ranks per cue, sort the list of terms by this score in ascending 
order, and report then the position of the target. This score is less sensitive to negative outliers. 

• Average Precision@100 (P@100) measures the fraction of trials containing the target among the 
first 100 hits, for each of the above. While 100 is an arbitrary number, it seems a reasonable 
wordlist size to allow for the quick retrieval of a target. 

Note that the minimum rank is not necessarily lower than the other two scores. It is possible, and it 
even happens in our data, that a target gets a low rank because all three cues rank it consistently low, 
while the targets preferred by single cues are ranked much less favorably than others. For example, the 
target “agnostic” was retrieved from WN (untyped) by its three cues “believer, god, atheist” with 
ranks 170, 890, respectively 25. Minimum Rank is thus 25, but ranking via sum of ranks lists the 
target at position 14, while the multiplicative combination results in rank 15.  
In the next section, we will qualitatively assess the differences in rankings from our different semantic 
networks. 

7 Results and Discussion 

We ran two experiments. In the first we tried to find out whether the knowledge and usage of WN re-
lations produces some added value in terms of retrieval. The goal of the second experiment was to 
compare the retrieval performance of our three dictionary resources.  

7.1 Retrieval along Semantic Relations 

To answer the question whether the usage of relations improves word access, i.e. retrieval, we used 
WN, as it is highly structured and our relations can be directly mapped to it. For incorporating rela-
tions, we adapted the following query procedure (cf. Section 6.2): we first query for the target relation 
and then for all the others. For example, for the target ”abacus” and the clue “bead” of type meronym, 
we would first retrieve the holonyms of “bead”, then all other relations in the order given in Section 
6.2, for initial and subsequent queries. If the supplied relation between the cue and the target is directly 
given in WN, retrieval is quick. Since the WN hierarchy is quite fine-grained, and since a hyponym 
relation might be contained over several transitive steps, we keep this order throughout the entire que-
ry process. 

strategy \ score MinRank P@100 +Rank % top100 *Rank P@100 
WordNet untyped 12352.7 40.5% 22403.2 7.5% 17993.5 21.5% 
WordNet relations 11733.2 42.0% 22722.7 9.5% 17786.0 22.5% 
Random Baseline 

(STDEV) 
35480.7 
(514.8) 

0.2% 70264.7 
(636.0) 

0.1% 70438.5 
(777.1) 

0.1% 

Table 2: Scores for target retrieval in WordNet by using or ignoring relational information  
for 200 cue triples on a vocabulary of 139,784 terms 

Both settings perform much better than the random baseline, which returns the vocabulary in ran-
dom order irrespective of the dictionary’s structure. The random baseline was obtained by running 
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simulations over the same size of the dataset; we also provide the standard deviation on 10 runs in pa-
renthesis where applicable. Since more than 40% of the targets are among the first 100 retrieved words 
in the MinRank setting, we conclude that WN is indeed suitable. A manual analysis statistically con-
firmed our intuition: WN is very good for retrieving targets based on taxonomically related cues (e.g. 
calculator – abacus), while it does not perform well at all for syntagmatically related words or for 
noun-noun cues (e.g. beads – abacus, gluten – allergy). 

Regarding the added value of relations for retrieval, we conclude that typed relations only help to a 
small extent, if at all. Our data show fluctuations in the range of a relative -2% to +5% between the 
settings. Note that this may be a side effect of the sample size, which is quite small. Interestingly, the 
differences decreased when repeating the experiment with the smaller vocabulary from Experiment 2. 
Clearly, more work is needed here. 

7.2 Comparison of the three Resources  

In order to assess differences between our dictionary resources, we consider the 964 cue triplets per 
target matching, the common vocabulary of our three resources (see Table 3 below).  

dictionary \ score MinRank P@100 +Rank P@100 *Rank P@100 
Word Similarity 523.6 61.0% 1945.9 40.6% 1040.2 55.7% 

Word Co-occurrence 1748.0 44.2% 4205.6 27.2% 3226.9 33.6% 
WordNet 2615.4 51.2% 6132.9 13.0% 4247.2 30.3% 

Random Baseline 
(STDEV) 

8543.0 
(189.7) 

0.9% 17156.6 
(260.7) 

0.2% 17113.8 
(252.0) 

0.3% 

Table 3: Scores for target retrieval in our resources for 964 cue triples  
based on a common vocabulary of 34,365 words. 

All dictionaries allow for much better retrieval than the random baseline. The results provide a clear 
picture: the word similarity resource achieves the lowest average ranks on all scores. In 61% of the 
cases, the target is among the top 100 retrieved words if we consider only the most effective cue 
(MinRank). Note that more than half of the targets are found in the top 100 for the multiplicative com-
bination (*Rank). This is surprising, as the relations between the cues and the target are quite diverse 
(see Section 6.3), and Word Similarity mostly contains direct and indirect taxonomic relations, such as 
co-hyponyms. The second-best resource in this evaluation is the word co-occurrence network, which 
outperforms WN on all metrics except the P@100 of MinRank scores.  

We also analyzed the differences qualitatively and looked at cue-target-pairs where the three net-
works perform very differently. As our findings show, different networks have different potentials 
with respect to the retrieval of ToT targets based on a given cue: 
• WordNet good, Co-occurrence poor: Synonyms or near-synonyms, like javelin – spear, cadaver – 

corpse. These do not co-occur in sentences, also cf. (Biemann et al., 2012).  
• WordNet poor, Co-occurrence good: associations, like hospital–doctor or hospital–sick. They are 

not encoded in WordNet, its associative relations are very spotty. Note that placing them first in 
the order of relations did not increase performance. 

• WordNet good, Similarity poor: meronyms/holonyms, such as door–knob, road–asphalt. These are 
not similar at all from a distributional point of view. 

• WordNet poor, Similarity good: relations that should be in WN, but for some reason are missing, 
e.g. torpedo–missile, calligraphy–art, gazebo–pavilion. 

• Co-occurrence good, Similarity poor: associations, part-of and cross-POS-relations, such as ortho-
dontist–braces, hospital–ER and growth–economic. Though being related, these words are not 
similar. 

• Co-occurrence poor, Similarity good: (near) synonyms, such as mercenary–warrior, lampoon–
caricature, orthodontist–dentist. Again, they rarely co-occur in the same sentence. 

8 Final Comments and Conclusion 

In this paper, we have examined the use of lexical semantic networks to overcome the ToT problem. 
After an analysis of the causes leading to this state, we have evaluated and analyzed three lexical 
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networks meant to overcome the ToT problem: WordNet, a word similarity network and a word co-
occurrence network. Our setup was to query the network with a cue and check whether this would 
allow us to retrieve the target. To see its relative efficiency, we measured the rank of the ToT target 
over the retrieved vocabulary.  

A ToT state can be induced by describing a given target to another person by providing some cues 
and ask him then to name it. Something similar can be achieved via crowdsourcing. We assumed that 
the cues retrieved via this technique, are similar to the ones humans typically use for the target 
retrieval. In order to determine the added value of a cue, we asked subjects to specify also the relation-
ship between the target and each one of the given three cues. It turned out that traditional X-‘onym’ 
relations (hyponym, hypernym, ...) represent about half of the relations, while the remainder are 
mainly associated terms, i.e. untyped relations.  

While we could not successfully exploit relational information to enhance retrieval, we could show 
the relative efficiency of different lexical semantic networks with respect to word access. As expected, 
WordNet is very good for retrieving targets on the basis of synonyms or taxonomically related cues. 
Word co-occurrence excels in associations, qualities and typical actions. Yet, the best network in our 
experiment was the one based on word similarity, as, apart for meronym/holonym relations, it 
combines the advantages of the other two. It covers basically the same aspects as WN, but it is more 
complete, containing syntagmatically associated terms like the co-occurrence network.  

The fact that WN does not perform well for syntagmatically related words suggests the usage of an-
other resource like Mel’čuk's Explanatory Combinatory Dictionaries (ECD) (Mel’čuk, 2006). ECDs 
look like good candidates, possibly better suited for our task than WN. Being part of a language pro-
duction theory, called ‘Meaning-Text Model’ (Mel’čuk, 2012), ECDs capture a larger range of lexical 
relations (50+ lexical functions) than WN. Alas, the problem we have with this option are coverage 
and availability. Though being extremely fine-grained the ECD covers so far only a subset of the 
words normally found in a lexicon. Also, the ECD is not available in digital form.  

Other potentially interesting alternatives would be association networks. Unfortunately, these re-
sources are either not free (Gavagai),13 too old (Kiss, et al. 1973), not rich enough in terms of coverage 
(de Deyne, et al. 2016; Nelson, et al. 2004), or not in the needed language, English (Lafourcade, 2007, 
2015). Probably the largest, and arguably the best association thesaurus at this moment is 
JeuxDeMots, a crowd-sourced resource created via a game, hence its name ‘wordgames’.14 Yet, as 
mentioned already, this resource is not available in English, which is probably the reason why it is so 
little known ‘abroad’. 

One last word concerning ‘relations’. Since we do believe in the virtues of relational information, 
—they are a critical component of the input— we plan to re-visit the problem of navigation in lexical 
graphs, but on the basis of cues enriched with relational information. Relations provide a context for 
the input. Revealing the users’ goal, they tell the information provider (human or system) what to do 
with the input: provide a synonym, hypernym, etc. Obviously, a user expects quite different outputs 
for the following inputs : [‘similar_to’ ‘knife’], [‘more general’ than ‘knife’], or [‘part_of’ ‘knife’]. 
Since our ultimate goal is the creation of a resource helping people to overcome the ToT problem, we 
plan to combine different types of corpora, to build then a hybrid semantic network, that is, an associa-
tion thesaurus containing typed and untyped relations. The first to keep the search space small, the se-
cond to make it large enough to include potentially relevant words, possibly even our target. 
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Abstract

The shared task of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex-V) aims
at providing a common benchmark for testing current corpus-based methods for the identifica-
tion of lexical semantic relations (synonymy, antonymy, hypernymy, part-whole meronymy) and
at gaining a better understanding of their respective strengths and weaknesses. The shared task
uses a challenging dataset extracted from EVALution 1.0 (Santus et al., 2015b), which contains
word pairs holding the above-mentioned relations as well as semantically unrelated control items
(random). The task is split into two subtasks: (i) identification of related word pairs vs. unre-
lated ones; (ii) classification of the word pairs according to their semantic relation. This paper
describes the subtasks, the dataset, the evaluation metrics, the seven participating systems and
their results. The best performing system in subtask 1 is GHHH (F1 = 0.790), while the best
system in subtask 2 is LexNet (F1 = 0.445). The dataset and the task description are available at
https://sites.google.com/site/cogalex2016/home/shared-task.

1 Introduction

Determining automatically if words are semantically related, and in what way, is important for Natu-
ral Language Processing (NLP) applications such as thesaurus generation (Grefenstette, 1994), ontol-
ogy learning (Zouaq and Nkambou, 2008), paraphrase generation and identification (Madnani and Dorr,
2010), as well as for drawing inferences (Martinez-Gómez et al., 2016). Many NLP applications make
use of handcrafted resources such as WordNet (Fellbaum, 1998). However, creating these resources is
expensive and time-consuming; they are available for only a few languages, and their coverage inevitably
lags behind the lexical and conceptual proliferation.

In the last decades, a number of corpus-based approaches have investigated the possibility of identi-
fying lexical semantic relations by observing word usage. Even though these methods are still far from
being able to provide a comprehensive model of how semantic relations work, pattern-based and distribu-
tional approaches (both supervised or unsupervised) have confirmed the existence of a strong connection
between word meaning and word distribution.

The practical utility of this finding matches its theoretical significance. The connection between word
meanings and their usage is gaining prominence in theories of the mental lexicon (Mikoajczak-Matyja,
2015) and language acquisition (Bybee and Beckner, 2015). The status of distributional semantics vis-
à-vis linguistics and cognitive science (Lenci, 2008) depends on making progress in this area. To further
assess and explore how much we can learn about semantic relations from word distribution, we propose
a shared task as part of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex-V), co-located
with COLING 2016 in Osaka, Japan.

The CogALex-V shared task is intended to provide a common benchmark for testing current corpus-
based methods for the identification of lexical semantic relations in order to gain a better understanding
of their respective strengths and weaknesses. It is articulated into two subtasks: (i) identification of
semantically related word pairs vs. unrelated ones; (ii) classification of the word pairs according to their

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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semantic relation. Participants were provided with training and test datasets extracted from EVALution
1.0 (Santus et al., 2015b), as well as a scoring script for evaluating the output of their systems.

The shared task has been intended and designed as a “friendly competition”: the goal was to identify
strengths and weaknesses of various methods, rather than just “crowning” the best-performing model.
In total, seven systems participated in the shared task. Most of them exploited Distributional Semantic
Models (DSMs), either of the count-based or word-embedding type (Baroni et al., 2014). Most of them
relied on distance or nearest neighbors in subtask 1, and on machine learning classifiers (e.g., Support
Vector Machine (SVM), Convolutional Neural Network (CNN) and Random Forest (RF)) in subtask 2.
Some systems enriched the DSM representation by adopting patterns (e.g., LexNet, the best system in
subtask 2) or extracting distributional properties with unsupervised measures (e.g., ROOT18).

This paper reports the results achieved by the participating systems, providing insights about their re-
spective strengths and weaknesses. It is organized as follows. Section 2 surveys similar shared tasks and
provides an overview of existing methods for identifying lexical semantic relations. Section 3 introduces
the task, the datasets, and the participating systems (each of them described in detail in a separate paper
included in the workshop proceedings).1 Section 4 lists the performance of the participating systems,
analyzing it from several perspectives. Section 5 summarizes the findings, highlights the contribution of
the shared task and suggests a few directions for future research.

2 Related Work

2.1 Shared Tasks on Semantic Relations Identification
The importance of efficient and accurate identification of different semantic relations for different NLP
applications has already prompted several shared tasks, differing in the relations considered and the task
definitions. These tasks are briefly surveyed in the current section.

SemEval-2007 shared task 4 (Girju et al., 2007) focused on seven “encyclopedic” semantic relations
between nouns (cause-effect, instrument-agency, product-producer, origin-entity, content-container,
theme-tool, part-whole). In order to disambiguate the senses, the participants could rely on WordNet
synsets and/or on sentences in which the noun pairs were observed. The best system out of fifteen
achieved 76.3% average accuracy.

SemEval-2010 shared task 8 (Hendrickx et al., 2010) considered the first five semantic relations
of SemEval-2007 shared task 4, with the addition of entity-destination, component-whole, member-
collection, and message-topic. These relations were annotated in sentence contexts. Given a sentence
and two tagged nominals, the task was to predict the relation between those nominals and its direction.
The best system out of twenty-eight achieved 82% accuracy. The participants were free to use various
semantic, syntactic and morphological resources.

Related to the task of lexical semantic relation identification is the task of taxonomy construction,
which essentially focuses on only one semantic relation: hypernymy (and its inverse, hyponymy). This
task was explored in SemEval-2015 (Bordea et al., 2015) and SemEval-2016 (Buitelaar et al., 2016). The
test data consisted of a list of domain terms that participants had to structure into a taxonomy (a list of
pairs <term, hypernym>), possibly adding intermediate terms. The participating systems used lexical
patterns, dictionary definitions, Wikipedia, knowledge bases, and vector space models. Also noteworthy
is SemEval-2016 Task 14 (Jurgens and Pilehvar, 2016), which asked participants to enrich WordNet
taxonomy by determining, for a given new word, which synset it should be part of (thus combining
detection of hypernyms with word sense disambiguation).

The present shared task differs from those listed above in the semantic relations it considers: synonymy,
antonymy, hypernymy, part-whole meronymy, and random or “semantically unrelated”. It also differs
from SemEval-2010 task 8 and SemEval-2007 task 4 in the absence of sentence contexts for the pairs
of target words. Most importantly, unlike the above tasks, the CogALex-V shared task forbids the use
of any thesauri, knowledge bases, or semantic networks (particularly WordNet and ConceptNet), forcing
the participating systems to rely exclusively on corpus data.

1Training and test data as well as further information about the shared task are available at https://sites.google.
com/site/cogalex2016/home/shared-task.
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2.2 Methods for the Identification of Semantic Relations

Up to this date, several corpus-based approaches to the identification of semantic relations have been
proposed. Most of them, however, focus on a single semantic relation with the ambitious objective of
isolating it from all the others. Dealing with multiple relations has been found particularly challenging,
and few systems have attempted multi-class classifications. The exceptions include Turney (2008) and
Pantel and Pennacchiotti (2006).

Early approaches rely on lexical-syntactic patterns (e.g. “tools such as hammers”). After the seminal
work of Hearst (1992) who sketched methods for pattern discovery, Snow et al. (2004) adopted machine
learning over dependency-paths-based features. While these approaches focused on hypernyms, Pantel
and Pennacchiotti (2006) introduced Espresso, able to identify several semantic relations (i.e. hyper-
nymy, part-of, succession, reaction and production) as well as to maximize recall by using the Web and
precision by assessing the reliability of the patterns. Other pattern-based approaches to synonymy and
antonymy are reported by Lin et al. (2003), Turney (2008), Wang et al. (2010) and Lobanova et al. (2010).

The major limitation of pattern-based approaches is that they require words to co-occur in the same
sentence, strongly impacting the recall. Distributional approaches have therefore been adopted to reduce
such limitations. They are based on the Distributional Hypothesis (Harris, 1954; Firth, 1957) that words
occurring in similar contexts also bear similar meaning. Distributional approaches can be (i) unsuper-
vised, generally consisting of mathematical functions that implement linguistic hypotheses about how
and which contexts are relevant to identify specific relations (Kotlerman et al., 2010; Lenci and Benotto,
2012; Santus et al., 2014); or (ii) supervised, generally consisting of algorithms that automatically learn
some distributional information about the words holding a specific relation (Weeds et al., 2014; Roller
et al., 2014; Roller and Erk, 2016; Santus et al., 2016; Nguyen et al., 2016; Shwartz et al., 2016). While
unsupervised approaches are commonly outperformed by supervised ones, the latter – which rely on
distributional word vectors, either concatenated or combined through algebraic functions – seem to learn
specific lexical properties of the words in the pairs rather than the general semantic relation existing be-
tween them (Weeds et al., 2014; Levy et al., 2015b). This has a negative impact on their performance on
previously unseen words, lexically split datasets and unseen switched pairs (Santus et al., 2016).

One of the ongoing disputes in the NLP community concerns the relative merits and demerits of count-
based distributional models and word embeddings (which are obtained by training neural networks rather
than counting co-occurrence frequencies). While the latter seem to outperform the former in several tasks
such as similarity estimation (Baroni et al., 2014), both types of models are subject to variation at the
level of individual linguistic relations (Gladkova et al., 2016). Levy et al. (2015a) have also shown that
optimization of hyperparameters can make a bigger difference than the choice between different models.

Finally, very recently, several scholars have investigated the possibility of integrating different kinds of
information. Kiela et al. (2015) have used image generality for hypernymy detection, while Shwartz et al.
(2016) have tried to identify the same relation by combining pattern-based and distributional information.

3 Shared task

3.1 Task description

The CogALex-V shared task was conducted as a “friendly competition” where participants had access
to both training and testing datasets, released on the 8th and the 27th of September 2016, respectively.
The participants were asked to evaluate the output of their system with the official evaluation script,
released with the test set together with random and majority baselines. Each participant was furthermore
requested to submit a description paper and the output of their system in the two subtasks by the 16th of
October 2016. Two reviews for each paper were returned by the 25th of October 2016, and the camera-
ready version was due on the 2nd of November. The shared task was split in two subtasks which are
described below.

Subtask 1. For each word pair (e.g. dog – fruit), decide whether the terms are semantically related
(TRUE) or not (FALSE). Given a TAB-separated input file with word pairs, participating systems
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must add a third column specifying their prediction. This subtask was evaluated in terms of preci-
sion, recall and F1-score for the identification of related word pairs. The unrelated word pairs were
considered as noise.

Subtask 2. For each word pair (e.g. cat – animal), decide which semantic relation (if any) holds
between the two words. The options are synonymy (SYN), antonymy (ANT), hypernymy (HYPER),
part-whole meronymy (PART OF) and random (RANDOM) for pairs where none of the four relations
holds (see section 3.2). The input file was the same as for subtask 1. Participant systems were
expected to return a TAB-separated file, where each word pair is annotated with exactly one relation
label. This subtask was evaluated in terms of precision, recall and F1-score for each of the four
semantic relations. The unrelated word pairs (RANDOM) were considered as noise and therefore not
considered in the final weighted average.

As mentioned above, the participating systems were supposed to be entirely corpus-based, without re-
course to any existing dictionaries, knowledge bases or semantic networks. However, there was no
restriction on the corpora that could be used. The participants were free to use the provided training data
for supervised machine learning or for developing or tuning an unsupervised system. For example, they
could use purely handwritten knowledge patterns for relation mining or to learn knowledge patterns from
the CogALex-V training data, but they could not bootstrap knowledge patterns from a different set of
seed terms, and no other training data was allowed.

Each participant was asked to submit the output of the system whose results are reported in the de-
scription paper. Further post-hoc experiments were encouraged at the authors’ discretion.

3.2 Datasets

The training and test datasets were constructed on the basis of EVALution 1.0 (Santus et al., 2015b),
a dataset for evaluating distributional semantic models that was derived from WordNet 4.0 (Fellbaum,
1998) and ConceptNet 5.0 (Liu and Singh, 2004), and then refined through automatic filters and crowd-
sourcing.

EVALution 1.0 includes various parts of speech, both single words and multi-word units (e.g.,
grow up).2 Words have been stemmed (e.g. feeling appears as feel). This increases ambiguity in the
dataset, but it is also consistent with the fact that semantic relations between lexical items are typically
independent from their morphosyntactic realization (e.g. the hypernymic pair anger – feel now represents
morphological variants such as anger – feeling and anger – to feel).

After being extracted from WordNet or ConceptNet, the pairs (e.g. sweet SYN candy) were evaluated
by CrowdFlower workers in order to obtain native speaker judgments, which can be used as a proxy
for the prototypicality of the relations. The crowdsourcing task was to rate the truthfulness of sentences
generated from the word pairs (according to the templates presented in table 1) on a scale from 1 to 5,
where 1=completely disagree and 5=completely agree. Five judgments were collected for each sentence.

The CrowdFlower workers also tagged the general domains in which the relata were found more
appropriate, such as “nature”, “culture” or “emotion”. Unfortunately the reliability of these tags is fairly
low, as some workers applied them randomly. We can therefore consider trustworthy only tags that were
selected by a high number of voters. In addition to domains, EVALution contains other metadata, either
concerning the pairs (e.g., from which resource the pair is inherited) or the single words (e.g., word
frequency, capitalization distribution, morphological distribution, part-of-speech distribution, etc.). This
metadata can be used for subsequent analysis of the performance of the systems.3

For this shared task, we extracted a subset of EVALution 1.0 that covers 747 target words (318 in the
training set and 429 in the test set) with at least one of the following relata: synonym, antonym, hypernym
and part-whole meronym; only pairs with average rating ≥ 4 were considered. In order to increase the
difficulty of the identification task, for every target word we generated several random pairs by switching

2Multi-word units were filtered out for the shared task.
3Metadata is not available for the random pairs, but it is available for the individual words in the random pairs because they

were generated exclusively from words contained in EVALution 1.0.
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Relation Tag Template Example Training Testing
Synonymy SYN W2 can be used with the

same meaning as W1
candy-sweet,
apartment-flat

167 235

Antonymy ANT W2 can be used as the oppo-
site of W1

clean-dirty, add-
take

241 360

Hypernymy HYPER W1 is a kind of W2 cannabis-plant,
actress-human

255 382

Part-whole
meronymy

PART OF W1 is a part of W2 calf-leg, aisle-
store

163 224

Random
word

RANDOM None of the above relations
apply

accident-fish,
actor-mild

2228 3059

Table 1: Semantic relations in the shared task dataset

the relata. These pairs – approximately three times as many as related pairs – are intended to act as
noise for the models. They may contain associated words (e.g. coffee – cup, brick – build), but pairs
accidentally holding any of the four semantic relations above were filtered out manually.4

The dataset is particularly challenging for several reasons. First, it does not provide part-of-speech
information for the words in the pairs, leaving the participant systems with the burden of disambiguation
(e.g. fire – shoot are synonyms only when both are interpreted as verbs). Second, several words were
interpreted in a specific meaning that does not always correspond to the dominant sense (e.g. compact
– car, where compact is a noun referring to a specific kind of car). Third, it combines relations in-
herited from a lexical resource like WordNet with relations that were obtained by crowdsourcing and
pattern-based extraction (in ConceptNet), making their definitions less consistent. Fourth, the terms in
EVALution are stemmed, thereby denying systems the possibility of using morphological clues as fea-
tures for the classification. Finding semantic relations between morphologically heterogeneous words is
an additional challenge, but it is very likely that NLP applications (e.g. those for paraphrase generation
and entailment verification) would benefit from the ability to focus on semantics while ignoring morpho-
logical differences. These difficulties sometimes appear together, e.g. in the hypernymic pair stable –
build, where stable is used in the sense of ”a building with stalls where horses, cattle, etc., are kept and
fed”5 and build is the stemmed form of building.

Although the above-mentioned difficulties could impact the possible performance of the competing
systems, they stem from the very nature of natural language semantics. This is confirmed by the fact
that CrowdFlower workers were clearly able to identify those pairs as semantically related. During the
analysis of the systems, EVALution 1.0 metadata can be used for pinpointing the sources of problems.

3.3 Participants

The CogALex-V shared task had 7 participating teams in subtask 1, and 6 of these teams also took part
in subtask 2. The methods and corpora used by these teams are summarized in table 2.

4 Results

4.1 Evaluation procedure

The participants were provided with a Python script for the evaluation. Given the gold standard and
a system output file as input, it calculated precision, recall and their harmonic mean F1 for related
pairs (in subtask 1) or semantic relations (in subtask 2), ignoring the unrelated pairs. In subtask 2, for
example, scores were computed for synonymy (SYN), antonymy (ANT), hypernymy (HYPER) and part-
whole meronymy (PART OF); the overall ranking of the systems was based on their weighted average.

4As the filtering was carried out by only two annotators, it is possible that a few such accidentally related pairs may have
been overlooked.

5http://www.wordreference.com/definition/stable (retrieved on 3rd of November 2016)
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Team Method(s) Corpus size Corpus
GHHH Word analogies, linear regression and multi-task

CNN
100B

6B

840B

Google News (pre-trained word2vec
embeddings, 300 dim.);
Wikipedia + Gigaword 5 (pre-trained
GloVe embeddings, 300 dim.),
Common Crawl (pre-trained GloVe em-
beddings, 300 dim.)

Mach5 angular distance in SVD-reduced count-based
DSM for subtask 1 and linear SVM classifier based
on 1200 SVD dimensions in subtask 2

9.5B ENCOW 2014, traditional dependency-
based DSM

LexNet multi-layer perceptron classifying feature vectors
that consist of embeddings for two words and all
dependency paths that connect them in a corpus

6B

100B

Wikipedia + Gigaword 5 (pre-trained
GloVe embeddings, 50-dim.);
Google News (pre-trained word2vec
embeddings, 300 dim.)

ROOT18 random forest classifier trained on 18 features rep-
resenting unsupervised distributional properties of
the investigated relations

2B UkWac, count-based BOW DSM

LOPE cosine similarity, nearest neighbor position in-
dexing, assuming the order synonymy-antonymy-
hypernymy-meronymy-random

100B Google News (pre-trained word2vec
embeddings, 300 dim.)

HsH-
Supervised

cosine similarity, classification based on SVM 2B ukWaC (sparse PPMI-weighted vec-
tors, 17400 features)

CGSRC CNN-based relation classification 100B Google News (pre-trained word2vec
embeddings, 50–300 dim.)

Table 2: Description of the participating systems

The script requires that the gold standard and the output file contain exactly the same pairs, in the same
order, and using the same annotation labels.

4.2 Results and ranks
Most of the participating systems obtained fairly good results in subtask 1. Performance was however
much worse for all of them (even the best systems) in subtask 2, demonstrating once more that the
identification of semantic relations is a hard task that calls for more attention from the community.

Team Subtask 1

GHHH 0.790
Mach5 0.778
LexNet 0.765
ROOT18 0.731
LOPE 0.713
HsH-Supervised 0.585
CGSRC 0.431

Team Subtask 2

LexNet 0.445
GHHH 0.423
Mach5 0.295
ROOT18 0.262
CGSRC 0.252
LOPE 0.247

Table 3: Participating systems ranked by their F1 scores in subtask 1 (left) and subtask 2 (right)

Table 3 ranks the participating systems according to their F1-scores in subtask 1 and subtask 2. The
best performing system in subtask 1 is GHHH (F1 = 0.790), with the first 5 top systems being less
than 10% behind, and Mach5 (F1 = 0.778) and LexNet (F1 = 0.765) less than 3%. This confirms
that numerous corpus-based approaches are competitive in discriminating between related and unrelated
word pairs. The situation is quite different for subtask 2, where the same three systems achieve the
highest scores, but now LexNet comes first (F1 = 0.445), GHHH second (F1 = 0.423) with less than
3% difference, and Mach5 (F1 = 0.295) lags behind much more than in subtask 1, achieving a score that
is closer to the last three systems than to the first two.

As can be seen in Table 2, the top systems use very different approaches. GHHH investigates word
analogies, linear regression and multi-task Convolutional Neural Networks (CNN) with 300-dimensional
publicly available word embeddings trained on huge corpora (Google News, Common Crawl and
Wikipedia + Gigaword 5). The authors found that linear regression works better in subtask 1 (i.e. binary
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classification), while multi-task CNN performs better in subtask 2, which involves multi-class classifica-
tion. Analogy was instead found less appropriate for semantic relation identification.

LexNet relies on Wikipedia + Gigaword 5 and Google News corpora, leveraging the combination of
distributional and path-based information. The authors merged the 50-dimensional GloVe pre-trained
embeddings (Pennington et al., 2014) for the words in the pairs with the average embedding vector –
created using a LSTM (Hochreiter and Schmidhuber, 1997) – of all the dependency paths that connect
them in the corpus. In subtask 1, LexNet is combined with vector cosine (calculated on word2vec
embeddings trained on Google News) through weights that were learned on a validation set. In subtask
2, in order to avoid a bias towards the majority class RANDOM, a Multi-Layer Perceptron (MLP) is
trained and applied only on pairs that were classified as related in subtask 1.

The third system, Mach5, investigates the structure and hyperparameters of two traditional
dependency-filtered and dependency-structured DSMs trained on a Web corpus of 9.5 billion words.
The author sets most parameters according to Lapesa and Evert (2014), focusing on feature selection and
optimization of SVD dimensions. Distance information is used directly in subtask 1, while for subtask
2 a linear SVM classifier is applied to 1200-dimensional vectors representing partial Euclidean distance
in the two SVD-reduced spaces. Given the competitive results in subtask 1 and the much lower perfor-
mance achieved in subtask 2, it is evident that Mach5 was optimized for identifying non-random pairs
rather than for recognizing and discriminating specific semantic relations.

The other systems include ROOT18, which relies on several unsupervised features extracted from
ukWaC that aim at identifying specific semantic relations. Like Mach5, the system performs relatively
well in subtask 1, but is much worse in subtask 2. LOPE achieves similar performance to ROOT18
in both subtasks. It uses word2vec embeddings trained on Google News to determine the most similar
words for each target; it classifies as related only the words appearing in the top-N nearest neighbors
(with N = 600). In subtask 2, LOPE classifies the semantic relations according to the rank of the
words in the nearest neighbors list, assuming that they are ranked decreasingly as synonyms-antonyms-
hypernyms-meronyms-randoms.

The other two systems, CGSRC and HsH-Supervised, perform worse in subtask 1. CGSRC, however,
obtains results comparable to ROOT18 in subtask 2, while HsH-Supervised did not participate in this
task. CGSRC relies on a CNN architecture with four layer types: an input layer, a convolution layer, a
max pooling layer and a fully connected softmax layer for term-pair relation classification. The CNN
works on word2vec embeddings trained on about 100 billion words of Google News corpus. Finally,
HsH-Supervised is an SVM classifier trained on the multiplication of the distributional vectors of the
two words in the pairs extracted from ukWaC (similar to the approach of Mach5 in subtask 2). This
method was reported to perform worse than cosine similarity on the same vectors.

As a rough summary, all systems relied on DSMs, in either “count” (Mach5, ROOT18 and HSH-
Supervised) or “predict” form (GHHH, LexNet, LOPE and CGSRC). These DSMs were trained on
corpora whose size ranges from 2 billion to 840 billion words (with “count” models relying on the

W1 W2 Gold Prediction
cold bad FALSE TRUE
combine create FALSE TRUE
come fill FALSE TRUE
dark narrow FALSE TRUE
democracy peace FALSE TRUE
depress injure FALSE TRUE
desert darkness FALSE TRUE
desert landscape FALSE TRUE
enjoyment quality FALSE TRUE
eye lens FALSE TRUE

Table 4: Sample of pairs that were misclassified by the top three systems

75



W1 W2 Gold Prediction
club weapon TRUE FALSE
cold friendly TRUE FALSE
commerce deal TRUE FALSE
contract grow TRUE FALSE
cook action TRUE FALSE
crowd desert TRUE FALSE
crowd one TRUE FALSE
crown base TRUE FALSE
cube die TRUE FALSE
dart action TRUE FALSE

Table 5: Sample of pairs that were misclassified by the top three systems

smaller corpora between 2 and 9.5 billion words). There seems to be a correlation between corpus
size and system performance, even though it is not linear. GHHH, for example, obtains its highest
performance in subtask 2 with embeddings trained on 840 billion words, but when embeddings trained
on 6 billion words are used the performance is only slightly behind. The impact is much bigger when
comparing systems based on 2 billion words with systems based on 6 billion words of corpus data.

Another observation is that vector distance or nearest neighbor information seems to be sufficient to
obtain competitive results in subtask 1, but subtask 2 proves to be much more complex. Several classifiers
have been adopted (SVM, Linear Regression, Random Forest and CNN), but none of them seems to have
a clear edge on the others: the best two systems rely on a CNN (GHHH) and on a MLP (LexNet), but
the CNN is also used by CGSRC with much less convincing results.

Further information about the systems and their parameters can be found in the respective description
papers in this volume.

4.3 Analysis of results

In order to provide some insights about what went wrong in the systems and whether the dataset might
have to be blamed for their relatively low performance in subtask 2, we investigated how many and which
pairs were misclassified by the top three systems, separately for each subtask.

Subtask 1. As many as 162 pairs out of 4,260 were misclassified by all the top three systems: 60 of
them are unrelated pairs wrongly classified as related (see Table 4 for examples), while the remaining
102 are related pairs in the gold standard that were not recognized by the systems (see Table 5). As can be
seen from Table 4, many of the false positives carry some kinds of association (e.g. cold – bad, combine
– create, eye – lens, etc.), which in very few cases might be due to an accidental semantic relationship
not filtered out by the annotators (e.g. desert – landscape as hypernymy). In Table 5, instead, we notice
that most of the false negatives include highly ambiguous words, mostly used in rare senses (e.g. the
hypernymic club – weapon, the antonymous crown – base, etc.) and/or very general hypernyms (e.g.
dart – action and cook – action).

Subtask 2. As many as 513 pairs out of 4,260 were misclassified by all the top three systems. 237
of them received the same label. In Table 6 we summarize the number of pairs per relation that were
misclassified, both with different labels (on the left) and with the same ones (on the right). Among the
237 misclassified pairs, the large majority (i.e. 172) were misclassified as RANDOM, while the others
were misclassified between the various relations. With respect to these ones, hypernyms were most
often confused with synonyms (even native speakers may have a hard time discriminating them: e.g.
dessert – sweet) and antonyms (as they might share similar distributional properties, cf. Santus et al.
(2015a)). Also, hypernyms were sometimes confused with part-whole meronyms. This is particularly
likely to happen if one of the words is semantically ambiguous (e.g. sugar – candy). Further errors
should probably be attributed to the stemmed form of the words (e.g. the hypernymic pride – feel(ing)),
to their ambiguity (e.g. duck – move), and to a large difference in generality between the related words
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Receiving any label Receiving the same label
143 ANT 62 ANT

140 HYPER 68 HYPER

85 PART OF 50 PART OF

22 RANDOM 9 RANDOM

123 SYN 48 SYN

513 total 237 total

Table 6: Pairs that were misclassified by the top three systems, organized by gold relation

(e.g. cook – action).

5 Conclusion

In this paper, we have described the shared task of the 5th Workshop on Cognitive Aspects of the Lexicon
(CogALex-V), which aims at testing corpus-based methods for the identification of semantically related
words on the same benchmark in order to gain a better understanding of how such methods can model
the acquisition and manipulation of semantic relations.

A dataset extracted from EVALution 1.0 (Santus et al., 2015b), and split into a training and a test set,
was provided at https://sites.google.com/site/cogalex2016/home/shared-task
in September 2016, together with an evaluation script and two baselines (majority and random). Seven
participants submitted their system output and their paper description in October 2016. The task was
divided into two subtasks, respectively aiming at the binary classification of related vs. unrelated words
and at the multi-class classification of synonyms, antonyms, hypernyms, meronyms and random pairs.

The systems achieved a reasonable F1 score in the first subtask (GHHH was the best system with
F1 = 0.790), but a rather low performance in subtask 2 (LexNet was the best system with F1 = 0.445).
This is certainly due to the inherent difficulty of the multi-class setting, but compounded by a series of
other difficulties rooted in the design of the dataset, which uses ambiguous and stemmed words without
part-of-speech information. These results suggest that there is still need for improvement and we hope
that this shared task has provided a challenging dataset and state-of-the-art baselines to support further
investigation. We would also like to point out that our dataset includes metadata from EVALution 1.0
(i.e. semantic domain, word frequency, capitalization distribution, morphological distribution, part-of-
speech distribution, etc.), which can be used to evaluate the performance of the system and to pinpoint
the sources of problems.

As a general note to organizers of future shared tasks, we would suggest to keep the factors of variabil-
ity in the participating systems as low as possible, or at least require explicit analyses of these factors.
In fact, although we were able to draw some general conclusions about the participating systems (see
section 4), it is hard to determine the precise impact of relevant factors such as corpus size, especially if
these factors are not explicitly analyzed in all the system description papers.
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Abstract

We present a submission to the CogALex 2016 shared task on the corpus-based identification
of semantic relations, using LexNET (Shwartz and Dagan, 2016), an integrated path-based and
distributional method for semantic relation classification. The reported results in the shared task
bring this submission to the third place on subtask 1 (word relatedness), and the first place on
subtask 2 (semantic relation classification), demonstrating the utility of integrating the comple-
mentary path-based and distributional information sources in recognizing concrete semantic rela-
tions. Combined with a common similarity measure, LexNET performs fairly good on the word
relatedness task (subtask 1). The relatively low performance of LexNET and all other systems
on subtask 2, however, confirms the difficulty of the semantic relation classification task, and
stresses the need to develop additional methods for this task.

1 Introduction

Discovering whether words are semantically related and identifying the specific semantic relation that
holds between them is a key component in many NLP applications, such as question answering and rec-
ognizing textual entailment (Dagan et al., 2013). Automated methods for semantic relation identification
are commonly corpus-based, and mainly rely on the distributional representation of each word.

The CogALex shared task on the corpus-based identification of semantic relations consists of two
subtasks. In the first task, the system needs to identify for a word pair whether the words are semantically
related or not (e.g. True:(dog, cat), False:(dog, fruit)). In the second task, the goal is to determine the
specific semantic relation that holds for a given pair, if any (PART OF:(tail, cat), HYPER:(cat, animal)).

In this paper we describe our approach and system setup for the shared task. We use LexNET (Shwartz
and Dagan, 2016), an integrated path-based and distributional method for semantic relation classification.
LexNET was the system with the overall best performance on subtask 2, and was ranked third on subtask
1, demonstrating the utility of integrating the complementary path-based and distributional information
sources in recognizing semantic relatedness.1

To aid in recognizing whether a pair of words are related at all (subtask 1), we combine LexNET
with a common similarity measure (cosine similarity), achieving fairly good performance, and a slight
improvement upon using cosine similarity alone. Subtask 2, however, has shown to be extremely diffi-
cult, with LexNET and all other systems achieving relatively low F1 scores. The conflict between the
mediocre performance and the recent success of distributional methods on several other common datasets
for semantic relation classification (Baroni et al., 2012; Weeds et al., 2014; Roller et al., 2014) could be
explained by the stricter evaluation setup in this subtask, which is supposed to demonstrate more closely
real-world application settings. The difficulty of the semantic relation classification task emphasizes the
need to develop better methods for this task.

This work is licenced under a Creative Commons Attribution 4.0 International License. License details:
http://creativecommons.org/licenses/by/4.0/

1LexNET’s code is available at https://github.com/vered1986/LexNET, and the shared task results are avail-
able at https://sites.google.com/site/cogalex2016/home/shared-task/results
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2 Background

2.1 Word Relatedness

Recognizing word relatedness is typically addressed by distributional methods. To determine to what ex-
tent two terms x and y are related, a vector similarity or distance measure is applied to their distributional
representations: sim(~vwx , ~vwy). This is a straightforward application of the distributional hypothesis
(Harris, 1954), according to which related words occur in similar contexts, hence have similar vector
representations.

Most commonly, vector cosine is adopted as a similarity measure (Turney et al., 2010). Many other
measures exist, including but not limited to Euclidean distance, KL divergence (Cover and Thomas,
2012), Jaccard’s coefficient (Salton and McGill, 1986), and more recently neighbor rank (Hare et al.,
2009; Lapesa and Evert, 2013) and APSyn (Santus et al., 2016a).2 To turn this task into a binary clas-
sification task, where x and y are classified as either related or not, one can set a threshold to separate
similarity scores of related and unrelated word pairs.

2.2 Semantic Relation Classification

Recognizing lexical semantic relations between words is valuable for many NLP applications, such as
ontology learning, question answering, and recognizing textual entailment. Most corpus-based methods
classify the relation between a pair of words x and y based on the distributional representation of each
word (Baroni et al., 2012; Roller et al., 2014; Fu et al., 2014; Weeds et al., 2014). Earlier methods
utilized the dependency paths that connect the joint occurrences of x and y in the corpus as a cue to
the relation between the words (A. Hearst, 1992; Snow et al., 2004; Nakashole et al., 2012). Recently,
Shwartz and Dagan (2016) presented LexNET, an extension of HypeNET (Shwartz et al., 2016). This
method integrates both path-based and distributional information for semantic relation classification,
which outperformed approaches that rely on a single information source, on several common datasets
(Baroni and Lenci, 2011; Necsulescu et al., 2015; Santus et al., 2015; Santus et al., 2016b).

3 System Description

In LexNET, a word-pair (x, y) is represented as a feature vector, consisting of a concatenation of distri-
butional and path-based features: ~vxy = [~vwx , ~vpaths(x,y), ~vwy ], where ~vwx and ~vwy are x and y’s word
embeddings, providing their distributional representation, and ~vpaths(x,y) is the average embedding vec-
tor of all the dependency paths that connect x and y in the corpus. Dependency paths are embedded
using a LSTM (Hochreiter and Schmidhuber, 1997), as described in Shwartz et al. (2016). This vector
is then fed into a neural network that outputs the class distribution ~c, and then the pair is classified to the
relation with the highest score r:

~c = softmax(MLP(~vxy)) (1a)

r = argmaxi ~c[i] (1b)

MLP stands for Multi Layer Perceptron, and could be computed with or without a hidden layer (equations
2 and 3, respectively):

~h = tanh(W1 · ~vxy + b1) (2a)

MLP(~vxy) = W2 · ~h + b2 (2b)

MLP(~vxy) = W1 · ~vxy + b1 (3)

where Wi and bi are the network parameters and ~h is the hidden layer.

2See Lee (1999) for an extensive list of such measures.
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Method Hyper-parameters Corpus size P R F1

Subtask 1
Cos word2vec, t: 0.3 100B 0.759 0.795 0.776

LexNET hidden layers: 0, dropout: 0.0, epochs: 3 6B 0.780 0.561 0.652
LexNET+Cos word2vec, wL = 0.3, wC = 0.7, t = 0.29 ∼100B 0.814 0.854 0.833

Subtask 2 Dist dep-based, method: concat, classifier: SVM, L1 3B 0.611 0.598 0.600
LexNET hidden layers: 0, dropout: 0.0, epochs: 5 6B 0.658 0.646 0.642

Table 1: Performance scores on the validation set along with hyper-parameters and effective corpus size
(#tokens) used by each method. Subtask 2 results refer to the subset of related pairs, as detailed in § 4.2.

3.1 A Note About Word Relatedness
While path-based approaches have been commonly used for semantic relation classification (A. Hearst,
1992; Snow et al., 2004; Nakashole et al., 2012; Necsulescu et al., 2015), they have never been used
for word relatedness, which is considered a “classical” task for distributional methods. We argue that
path-based information can improve performance of word relatedness tasks as well (see Section 4.1). We
train LexNET to distinguish between two classes: RELATED and UNRELATED, and combine it with the
common cosine similarity measure to tackle subtask 1.

4 Experimental Settings

The shared task organizers provided a dataset extracted from EVALution 1.0 (Santus et al., 2015), which
was split into training and test sets. As instructed, we trained and tuned our method on the training set,
and evaluated it once on the test set. To tune the hyper-parameters, we split the training set to 90% train
and 10% validation sets. Since the dataset contains only 318 different words in the x slot, we performed
the split such that the train and the validation contain distinct x words.3

LexNET has several tunable hyper-parameters. Similarly to Shwartz and Dagan (2016), we used
the English Wikipedia dump from May 2015 as an underlying corpus (3B tokens), and initialized the
network’s word embeddings with the 50-dimensional pre-trained GloVe word embeddings (Pennington
et al., 2014), trained on Wikipedia and Gigaword 5 (6B tokens). We fixed this hyper-parameter due to
computational limitations with higher-dimensional embeddings. For each subtask, we tuned LexNET’s
hyper-parameters on the validation set: the number of hidden layers (0 or 1), the number of training
epochs, and the word dropout rate (see Shwartz et al. (2016) for technical details). Table 1 displays
the best performing hyper-parameters in each subtask, along with the performance on the validation set,
which is detailed below.

4.1 Subtask 1: Word Relatedness
We tuned LexNET’s hyper-parameters on the validation set, disregarding the similarity measure at this
point, and then chose the model that performed best on the validation set and combined it with the
similarity measure.

We computed cosine similarity for each (x, y) pair in the dataset: cos(~vwx , ~vwy) = ~vwx ·~vwy

‖~vwx‖·‖~vwy‖ , and
normalized it to the range [0, 1]. We scored each (x, y) pair by a combination of LexNET’s score for the
RELATED class and the cosine similarity score:

Rel(x, y) = wC · cos(~vwx , ~vwy) + wL · ~c[RELATED] (4)

where wC , wL are the weights assigned to cosine similarity and LexNET’s scores respectively, such that
wC + wL = 1. We tuned the weights and a threshold t using the validation set, and classified (x, y)
as related if Rel(x, y) ≥ t. The word vectors used to compute the cosine similarity scores were chosen
among several available pre-trained embeddings.4 For completeness we also report the performance of
two baselines: cosine similarity (wC = 1) and LexNET (wL = 1, fixed t = 0.5).

3A random split yielded perfect results on the validation set, which were due to lexical memorization (Levy et al., 2015).
4word2vec (300 dimensions, SGNS, trained on GoogleNews, 100B tokens) (Mikolov et al., 2013), GloVe (50-300 dimen-

sions, trained on Wikipedia and Gigaword 5, 6B tokens) (Pennington et al., 2014), and dependency-based embeddings (300
dimensions, trained on Wikipedia, 3B tokens) (Levy and Goldberg, 2014).
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Method P R F1

Subtask 1

Random Baseline 0.283 0.503 0.362
Majority Baseline 0.000 0.000 0.000

Cos 0.841 0.672 0.747
LexNET+Cos 0.754 0.777 0.765

Subtask 2

Random Baseline 0.073 0.201 0.106
Majority Baseline 0.000 0.000 0.000

Dist 0.469 0.371 0.411
LexNET 0.480 0.418 0.445

Table 2: Performance scores on the test set in each subtask, of the selected methods and the baselines.

4.2 Subtask 2: Semantic Relation Classification
The subtask’s train set is highly imbalanced towards random instances (roughly 10 times more than any
other relation), and training any supervised method leads to overfitting to the random class. We therefore
trained the model only on the related classes (excluding RANDOM pairs), for which the classes are more
balanced. During inference time, we used the model from subtask 1 to assign a relatedness score to each
pair, Rel(x, y), and computed the class distribution using the model from subtask 2, only for pairs that
were related according to this score.

Finally, we applied a heuristic that if for a word pair (x, y), the difference in scores between the top
scoring classes is low (< 0.2), and the top class is SYN, then it is only classified as SYN if the number of
paths between x and y is smaller than 3. This is due to the fact that synonyms are hard to recognize with
both distributional and path-based approaches (Shwartz and Dagan, 2016), but it is known that they do
not tend to co-occur.

To compare LexNET’s performance on the validation set with other methods’ performances, we
adapted the distributional baseline employed by Shwartz et al. (2016) and Shwartz and Dagan (2016),
where a classifier is trained on the combination of x and y’s word embeddings. We experimented with
several combination methods (concatenation (Baroni et al., 2012), difference (Fu et al., 2014; Weeds et
al., 2014), and ASYM (Roller et al., 2014)), regularization factors, and pre-trained word embeddings
(Mikolov et al., 2013; Pennington et al., 2014; Levy and Goldberg, 2014). This time, we used cosine
similarity (subtask 1) to separate related from unrelated pairs, and trained the classifier only to distinguish
between the related classes. Similarly to subtask 1, we tune LexNET and the baseline’s hyper-parameters
on the validation set. The best performance is reported in Table 1.

5 Results and Analysis

Table 2 displays the performance of our methods and the baselines on the test set. In addition to the
two baselines provided by the shared task organizers (majority and random), we report also the results
of our baselines detailed in Section 4. The majority baseline classifies all the instances as UNREALTED

(subtask 1) or RANDOM (subtask 2). Since these labels are excluded from the averaged F1 computation,
this baseline’s performance metrics are all zero.

Subtask 1: Word Relatedness Cos achieves fairly good performance (F1 = 0.747), and
LexNET+Cos slightly improves upon it. To better understand LexNET’s contribution, we examined
pairs that were correctly classified by LexNET+Cos while being incorrectly classified by Cos. Out
of the 57 pairs that were true negative in LexNET and false positive in Cos, we judged only one as
somehow related ((death, man)).

We sampled 25 (from the 184) true positive pairs in LexNET+Cos that were false negatives in Cos,
and found that they were all connected via paths in the corpus, suggesting that LexNET’s contribution
comes also from the path-based component, rather than only from adding distributional information. 12
of the pairs contained a polysemous term, for which the relation holds in a specific sense (e.g. (fire,
shoot)). 5 other pairs had a weak relation, e.g. (compact, car). While a car can be compact, non of these
words is one of the most related words to the other.5 As noted by Shwartz and Dagan (2016), these are

5car is mostly related to driver, cars, and race, and compact to compactness and locally.
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predictions
ANT RANDOM HYPER PART OF SYN

go
ld

ANT 40.28 30.28 5.56 5.83 18.06
RANDOM 2.35 93.07 1.31 1.37 1.90

HYPER 10.21 22.77 45.81 6.02 15.18
PART OF 2.23 37.05 6.70 47.77 6.25

SYN 25.96 20.43 14.47 7.23 31.91

relation P R F1

ANT 0.450 0.403 0.425
RANDOM 0.897 0.931 0.914

HYPER 0.616 0.458 0.526
PART OF 0.510 0.478 0.493

SYN 0.278 0.319 0.297

Figure 1: Left: confusion matrix of LexNET’s predictions to the subtask 2 test set. Rows indicate gold
labels and columns indicate predictions. The value in [i, j] is the percentage of pairs classified to relation
j of those labeled i. Right: Per-relation F1 scores of LexNET’s predictions to the test set of subtask 2.

cases in which distributional methods may fail to identify the relation between the words, while even a
single meaningful path connecting x and y can capture the relation between them.

Subtask 2: Semantic Relation Classification We note that the overall results on this task are low,
in contrast to the success of several methods on common datasets (Baroni et al., 2012; Weeds et al.,
2014; Roller et al., 2014; Shwartz and Dagan, 2016). One possible explanation is the stricter and more
informative evaluation, that considers the RANDOM class as noise, discarding it from the F1 average.6

Additionally, the dataset is lexically split, disabling lexical memorization (Levy et al., 2015). However,
the strict evaluation spots a light on the difficulty of this task, which was somewhat obfuscated by the
strong results published so far, but might have been obtained thanks to dataset and evaluation peculiarities
(Levy et al., 2015; Santus et al., 2016b; Shwartz and Dagan, 2016).

Figure 1 displays LexNET’s per relation F1 scores on the test set, with the corresponding confusion
matrix. While the F1 scores of individual classes are relatively low, the confusion matrix shows that pairs
were always classified to the correct relation more than to any other class. A common error comes from
subtask 1’s model: while most unrelated pairs were classified as unrelated, many related pairs were also
classified as unrelated. This may be solved in the future by learning the two subtasks jointly rather than
applying a pipeline.

Among the other relations, the performance on synonyms was the worst. The path-based component
is weak in recognizing synonyms, which do not tend to co-occur. The distributional information causes
confusion between synonyms and antonyms, since both tend to occur in the same contexts. Moreover,
synonyms were also sometimes mistaken with hypernyms, as the difference between the two relations is
often subtle (Shwartz et al., 2016).

6 Conclusion

We have presented our submission to the CogALex 2016 shared task on corpus-based identification of
semantic relations. The submission is based on LexNET (Shwartz and Dagan, 2016), an integrated path-
based and distributional method for semantic relation classification. LexNET was the best-performing
system on subtask 2, demonstrating the utility of integrating the complementary path-based and distri-
butional information sources in recognizing semantic relatedness.

We have shown that subtask 1 (word relatedness) reaches reasonable performance with cosine simi-
larity, and is slightly improved when combined with LexNET, especially when the relation between the
words is non-prototypical. The performance on subtask 2, however, was relatively low for all systems
that participated in the shared task, including LexNET. This demonstrates the difficulty of the semantic
relation classification task, and emphasizes the need to develop improved methods for this task, possibly
using additional sources of information.
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Abstract

This paper describes our system submission to the CogALex-2016 Shared Task on Corpus-Based
Identification of Semantic Relations. Our system won first place for Task-1 and second place
for Task-2. The evaluation results of our system on the test set is 88.1% (79.0% for TRUE
only) f-measure for Task-1 on detecting semantic similarity, and 76.0% (42.3% when excluding
RANDOM) for Task-2 on identifying finer-grained semantic relations. In our experiments, we
try word analogy, linear regression, and multi-task Convolutional Neural Networks (CNNs) with
word embeddings from publicly available word vectors. We found that linear regression performs
better in the binary classification (Task-1), while CNNs have better performance in the multi-class
semantic classification (Task-2). We assume that word analogy is more suited for deterministic
answers rather than handling the ambiguity of one-to-many and many-to-many relationships. We
also show that classifier performance could benefit from balancing the distribution of labels in
the training data.

1 Introduction

Finding semantic relatedness between words is of crucial importance for natural language processing
as it is essential for tasks like query expansion in information retrieval. So far, systems have relied
mainly on manually constructed semantic hierarchies, such as ontologies and knowledge graphs. With
the recent interest in neural networks and word embeddings, there are attempts to find semantic relations
automatically from texts in an arithmetic fashion by measuring the distance between words in the vector
space, assuming that words that are similar to each other will tend to have similar contextual embeddings.

This paper describes our system for the CogALex-V Shared Task on Corpus-Based Identification of
Semantic Relations. We evaluated three methods for semantic classification based on word embeddings:
word analogy, linear regression, and multi-task CNNs. In all these methods, we use publicly available
pre-trained English word vectors.

2 Related Work

Semantic relatedness between single words (excluding phrases, sentences and multilingual paral-
lel data) has been addressed in a number of shared tasks before, including relational similarity in
SemEval-2012 (Jurgens et al., 2012), word to sense matching in SemEval-2014 (Jurgens et al., 2014),
hyponym-hypernym relations in SemEval-2015 (Bordea et al., 2015), semantic taxonomy (hypernymy)
in SemEval-2016 (Bordea et al., 2016), and semantic association in CogALex-2014 (Rapp and Zock,
2014).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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The idea of representing words as vectors has been studied for about three decades (Hinton et al.,
1986; Rumelhart et al., 1986; Elman, 1990; Bengio et al., 2003; Kann and Schütze, 2008; Mikolov et
al., 2013b). The interest in word embeddings has intensified recently with the introduction of the new
log linear architecture of Mikolov et al. (2013a). This architecture provided an efficient and simplified
training methodology that minimizes computational complexity by doing away with the non-linear hid-
den layer, enabling training on much larger data than were previously possible. The public availability
of word embedding training programs such as word2vec (Mikolov et al., 2013a) and GloVe (Pennington
et al., 2014) allowed researchers to create models with different parameters and dimensionality sizes for
different purposes.

The evaluation data1 used in the development of the Google Continuous Bag of Words (CBOW) and
skip-gram vectors (Mikolov et al., 2013a) focused on semantic similarities and coarse-grained semantic
relations in the form of deterministic answers by analogy. These relationships were one-to-one including,
for example, capitals (Athens: Greece - Baghdad: Iraq), currencies (India: rupee - Iran: rial), gender
(king: queen - man: woman), derivation (amazing: amazingly - safe: safely), and inflection (enhance:
enhancing - generate: generating). The evaluation data provided in the CogALex-V Shared Task includes
five different semantic relations within the same training and test data, where the relationship between
words is one-to-many. For example, while it is relatively easy to predict ‘queen’ as the answer to this
query x = king−man + woman, you cannot expect ‘contract’ as the answer to the query x = shoe−
boot + lease with the same level of confidence if the relationship is expected to be either synonymy,
antonymy, hyponymy, or hypernymy.

In this paper we try three different methods for handling semantic classification in the shared task:
word analogy, linear regression and multi-task CNN. Using word analogy for identifying semantic re-
lations has been discussed in a number of papers including (Levy et al., 2015; Gladkova et al., 2016;
Vylomova et al., 2015). The basic idea is to use vector-oriented reasoning based on the offsets between
words (Mikolov et al., 2013b) assuming that pairs of words that share a certain semantic relation will
have similar cosine distance.

Linear regression classifiers, including Naive Bayes, Logistic Regression and Support Vector Ma-
chines, have been used for the identification of semantic relations. For example, GuoDong et al. (2005)
used SVM to extract semantic relationships between entities relying on features extracted from lexical,
syntactic, and semantic knowledge. Hatzivassiloglou and McKeown (1997) used a log-linear regression
model to predict the similarity of conjoined adjectives. Snow et al. (2004) use a logistic regression clas-
sifier for hypernym pair identification. Costello (2007) used Naive Bayes to learn associations between
features extracted from WordNet and predict relation membership categories. In our work, we do not
use any lexical, syntactic or semantic features, other than the word embeddings and we score similarity
using the well known cosine similarity metric.

CNNs have also been applied to the task. Zeng et al. (2014) use a convolutional deep neural network
(DNN) to extract lexical features learned from word embeddings and then fed into a softmax classifier
to predict the relationship between words. Similar approaches have been applied in (Santos et al., 2015)
and (Xu et al., 2015).

3 Data Description

3.1 Shared Task Data

The shared task organizers provide a training set of 3,054 word pairs for 318 target words. In Task-1,
we are given a pair of words and we need to determine if the words are semantically related or not.
Some examples of Task-1 are shown in 1. In Task-2 participants are required to detect the type of the
relationship: HYPER, PART_OF, SYN, ANT, or RANDOM.

3.2 Pre-Trained Word Vectors

In our experiments we experimented with three large-scale, publicly available pre-trained word vectors:

1http://www.fit.vutbr.cz/ imikolov/rnnlm/word-test.v1.txt
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Word 1 Word 2 Task-1: Task-2:
Related? Which Relation?

lease contract TRUE HYPER
brain head TRUE PART_OF
cheat deceive TRUE SYN
move rest TRUE ANT
bright mature FALSE RANDOM
... ... ... ...

Table 1: Training data for Task-1 and Task-2.

Task Prec. Rec. F1
Task-1 75.3 61.1 63.0
Task-2 68.1 34.0 42.6

Table 2: Word Analogy results

Google News2. This is built with the word2vec architecture from a news corpus of 100B words (3M
vocabulary entries) with 300 dimensions, negative sampling, using continuous bag of words and window
size of 5.
Common Crawler3. This is built with the GloVe architecture from a corpus of 840B words (2.2M
vocabulary entries) with 300 dimensions, and applying the adaptive gradient algorithm (AdaGrad) (Duchi
et al., 2011).
Wikipedia + Gigaword 54. This is built with the GloVe architecture from a corpus of 6B words (400K
vocabulary entries) with 300 dimensions, and applying AdaGrad with context size of 20.

4 Experiments and Results

In this section we outline the experiments and report the results for the three approaches we tested: word
analogy, linear regression and multi-task CNN. The results reported in this section are on the training set
for all labels including “FALSE” for Task-1 and “RANDOM” for Task-2. Results on the test set of our
selected systems are reported in Section 5.

4.1 Word Analogy

In word analogy, similar to Levy et al. (2014), we query the word vector directly to obtain the
closest match to the given example using the formula: predicted_word = example_word1 −
example_word2 + target_word. We iterate the query over all the examples in the training set and
limit the search scope to the vocabulary items within the set (a set is the target word and all potentially
related words). Then we take the average of the responses. The results in Table 2 show that this approach
does not work as well for this current task. As we will show, the scores are much lower than those of the
other approaches we explored here.

4.2 Linear Regression

We extract similarity distance between words from word vectors, then we use a number of ML classifiers
to detect labels based only on the numerical value of the similarity distance. In the initial stage, Table
3, we compare ML algorithms (using 10-fold cross validation) trained on the similarity cosine distance
extracted from Google News vectors as the only feature.

We notice from Table 3 that Simple Logistic and Multi-task CNNs have the best score for Task-1
and Task-2 respectively. Now we compare the performance on the three word vector resources: Google
News, Common Crawler and Wikipedia + Gigaword 5. Table 4 shows that the best results are obtained by
Common-Crawler for Task-2, and by combining the similarity scores from two models of Google News
and Wiki+Gigaword for Task-1. We combined them by feeding into the classifier the cosine distance
from each word embedding as a feature.

We observe that the classes in the training data are highly imbalanced, where 27% of the pairs are
related, while 73% are unrelated. We assume that this disproportion could bias the classifier to prefer

2https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/
3http://nlp.stanford.edu/data/glove.6B.zip
4http://nlp.stanford.edu/data/glove.840B.300d.zip
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Classifier Task-1 Task-2
Logistic Regression 77.2 56.6
Simple Logistic 89.0 70.1
Decision Trees (J48) 87.7 61.5
NaiveBayes 88.5 77.4
LazyIBk 83.5 74.0
LazyKStar 87.8 70.1
Single task CNN 81.8 75.3
Multi-task CNN 83.2 77.4

Table 3: F1 Score (%) comparison of ML clas-

sifiers.

Classifier (Word Vectors) Task-1 Task-2
Simple Logistic (G) 89.0 70.1
Simple Logistic (WG) 86.6 75.5
Simple (CC) 89.0 76.0
Simple Logistic (G+WG) 89.4 77.2
NaiveBayes (CC) 86.9 76.6
NaiveBayes (G+WG) 88.7 77.8
Multi-task CNN (G) 83.2 77.4
Multi-task CNN (WG) 85.1 78.0
Multi-task CNN (CC) 86.0 78.4

Table 4: Comparison of word vectors (G=Google News,

WG=Wikipedia+Gigaword and CC=Common Crawler).

Limit TRUE FALSE Average Diff
1 91.8 79.5 88.3 12.3
2 89.1 86.5 88.1 2.6
3 86.6 89.1 88.0 2.5
4 83.6 90.1 87.5 6.5
5 82.2 91.4 88.2 9.2

No limit 79.3 93.1 89.4 13.8

Table 5: Results for different limits of unrelated pairs.

Method Task-1 Task-2
SimpleLogistic 79.0 28.7
Multi-task CNN 71.0 42.3

Table 6: Final F1 Scores (%) on the test set.

the majority labels over the minority ones. We try to correct this imbalanced distribution by reducing the
number of unrelated pairs and see if this can improve the performance of the classifiers. We conduct our
experiments using our best model so far for Task-1 (SimpleLogistic) over different limits of the unrelated
words (1, 2, 3, 4, 5 and all) as shown in Table 5. We choose limit 3 as our best model as it has the smallest
difference between the f-score for TRUE and FALSE. For Task-2, reduction of unrelated words did not
lead to any improvement in the system, so we apply it only to Task-1.

4.3 Multi-task Convolution Neural Network (CNN)

The CNN architecture is similar to the one used by Collobert and Weston (2008). We first feed the pair
of input words to the embedding layer, which is initialized with the pre-trained embeddings discussed in
Section 3.2. Next in the model is a stack of convolution modules with 500 filters each for filter sizes 1 and
2. We then apply 1-MaxPooling operation, after which we have a Dense layer with 32 neurons. Finally,
we have two softmax classifiers since our system uses a multitask approach to jointly learn both tasks.
More precisely, the loss function L combines the loss for Task-1 and Task-2, as defined in Equation 1.
Here, ytask1

i , ytask2
j , ŷtask1

i and ŷtask2
j represent the labels and prediction probabilities for Task-1 and

Task-2 respectively. Multitask architectures are preferred over single task ones as the constituent tasks
can act as regularizers (Ian Goodfellow and Courville, 2016). There are dropouts after Embedding,
Convolution and Dense layers to regularize the network.

L (X, Y ) = −
∑

i

(
ytask1

i ln ŷtask1
i

)
−
∑
j

(
ytask2

j ln ŷtask2
j

)
(1)

Parameter tuning: We used 20% of the training data as parameter tuning dataset and used it to tune var-
ious hyper-parameters like dropout ranges, filters and filter sizes of CNN modules and learning rate. We
then use the best model’s parameters to perform 10-fold cross-validation experiments with the training
data. The results are shown in Table 3 and 4. Additionally, we also experimented with models specific to
either Task-1 or Task-2. The results show that the multi-task setting yields better performance than the
single task setting.
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Label Precision Recall F-Score
RND 87.4 91.1 89.2
SYN 20.9 20.0 20.4
ANT 47.8 42.2 44.8
HYP 50.6 47.6 49.1
PRT 57.6 43.8 49.7
All 75.6 76.7 76.0

Table 7: Detailed results for Task-2 labels.

Label RND SYN ANT HYP PRT
RND 2787 85 78 78 31
SYN 86 47 50 41 11
ANT 132 39 152 26 11
HYP 112 42 27 182 19
PRT 70 12 11 33 98

Table 8: Confusion Matrix for Task-2.

5 Final Results

In order to preserve the integrity of the test data, we do not apply any fine-tuning or measure performance
improvement by iterating on the test set. We apply only our best performing systems on the training data,
which are Simple Logistic trained on Google News and Wikipedia + Gigaword 5 for Task-1, and CNN
for Task-2. The results are reported by the shared task evaluation script for the related pairs only (i.e.
excluding ‘FALSE’ and ‘RANDOM’) and are shown in Table 6. We achieve 79.0% and 42.3% F-score
For Task-1 and Task-2 respectively. Tables 7 and 8 present the detailed performance per label in Task-2
and the confusion matrix. We notice that synonyms are the hardest to distinguish among all other labels.
This is reminiscent of the philosophical question of the non-existence of exact synonyms (Carstairs-
McCarthy, 1994). By contrast, the system performs best in detecting hypernym and part-of relations.

6 Conclusion

In this paper we have presented our systems for identifying and classifying semantic relations between
single words. We used linear regression trained only on the cosine distance between word embedding
representations. This method gives better results for Task-1. For task2, multi-task CNN method performs
better. Our system performs relatively well for the binary classification of similarity between pairs of
words, but the performance significantly decreases for the multi-class classification of four semantic
relations. This is probably due to the ambiguity in one-to-many and many-to-many relationships.
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Abstract

This contribution provides a strong baseline result for the CogALex-V shared task using a tradi-
tional “count”-type DSM (placed in rank 2 out of 7 in subtask 1 and rank 3 out of 6 in subtask 2).
Parameter tuning experiments reveal some surprising effects and suggest that the use of random
word pairs as negative examples may be problematic, guiding the parameter optimization in an
undesirable direction.

1 Introduction

It is generally assumed that traditional “count”-type distributional semantic models (DSM) are good
at identifying attributionally similar words, but cannot distinguish between different semantic relations
(e.g. synonyms, antonyms, hypernyms) and work poorly for other forms of semantic relatedness such
as meronymy (Baroni and Lenci, 2011). Moreover, DSMs based on syntactic dependency relations
are supposed to achieve better results than window-based models (Padó and Lapata, 2007). The goal
of the present paper is to test how well traditional DSMs can be tuned to identify different types of
semantic relations in the CogALex-V shared task. It can thus be seen as a strong baseline against which
more specialized approaches can be compared. The system developed here is nicknamedマッハ号, or
Mach51 in English.

According to the distributional hypothesis (Harris, 1954), semantically related words should have
a smaller distance in a distributional space than unrelated words, especially if they are attributionally
similar. This suggests a simple strategy for the identification of semantically related words in subtask 1:
candidate pairs are predicted to be related if their distributional distance is below a specified threshold
value θ. The choice of θ determines the trade-off between precision and recall as visualized in the left
panel of Fig. 1, where the thin dotted line shows precision (P ) and the thin dashed line shows recall (R)
for different values of θ. The optimal threshold θ∗ = 80.7◦ – indicated by a circle and a thin vertical
line – is chosen to maximize F1-score, the harmonic mean of precision and recall, which is also the
main evaluation criterion in the CogALex-V task. In this example, the DSM achieves P = 76.27%,
R = 74.38% and F1 = 75.31% on the training data.

DSM distances cannot be used in the same way to discriminate between semantic relations in subtask
2 because antonyms, synonyms, hypernyms, etc. will all be relatively close in semantic space and their
distance distributions are similar (Baroni and Lenci, 2011; Santus et al., 2015). Therefore, Mach5 im-
plements a simple machine learning approach for this subtask, as described in Sec. 3. Parameters of the
underlying DSM are tuned based on the overall identification of semantically related words (Sec. 2).

2 The Mach5 DSM

The Mach5 distributional model is based on ENCOW 2014, a large English Web corpus (Schäfer and
Bildhauer, 2012) with a size of approx. 9.5 billion tokens after sentence deduplication. A particular

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

1https://en.wikipedia.org/wiki/Mach_Five
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Figure 1: Left panel: Application of DSM distances (angles) to the identification of semantically related
words. Right panel: Performance in subtask 1 depending on the number of feature dimensions used.

advantage of this huge corpus is its full coverage of the CogALex-V training and test sets, so that no spe-
cial handling of unseen words is required. Both a dependency-filtered and a dependency-structured DSM
were compiled from syntactic dependencies obtained with the robust C&C parser (Curran et al., 2007).
The target vocabulary of 26,450 lemmas extends the vocabulary of Distributional Memory (Baroni and
Lenci, 2010) with all words in the training and test sets of the shared task. Similar to the gold standard,
the DSM uses lemmatized words (from TreeTagger) but does not distinguish between homonyms with
different parts of speech (such as clearADJ and clearVERB). The 120,000 most frequent lemmas were
extracted as features for the dependency-filtered model (henceforth DepFilt); the 300,000 most frequent
relation-lemma combinations (e.g. OBJ=cat) were extracted as features for the dependency-structured
model (henceforth DepStruct).

Some basic parameters were set according to the recommendations of Lapesa and Evert (2014): sparse
(i.e. non-negative) simple log-likelihood (simple-ll) is used as an association measure for feature weight-
ing and an additional log transformation is applied to the simple-ll scores. The models use angular
distance (equivalent to cosine similarity) and explore logarithmic neighbour rank as an index of semantic
(dis)similarity. Other parameters are tuned incrementally on the training data, as described in the follow-
ing subsections. The main tuning criterion is the F1 score achieved by an optimal cutoff threshold on the
training data of subtask 1.

2.1 Feature selection
A first step is to determine how many feature dimensions are required in order to achieve good results
and whether the dependency-filtered or the dependency-structured model is superior. The right panel of
Fig. 1 plots F1-scores in subtask 1 against the number of most frequent features and the other parameters.
The graphs show clearly that more features produce better results and that further improvements may
be expected from an even larger number of features, especially for DepStruct. Average logarithmic
neighbour rank (solid lines) as an index of relatedness outperforms angular distance (dashed lines) by a
large margin (forward and backward rank fall somewhere in between and have been omitted for clarity).
DepFilt (blue, best F1 = 77.2%) is also considerably better than DepStruct (green, best F1 = 75.3%),
even with a much smaller number of features.

Some authors suggest that medium-frequency features are the most informative for DSMs (Kiela and
Clark, 2014), which motivates experiments with feature windows of 10,000–50,000 features in different
frequency ranges. Fig. 2 shows the starting point of the feature window (i.e. the number of most frequent
features skipped) on the x-axis and different window sizes in different colours.

For DepFilt (left panel), excluding the most frequent dimensions has a strong negative effect on angu-
lar distance. However, neighbour rank improves up to F1 = 78.03% if the first 20,000–50,000 features
are skipped, and it deteriorates much more slowly afterwards. The number of features in the window
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Figure 2: Performance of different feature windows in subtask 1 for DepFilt (left) and DepStruct (right).
The x-axis shows how many thousands (K) of features are skipped.

seems to make little difference, especially for neighbour rank where as few as 20,000 features are suffi-
cient.2 The observations for DepStruct (right panel) are similar, but even more striking. Angular distance
improves considerably if up to 50,000 high-frequency features are skipped, then declines only slowly.
For neighbour rank, performance continues to improve and achieves F1 = 77.25% when more than
100,000 features are skipped; in other words, a relatively small window of lower-frequency features
seems to yield the best results. Contrary to what Fig. 1 suggested, DepFilt and DepStruct now achieve
similar F1-scores with a suitably chosen window of less than 50,000 words; both results are better than
those reported above for the full feature sets.

For further experiments involving dimensionality reduction, somewhat larger feature windows are
selected because the latent dimensions might be able to exploit shared information unlike the unreduced
models evaluated here. DepFilt uses feature ranks 20,000–70,000 (with 1292 ≤ f ≤ 12720) to achieve
F1 = 77.25% in subtask 1; DepStruct uses feature ranks 50,000–150,000 (with 1796 ≤ f ≤ 11040) to
achieve F1 = 76.52%.3

2.2 Dimensionality reduction by SVD

Most evaluation studies find that dimensionality reduction, which is traditionally carried out by an ef-
ficient sparse truncated singular value decomposition (SVD), improves DSM representations. Lapesa
and Evert (2014) report consistently better results across a wide range of evaluation tasks and parame-
ter settings. The following experiments explore how many latent dimensions are required and whether
skipping the first latent dimensions is beneficial (Bullinaria and Levy, 2012; Lapesa and Evert, 2014). In
addition, we look at a parameter that has only recently become popular: Caron’s (2001) power scaling
coefficient P for the SVD dimensions.4 Bullinaria and Levy (2012) report a substantial improvement in
model performance if P is set close to 0, especially for the TOEFL synonym task.

The DepFilt and DepStruct vectors selected in Sec. 2.1 are normalized according to the Euclidean
norm, then SVD is applied to project them into 1000 latent dimensions for each model. The left panel
of Fig. 3 shows that power scaling with P < 1 leads to a substantial improvement. For both models,
P = 0 is a nearly optimal and theoretically motivated choice. It is particularly fascinating that power
scaling evens out most of the differences between angular distance and neighbour rank as well as be-
tween DepStruct and DepFilt, with DepStruct performing slightly better now. Fixing P = 0, additional

2It is interesting to note that Schütze (1998) and several other early papers use 20,000 feature dimensions.
3In a 100-million-word corpus like the British National Corpus, this would correspond to frequencies between approx. 10

and 150 occurrences, i.e. a range of words that are normally excluded from distributional models.
4P = 1 corresponds to standard SVD, P > 1 gives more weight to the first latent dimensions (capturing the strongest

correlation patterns), and P < 1 equalizes the dimensons. In particular, for P = 0 each latent dimension makes the same
average contribution to distances between the word vectors (under certain additional circumstances).
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experiments show that skipping the first SVD dimensions does not lead to a further improvement, but
rather to a considerably decrease in quality (left panel of Fig. 3). This surprising effect appears to be
caused by feature equalization: without power scaling (i.e. P = 1), F1 improves when skipping up to 50
SVD dimensions (not shown). Further truncation of the SVD to less than 600 dimensions also decreases
quality, but performance seems to stabilize if at least 600 dimensions are used (blue lines in right panel).

The final Mach5 DSMs are based on the first 600 SVD dimensions with Caron’s P = 0, equalizing
the relative importance of the latent dimensions. Computationally cheaper distance values are used as an
index of semantic relatedness, since they perform only marginally worse than average neighbour rank.

3 The Mach5 system

Run 1 of the Mach5 system only uses distance information from the DepFilt and DepStruct DSMs tuned
in Sec. 2. For subtask 1, an optimal cutoff threshold is determined to maximize F1 on the training data
(DepFilt: 86.4◦, DepStruct: 87.0◦). For subtask 2, a SVM classifier with RBF kernel is applied to
six-dimensional feature vectors containing angular distance as well as forward and backward neighbour
rank from both DepFilt and DepStruct. Metaparameters (C and class weights) were tuned manually by
cross-validation of weighted average F1-scores on the training data.5 Evaluation results on the training
and test sets are shown in Table 1.

Run 2 explores the possibility that different types of semantic relations might be encoded in different
SVD dimensions, which can be exploited by changing the weights of the dimensions when computing
semantic distances. As a computationally efficient approximation, we apply a linear SVM classifier to
feature vectors containing the contribution (xi−yi)2 of each latent dimension i to the Euclidean distance
between the pre-normalized vectors x and y of a word pair.6 Features from DepFilt and DepStruct are
concatenated for a total of 1,200 feature dimensions. Both subtasks can be approached in this way,
training either a binary (substak 1) or a five-way (subtask 2) SVM classifier. Again, metaparameters
were manually tuned on the training data. It turned out to be crucial to set the cost parameter to a low
value C ≤ .01 in order to ensure strong regularization and avoid overfitting.

For the official submission, the runs performing best on the training data were selected, shown in bold
in Table 1. Competition results are thus F1 = 77.88% in subtask 1 and F̄1 = 29.59% in subtask 2. All
models were implemented in R using the wordspace package for distributional semantics (Evert, 2014)

5Cross-validation uses a round-robin scheme grouped by target word in order to avoid item-specific learning. Without this
precaution, cross-validated performance on the training data might be highly optimistic in some cases. For example, a simple
round-robin scheme yielded F̄1 = 39.88% for run 2 in subtask 2, while the more realistic grouped cross-validation yields
F̄1 = 32.37%. Differences are much smaller for the simpler models of run 1.

6These features gave slightly better performance than contribution xiyi to cosine similarity.
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Subtask 1 Subtask 2
Run Train F1 Test F1 Train F̄1 Test F̄1

run 1 DepFilt 80.59 77.88 — —
DepStruct 79.98 76.80 — —

both — — 26.47 23.76
run 2 both 78.12 72.76 32.37 29.59
run 3 both 80.88 78.93 — 31.97

Table 1: Evaluation results of different Mach5 runs on the training data (10-fold cross-validation) and
test data, using the official F1-scores in subtask 1 and weighted average F̄1 across the four semantic
relations in subtask 2. Runs selected for the competition are shown in bold font, the best results obtained
in follow-up experiments are shown in italics.

and the LibSVM classifier from package e1071. Mach5 can be downloaded as an R script together with
the original co-occurrence data from http://www.collocations.de/data/#mach5.

4 Discussion

The optimal cutoff angles determined for subtask 1 are surprisingly high – close to orthogonality – which
suggests a possible problem with the use of random word pairs as negative examples in the gold standard
(and many other DSM evaluation tasks that also use random word pairs as a control). As a consequence,
the parameter tuning in Sec. 2 was guided towards recognizing random word pairs rather than clearly
defined semantic relations. The distribution of DSM distances for different semantic relations in the
left panel of Fig. 4 supports this interpretation: the distances between semantically related words spread
over a wide range and can become very large (sometimes even above 90◦), while most random word
combinations are almost precisely orthogonal. For a DSM with conventional state-of-the-art parameter
settings7 (right panel of Fig. 4), the distribution shows a much larger spread of the random word pairs.

It seems plausible that this “conventional” DSM may contain useful information for the discrimination
between different semantic relations, while the Mach5 DSM has been tuned to identify random word
pairs as accurately as possible. Therefore, a combined approach was implemented after the competition
as run 3 of the Mach5 system. It uses an SVM classifier with RBF kernel, based on the six-dimensional
features vectors from run 1, for distinguishing between related and unrelated word pairs in subtask 1. For
the discrimination between semantic relations, a linear SVM classifier is trained only on related word
pairs, using partial Euclidean distances from the conventional DepFilt model and partial inner products
from the conventional DepStruct model as features (similar to run 2). In subtask 2, the first (binary)
classifier identifies RANDOM pairs, while the second (four-way) classifier selects a relation label for the
remaining word pairs. As can be seen from the bottom row of Table 1, run 3 performs noticeably better
than the submitted system,8 although it would still have ranked in second and third place, respectively,
in the competition. These results provide additional support for the hypothesis that the wide-spread use
of random word pairs as negative examples poses the risk of misguiding DSM parameter tuning.
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Figure 4: Distribution of DSM distances across the four semantic relations and the random controls
in the test data for CogALex-V subtask 2, comparing the tuned Mach5 model (left panel) against a
dependency-filtered DSM with conventional state-of-the-art parameter settings (right panel).
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Abstract

In this paper, we describe ROOT 18, a classifier using the scores of several unsupervised dis-
tributional measures as features to discriminate between semantically related and unrelated
words, and then to classify the related pairs according to their semantic relation (i.e. synonymy,
antonymy, hypernymy, part-whole meronymy). Our classifier participated in the CogALex-V
Shared Task, showing a solid performance on the first subtask, but a poor performance on the
second subtask. The low scores reported on the second subtask suggest that distributional mea-
sures are not sufficient to discriminate between multiple semantic relations at once.

1 Introduction

The system described in this paper has been designed for the CogALex-V Shared Task, focusing on
the corpus-based identification of semantic relations. Since Distributional Semantic Models (henceforth
DSMs) were proposed as a special topic of interest for the current edition of the CogALex workshop,
we decided to base our classifier on a number of distributional measures that have been used by past
Natural Language Processing (NLP) research to discriminate between a specific semantic relation and
other relation types.

The task is splitted into the following subtasks:

• for each word pair, the participating systems have to decide whether the terms are semantically
related or not (TRUE and FALSE are the only possible outcomes);

• for each word pair, the participating systems have to decide which semantic relation holds between
the terms of the pair. The five possible semantic relations are synonymy (SYN), antonymy (ANT),
hypernymy (HYPER), meronymy (PART OF) and no semantic relation at all (RANDOM).

Our system managed to achieve good results in discriminating between related and random pairs in
the first subtask, but unfortunately it struggled in the second one, also due to the high difficulty of the
task itself. In particular, the recall for some of the semantic relations of interest seems to be extremely
low, suggesting that our unsupervised distributional measures do not provide sufficient information to
characterize them, and that it could be probably useful to integrate such scores with other sources of
evidence (e.g. information on lexical patterns of word co-occurrence).

The paper is organized as follows: in section 2, we summarize related works on the task of semantic
relation identification; in section 3, we introduce our system, by describing the classifier and the features.
Finally, in section 4 we present and discuss our results.

2 The Task: Related Work

Distinguishing between related and unrelated words and, then, discriminating among semantic relations
are very important tasks in NLP, and they have a wide range of applications, such as textual entailment,
text summarization, sentiment analysis, ontology learning, and so on. For this reason, several systems

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http:
//creativecommons.org/licenses/by/4.0/
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over the last few years have been proposed to tackle this problem, using both unsupervised and supervised
approaches (see the works of Lenci and Benotto (2012) and Shwartz et al. (2016) on hypernymy; Weeds
et al. (2014) and Santus et al. (2016a) on hypernymy and co-hyponymy; Mohammad et al. (2013)
and Santus et al. (2014) on antonymy). However, many of these works focus on a single semantic
relation, e.g. antonymy, and describe methods or measures to set it apart from other relations. There
have not been many attempts, at the best of our knowledge, to deal with corpus-based semantic relation
identification in a multiclass classification task. Few exceptions include the works by Turney (2008)
on similarity, antonymy and analogy, and by Pantel and Pernacchiotti (2006) on Espresso, a weakly
supervised, pattern-based algorithm. Both these systems are based on patterns, which are known to be
more precise than DSMs, even though they suffer from lower recall (i.e. they in fact require words to co-
occur in the same sentence). DSMs, on the other hand, offer higher recall at the cost of lower precision:
while they are strong in identifying distributionally similar words (i.e. nearest neighbors), they do not
offer any principled way to discriminate between semantic relations (i.e. the nearest neighbors of a word
are not only its synonyms, but they also include antonyms, hypernyms, and so on).

The attempts to provide DSMs with the ability of automatically identifying semantic relations include
a large number of unsupervised methods (Weeds and Weir, 2003; Lenci and Benotto, 2012; Santus et
al., 2014), which are unfortunately far from achieving the perfect accuracy. In order to achieve higher
performance, supervised methods have been recently adopted, also thanks to their ease (Weeds et al.,
2014; Roller et al., 2014; Kruszewski et al., 2015; Roller and Erk, 2016; Santus et al., 2016a; Nguyen
et al., 2016; Shwartz et al., 2016). Many of them rely on distributional word vectors, either concate-
nated or combined through algebraic functions. Others use as features either patterns or scores from
the above-mentioned unsupervised methods. While these systems generally obtain high performance in
classification tasks involving a single semantic relation, they have rarely been used on multiclass relation
classification. On top of it, some scholars have questioned their ability to really learn semantic relations
(Levy et al., 2015), claiming that they rather learn some lexical properties from the word vectors they are
trained with. This was also confirmed by an experiment carried out by Santus et al. (2016a), showing that
up to 100% synthetic switched pairs (i.e. banana-animal; elephant-fruit) are misclassified as hypernyms
if the system is not provided with some of these negative examples during training.

Recently, count based vectors have been substituted by prediction-based ones, which seem to slightly
improve the performance in some tasks, such as similarity estimation (Baroni et al., 2014), even though
Levy et al. (2015) demonstrated that these improvements were most likely due to the optimization of
hyperparameters that were instead left unoptimized in count-based models (for an overview on word
embeddings, see Gladkova et al. (2016)). On top of it, when combined with supervised methods, the low
interpretability of their dimensions makes it even harder to understand what the classifiers actually learn
(Levy et al., 2015).

Finally, the recent attempt of Shwartz et al. (2016) of combining patterns and distributional informa-
tion achieved extremely promising results in hypernymy identification.

3 System description

Our system, ROOT18, is a Random Forest classifier (Breiman, 2001) and it is based on the 18 features
described in the following subsections. The system in its best setting makes use of the Gini impurity
index as the splitting criterion and has 10 as the maximum tree depth. The half of the total number of
features were considered for each split.

3.1 Data

Our data come from ukWaC (Baroni et al., 2009), a 2 billion tokens corpus of English built by crawling
the .uk Internet domain. For the extraction of our features, we generated several distributional spaces,
which differ according to the window size and to the statistical association measure that was used to
weight raw co-occurrences. Since we obtained the best performances with window size 2 and Positive
Pointwise Mutual Information (Church and Hanks, 1990), we report the results only for this setting.
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3.2 Features

Frequency It is a basic property of words and it is a very discriminative information. In this type of
task, it proved to be competitive in identifying the directionality of pairs of hypernyms (Weeds and Weir,
2003), since we expect hypernyms to have higher frequency than hyponyms. For each pair, we computed
three features: the frequency of each word (Freq1,2) and their difference (DiffFreq).

Co-occurrence We compute the co-occurrence frequency (Cooc) between the two terms in each
pair. This measure has been claimed to be particularly useful to spot antonyms (Murphy, 2003), since
they are expected to occur in the same sentence more often than chance (e.g. Are you friend or foe?).

Entropy In information theory, this score is related to the informativeness of a message: the lower
its entropy, the higher its informativeness (Shannon, 1948). Moreover, subordinate terms tend to have
higher amounts of informativeness than superordinate ones. We computed the entropy of each word in
the pair (Entr1,2), plus the difference between entropies (DiffEntr).

Cosine similarity It is a standard measure in DSMs to compute similarity between words (Turney
and Pantel, 2010). This measure is very useful to discriminate between related and unrelated terms.

sim(~u,~v) =
~u · ~v
‖~u‖ · ‖~v‖

LinSimilarity LinSimilarity (Lin, 1998) is a different similarity measure, computed as the ratio of
shared context between u and v to the contexts of each word:

Lin(~u,~v) =

∑
c∈~u

⋂
~v[~u[c] + ~v[c]∑

c∈~u ~u[c] +
∑

c∈~v ~v[c]

Directional similarity measures We extracted several directional similarity measures that were pro-
posed to detect hypernyms, such as WeedsPrec, cosWeeds, ClarkeDe and invCL (for a review, see Lenci
and Benotto (2012)). They are all based on the Distributional Inclusion Hypotesis, according to which
if a word u is semantically narrower to v, then a significant number of the salient features of u will be
included also in v.

APSyn This measure and the following APAnt do not rely on the full distribution of words, but on
the top N most related contexts of the words according to some statistical association measure. APSyn
(Santus et al., 2016b) computes a weighted intersection of the top N context of the target words:

APSyn(w1, w2) =
∑

f∈N(F1)
⋂

N(F2)

1
(rank1(f) + rank2(f))/2

That is, for every feature f included in the intersection between the top N features of w1 and w2 (N(F1),
N(F2) respectively), the measure adds 1 divided by the average rank of the feature in the rankings of the
top N features of w1 and w2.

APAnt APAnt (Santus et al., 2014) is defined as the inverse of APSyn. This unsupervised measure
tries to discriminate between synonyms and antonyms by relying on the hypothesis that words with
similar distribution (i.e. high vector cosine) that do not share their most relevant contexts (i.e. what
APSyn computes) are likely to be antonyms. For each pair, we computed APSyn and APAnt for the top
1000 and for the top 100 contexts.

Same POS We realized that many of the random pairs in the data included words with different parts
of speech. Therefore, we decided to add a boolean value to our set of features: 1 if the most frequent
POS of the words in the pair were the same, 0 otherwise.
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3.3 Evaluation dataset

The task organizers provided a training and a test set extracted from EVALution 1.0, a resource that
was specifically designed for evaluating systems on the identification of semantic relations (Santus et al.,
2015). EVALution 1.0 was derived from WordNet (Fellbaum, 1998) and ConceptNet (Liu and Singh,
2004) and it consists of almost 7500 word pairs, instantiating several semantic relations.

The training and the test set included, respectively, 3054 and 4260 word pairs and they are lexical-split,
that is, the two sets do not share any pair. Since words were not tagged, we performed POS-tagging with
the TreeTagger (Schmid, 1995).

4 Results

Model P (task1) R (task1) F (task1) P (task2) R (task2) F (task2)
Random Baseline 0.283 0.503 0.362 0.073 0.201 0.106
Cosine Baseline 0.589 0.573 0.581 0.170 0.165 0.167
ROOT18(100) 0.818 0.657 0.729 0.304 0.213 0.249
ROOT18(500) 0.818 0.650 0.724 0.313 0.227 0.262
ROOT18(1000) 0.823 0.657 0.731 0.343 0.218 0.261

Table 1: Precision, Recall and F-measure scores for subtask 1 and 2. The numbers between parentheses
in the ROOT18 rows refer to the number of estimators used by the classifier.

As it can be seen from table 1, ROOT18 has a solid performance on the subtask 1, and it is quite ac-
curate in separating related terms from unrelated ones. Generally speaking, we noticed that the classifier
performs better when Gini impurity index is used as a splitting criterion instead of entropy. The model
with 1000 estimators is our best performing one, with Precision = 0.823, Recall = 0.657 and F-score
= 0.731. Concerning the contribution of the features, APSyn1000 and vector cosine have the highest
relative importance, with respective contributions of 0.29 and 0.12 to the prediction function. This is not
at all surprising, since APSyn and cosine already proved to be strong predictors of semantic similarity.

Relation Precision Recall F-measure
SYN 0.309 0.179 0.226
ANT 0.298 0.206 0.243

HYPER 0.397 0.343 0.368
PART-OF 0.200 0.116 0.147

Table 2: Precision, recall and F-measure for each relation in subtask 2 (ROOT-18 with 500 estimators).

Relation SYN ANT HYPER PART-OF RANDOM
SYN 42 29 58 24 82
ANT 29 74 38 23 196

HYPER 32 46 131 30 143
PART-OF 15 43 59 26 81

RANDOM 18 56 44 27 2914

Table 3: Confusion matrix for subtask 2 (ROOT-18 with 500 estimators).

Results are much less convincing for subtask 2. In particular, the recall values are extremely low,
especially for some of the semantic relations: part of, for example, is often below 0.15. For such relation
we have no dedicated features in our system, so the difficulty in identifying meronyms are not a surprise.
On the other hand, ROOT18 showed the benefits of the inclusion of several measures targeting hyper-
nymy, since the latter is the most accurately recognized relation (precision often > 0.4), recording also
the higher recall (always > 0.3, even in the worst performing models).

The performance did not show any particular improvement by increasing the number of the decision
trees, so that our best overall results are obtained by the model with 500 estimators (precision = 0.343,
recall = 0.218 and F-score = 0.261). As for the contributions of the single features, APSyn1000 (0.19)
and cosine (0.09) are still the top ones, followed by cosWeeds (0.07) and APAnt1000 (0.06).
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Table 4 describes the confusion matrix, which shows that randoms are properly working as distractors
for the model, leading to a large number of misclassification. Synonyms are often confused with hyper-
nyms and this might be due to the fact that the difference between the two is subtle. These results suggest
that measures based on the Distributional Inclusion Hypothesis are not always efficient in discriminating
between synonyms and hypernyms.

Antonyms are confused with hypernyms and vice versa, which might be due to the fact that nei-
ther share their most relevant features, obtaining therefore similar APAnt scores (Santus et al., 2015b).
Meronyms, finally, are mostly confused with hypernyms, which is almost surely due to the generality
spread that characterize both relations and that is captured by both frequency and entropy in our system.

4.1 Conclusions
Our results clearly highlight the difficulty of DSMs in discriminating between several semantic relations
at once. Such models, in fact, rely on a vague definition of semantic similarity (i.e. distributional
similarity) which does not offer any principled way to distinguish among different types of semantic
relations.

Nonetheless, it is still feasible for traditional DSMs to achieve good performances on the recognition
of taxonomical relations (Santus et al., 2016a), for which metrics can be defined on the basis of feature
inclusion, of context informativeness etc. For other relations, such as antonymy and meronymy, it is
not easy to define measures based on distributional similarity (for the latter relation, it is difficult even to
find an univocal definition: see Morlane-Hondère (2015)): APAnt works relatively well in discriminating
antonyms from synonyms, but – as noticed by Santus et al. (2015b) – this measure has also a bias towards
hypernyms, which explains why these are often confused. A possible solution, in our view, would be
the integration of DSMs with pattern-based information, in a way that is already being shown by some
of the current state-of-the-art systems (see, for example, Shwartz et al. (2016)). Such integration has the
advantage of combining the precision of the patterns with the high recall of DSMs.

Finally, we may assume that also the configuration of the original dataset could contribute to our
results, since some pairs in the dataset have ambiguous words and the target relations hold for only one
of the their meanings. Disambiguating the pairs, at least by Part-Of-Speech, would certainly help in
improving the results. A simple method might consist in computing the vector cosine for the pairs with
the target words declined in all possible POS (i.e. VV, NN, JJ) and then maintain in the dataset only the
pair with the higher value.
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Abstract

In this paper, we describe a system (CGSRC) for classifying four semantic relations: synonym,
hypernym, antonym and meronym using convolutional neural networks (CNN). We have partic-
ipated in CogALex-V semantic shared task of corpus-based identification of semantic relations.
Proposed approach using CNN-based deep neural networks leveraging pre-compiled word2vec
distributional neural embeddings achieved 43.15% weighted-F1 accuracy on subtask-1 (check-
ing existence of a relation between two terms) and 25.24% weighted-F1 accuracy on subtask-2
(classifying relation types).

1 Introduction

Discovering semantic relations and the corresponding relation types between word pairs is an impor-
tant task in Natural Language Processing (NLP) with a wide range of applications, such as automatic
Machine Translation, Question Answering Systems, Ontology Learning, Paraphrase Generation, etc.
Corpus-driven automated methods for semantic relation identification have been promising an efficient
and scalable solution in the recent past.

To discover semantic relations such as synonym, hypernym and antonym, most of the existing methods
(Hearst, 1992; Snow et al., 2004) employed lexical patterns or distributional hypothesis, and suffer from
sparsity and low accuracy problems. Moreover, many of these methodologies model individual semantic
relations using external knowledge sources such as thesauri, WordNet, etc. Although semantic networks
like WordNet1 define semantic relations such as synonym, hypernym, antonym and part-of between word
types, however they are limited in scope and domain.

Recently, few approaches based on distributional word embeddings (Shwartz et al., 2016; Baroni et
al., 2012; Ono et al., 2015; Leeuwenberg et al., 2016) reported significant improvements in identifying
various lexical semantic relations such as hypernymy, antonymy, synonymy etc. Distributional represen-
tations of words learned from a large corpus capture linguistic regularities and collapse similar words
into groups (Mikolov et al., 2013b).

Inspired by these approaches, we propose a lexical semantic relation detection system using CNN-
based deep neural networks by leveraging word2vec2 distributional word embeddings as part of 5th
edition of CogALex shared task . The shared task proposed two subtasks namely, relation detection and
relation type identification. Subtask-1 aims at detecting a relation between two given terms and subtask-
2 aims at identifying semantic relations such as synonym, hypernym, antonym, and part-of between
two terms if a relation exists. This task is particularly challenging as local context for term pairs is not
available in the training corpus.

The rest of the paper is organized as follows: in section 2, we describe related work and in section 3,
we introduce deep learning-based supervised classification technique for identifying semantic relations.
We describe datasets and the experimental results in section 4. In section 5, we analyze various types of
errors in relation classification and conclude the paper.

This work is licensed under a Creative Commons Attribution 4.0 International Licence.
Licence details: https://creativecommons.org/licenses/by/4.0/

1http://wordnetweb.princeton.edu/perl/webwn/
2https://code.google.com/archive/p/word2vec/
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2 Related Work

For discovering semantic relations between term pairs, several researchers have employed various meth-
ods such as pattern-based, distributional, unsupervised and supervised approaches. Several methods
that have been developed for synonym extraction employed distributional hypothesis (Saveski and Tra-
jkovski, 2010; Pak et al., 2015) approach. Van der Plas and Tiedemann (2006) combined distributional
word similarity, and word-alignment context for synonym extraction in Dutch.

More recently, Leeuwenberg et al. (2016) proposed minimally supervised synonym extraction ap-
proach based on neural word embeddings that are compiled using continuous bag-of-words model
(CBoW) and the skip-gram model (SG). They analyzed word categories that are similar in the vector
space using various combinations of similarity measures with part of speech (POS) information for ex-
tracting synonyms from the corpus.

Shwartz et al. (2016) proposed an integrated approach based on deep neural networks by combining
path-based and distributional methods for hypernymy detection. Initially, authors experimented with
path-based model using dependency paths as embedding features and reported good improvement over
prior path-based methods and comparable performance with the superior distributional methods. Later,
they extended deep neural networks with distributed signals and showed significant improvement over
state-of-the-art approaches. Our proposed approach is similar to this approach in employing deep neural
networks and uses word2vec embeddings instead of dependency-based embeddings and also models
other semantic relations synonymy, meronymy and antonymy along with hypernymy relation.

Most of the existing approaches (Yih et al., 2012; Zhang et al., 2014) for antonym extraction lever-
aged thesauri information for distinguishing antonyms from synonyms. Ono et al. (2015) proposed a
word embedding-based approach using supervised synonym and antonym information from thesauri,
and distributional information from large-scale unlabeled text data and reported improved results.

Shoemaker and Ganapathi (2005) system for automatically discovering meronyms (part-whole) from
text corpora using supervised SVM classifier based on empirical distribution over dependency relations
as features. vor der Brück and Helbig (2010) proposed semantic-oriented approach for meronymy rela-
tion extraction based on semantic networks using automated theorem prover.

3 Methodology

Deep neural networks, with or without word embeddings, have recently shown significant improvements
over traditional machine learning–based approaches when applied to various sentence- and relation-level
classification tasks.

Kim (2014) have shown that CNNs outperform traditional machine learning-based approaches on
several tasks, such as sentiment classification, question type classification, etc. using simple static word
embeddings and tuning of hyper-parameters. Zhou et al. (2016) proposed attention-based bi-directional
LSTM networks for relation classification task. More recently, (Shwartz et al., 2016) proposed LSTM-
based integrated approach by combining path-based and distributional methods for hypernymy detection
and shown significant accuracy improvements.

3.1 CNN-based Relation Classification

Following Kim (2014), we present a variant of the CNN architecture with four layer types: an input
layer, a convolution layer, a max pooling layer, and a fully connected softmax layer for term pair relation
classification as shown in figure 1. Each term pair (sentence) in the input layer is represented as a
sentence(relation) comprised of distributional word embeddings. Let vi ∈ Rk be the k-dimensional
word vector corresponding to the ith word in the term pair. Then a term pair S of length ` is represented
as the concatenation of its word vectors:

S = v1 ⊕ v2 ⊕ · · · ⊕ v`. (1)

In the convolution layer, for a given word sequence within a term pair, a convolutional word filter P is
defined. Then, the filter P is applied to each word in the sentence to produce a new set of features. We use
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(Convolution)

(Max pooling)

(Softmax)

Relation - Antonym

(Embeddings)

Input: east west

Figure 1: Illustration of an example term pair relation classification using convolutional neural networks

a non-linear activation function such as rectified linear unit (ReLU) for the convolution process and max-
over-time pooling (Collobert et al., 2011; Kim, 2014) at pooling layer to deal with the variable sentence
size. After a series of convolutions with different filters with different heights, the most important features
are generated. Then, this feature representation, Z, is passed to a fully connected penultimate layer and
outputs a distribution over different relation labels:

y = softmax(W · Z + b), (2)

where y denotes a distribution over different relation labels, W is the weight vector learned from the
input word embeddings from the training corpus, and b is the bias term.

3.2 Experimental Setup

We model the relation classification as a sentence classification task. We use the CogALex-V 2016
shared task dataset in our experiments which is described in the next section. This dataset consist-
ing of term pairs is tokenized using white space tokenizer. We performed both binary and multi-class
classification on the given data set containing two binary and five multi-class relations from subtask-1
and subtask-2 respectively. We used Kim’s (2014) Theano implementation of CNN3 for training the
CNN model. We use word embeddings from word2vec which are learned using the skipgram model of
Mikolov et. al (2013a,b) by predicting linear context words surrounding the target words. These word
vectors are trained on about 100 billion words from Google News corpus. As word embeddings alone
have shown good performance in various classification tasks, we also use them in isolation, with varying
dimensions, in our experiment. We performed 10-fold cross-validation (CV) on the entire training set
for both the subtasks in random and word2vec embedding settings. We initialized random embeddings
in the range of [−0.25, 0.25]. We did not use any external corpus for training our model but used pre-
compiled word2vec embeddings trained on about 100 billion words from Google News corpus. We used
a stochastic gradient descent-based optimization method for minimizing the cross entropy loss during
the training with the Rectified Linear Unit (ReLU) non-linear activation function.

Tuning Hyper Parameters. The hyper-parameters we varied are the drop-out, batch size, embed-
ding dimension and hidden node sizes for training our models in cross-validation setting for finding

3https://github.com/yoonkim/CNN_sentence
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TRUE FALSE Total

Train 826 2228 3054
Test 1201 3059 4260
Total 2027 5287 7314

Table 1: Training and test data sets: Subtask-1
of CogALex-V shared task

ant hyper part of random syn Total

Train 241 255 163 2228 167 3054
Test 360 382 224 3059 235 4260
Total 601 637 387 5287 402 7314

Table 2: Training and test data sets: Subtask-2 of
CogALex-V shared task

CNN Relation Precision Recall F1

random emb. true 41.23 37.26 39.00
false 77.45 80.26 78.80

weighted 41.23 37.26 39.00

word2vec emb. true 58.15 52.69 54.99
false 82.94 85.96 84.37

weighted 58.15 52.69 54.99

Table 3: Avg. 10-fold cross-validation results
on subtask-2 with rand. & word2vec embeds.

Relation Precision Recall F1

CNN true 35.21 55.70 43.15
flase 77.46 59.76 67.47

weighted 35.21 55.70 43.15

Rand.baseline true 28.33 50.29 36.24
flase 71.95 50.05 59.03

weighted 8.33 50.29 36.24

Table 4: Subtask-1 test set results word2vec embed-
ding setting Vs. Random baseline.

the optimal model using training set. We performed grid search over these value ranges for the men-
tioned hyper parameters: drop out{0.1,0.2,0.3,0.4,0.5,0.6}, batch size{12,24,32,48,60}, embedding di-
mension{50,100,150,200,250,300} and hidden node sizes{100,200,300,400,500}. Optimal results are
obtained using drop out-0.5, batch size-32,embedding size-300 and hidden node size-300 for subtask-1
and dropout-0.5, batchSize-24, embedding size-300 and hidden node size-400 for subtask-2 in cross val-
idation setting as shown in tables 3 and 5. We used fixed context-window sizes set at [1,2] as max length
of the term pair in given corpus is 2 for both the tasks. We also used fixed number of 25 iterations with
default learning rate (0.95) for training our models.

4 Datasets and Evaluation Results

In this section, we describe CogALex-V 2016 shared task data sets and the experimental results.

Datasets. We used a dataset extracted from EVALution 1.0 (Santus et al., 2015), which was developed
from WordNet and ConceptNet, and which was further filtered by native speakers in a CrowdFlower
task. This data set is split into training and test sets. The distribution of training and test splits are shown
in tables 1 and 2. The samples in the subtask-1 and subtask-2 test set are unbalanced and majority of
relation classes are ”FALSE” and ”random” in the given train and test sets.

Evaluation and Results. We evaluated results on test sets using trained models with the optimal pa-
rameters for both the tasks and compared results against random baseline results as shown in tables
4 and 6. CogALex-V shared task results are evaluated using weighted-F1 measure on both the tasks.
Weighted F-1 values for all the relations except for ”random” relation are computed and reported on
subtask-2. On subtask-1, i.e. for relation detection, in the cross-validation setting, it is shown that CNN
with word2vec embedding setting performed (16%F1) better than the random embeddings. On test set,
CNN with word2vec embeddings outperformed (13%) the random baseline results. On subtask-2, i.e for
relation type detection, in the cross-validation setting, it is shown that CNN with word2vec embedding
setting performed (14.63%F1) better than the random embeddings learned from the training set. On the
test set, CNN with word2vec embeddings outperformed (14.64%) the random baseline results. These re-
sults suggest that word2vec-based distributional embeddings significantly contributed in improving the
relation classification performance.
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CNN Rel.type Precision Recall F1

random emb. syn 22.61 16.46 18.01
ant 17.84 13.09 14.67

hyper 14.05 32.80 35.63
part of 40.87 27.98 32.08

weighted 27.82 20.01 22.68

random 69.65 77.15 73.15

word2vec emb. syn 21.36 12.30 15.03
ant 39.10 33.08 35.30

hyper 51.89 48.89 49.61
part of 49.24 39.11 42.63

weighted 42.09 34.93 37.31

random 81.89 87.84 84.66

Table 5: Avg. 10-fold cross-validation results
on subtask-2 with rand. & word2vec embeds.

Rel.type Precision Recall F1

syn 06.96 13.62 09.21
CNN ant 20.21 31.39 24.59

hyper 30.71 40.84 35.06
part of 25.20 27.68 26.38

weighted 21.89 30.22 25.24

random 77.40 62.93 69.42

syn 05.89 20.85 09.18
Rand.baseline ant 07.77 19.17 11.06

hyper 08.83 20.42 12.33
part of 05.31 20.09 08.40

weighted 07.28 20.07 10.60

random 71.57 18.93 29.94

Table 6: subtask-2 results in word2vec embedding
setting vs Random baseline.

Predicted

true false

A
ct

ua
l

true 669 532
false 1231 1828

Table 7: Confusion matrix of subtask-1 test set
results

Predicted

random syn ant hyper part-of
A

ct
ua

l

random 1925 336 363 280 155
syn 118 32 47 30 8
ant 190 39 113 12 6
hyper 145 35 31 156 15
part of 109 18 5 30 62

Table 8: Confusion matrix of subtask-2 test set re-
sults

5 Discussion and Conclusion

We can assess the degree of confusion between various relation classes from the confusion matrix of
CNN classification model as shown in tables 7 and 8. On subtask-1, 44% of the term pairs are false-
negatives and 40% of the term pairs are reported as false-positives. On subtask-2, the ”synonym” relation
is mostly confused with the ”antonym” and ”hypernym” and less confused with the ”part of” relation.
We also observe a significant amount of confusion between ”part of” and the ”hypernym” relations.
The relations– ”antonym” and ”hypernym” are less confused with the ”meronym” relation but both are
confused with the ”synonym” relation. We also observe that majority of the identified relation classes
largely confused with the majority ”random” class.

In our proposed approach, our system showed that distributional embeddings learned from the large
corpus improve relation classification. There are a number of potential directions to improve relation
classification accuracy. One possible future work might be to compile the common vocabulary among
most confusing relation classes and for the vocabulary compile embeddings from large, unlabeled rela-
tion corpora using neural networks, and encode both syntactic and semantic properties of words in the
network representation.

Learning embeddings from sense-annotated larger relation corpus might improve the relation detection
and relation-type classification accuracy further. Incorporation of dependency embeddings might also
improve the relation classification as syntactic contexts can help in distinguishing different terms for
identifying appropriate relation type on subtask-2. As antonyms and synonyms fall on the same side in
the vector space due to the frequent co-occurrences in the similar contexts, embeddings learned from
extra contexts can also improve the relation-type classification performance.
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Abstract

This paper attempts the answer two questions posed by the CogALex shared task: How to

determine  if  two  words  are  semantically  related  and,  if  they  are  related,  which  semantic

relation holds between them. We present a simple, effective approach to the first  problem,

using word vectors to calculate similarity,  and a naive approach to the second problem, by

assigning word pairs semantic  relations based on their  parts  of  speech.  The results  of  the

second task are significantly improved in our post-hoc experiment, where we attempt to apply

linguistic regularities in word representations (Mikolov 2013b) to these particular semantic

relations. 

1 Introduction

Automatic discovery of semantically-related words is one of the most important NLP tasks, and has

great impact on the theoretical psycholinguistic modeling of the mental lexicon. In this shared task, we

employ the  word embeddings model (Mikolov 2013a) to reflect paradigmatic relationships between

words. Previous work has shown that word representations extracted from simple recurrent neural

networks could hierarchically categorize words based on their collocational distribution (Elman 1990).

Word representations also hold other regularities. More recently, Mikolov et al. (2013b) showed that

word vectors could be added or subtracted to isolate certain semantic and syntactic features. The well-

known example is to take the representations for king, subtract man, and add woman. This produces a

vector very near by queen. This method was tweaked by Levy and Goldberg (2014) by representing

the same idea as three pairwise similarities, and is the basis for the post hoc revisions to our system.

The  particular  semantic  relations  we  are  concerned  with  in  this  paper  are  synonymy,

antonymy, hypernymy, and meronymy. The shared task consists of two subtasks. The first is to, given

a pair of words, identify if they are semantically related. The second task is to determine, if the pair is

related, what relation there is between them. We will present first our official system for each subtask,

followed by our post-hoc changes.

2 Subtask 1

Subtask 1 was to see if two words were semantically related. For our system, we returned true if word

2 was in the top n similar word vectors for word 1, or vice versa. We used the pretrained Google News

vectors (Mikolov 2013a), which are 300 dimensions, and contain a vocabulary of 3 million words, and

used the Gensim Word2Vec library (Rehurek and Sojka 2010) to manipulate the data.

We found that the best results were achieved when we considered the top 600 similar words.

This number had the best coverage without suffering from too many false positives. We also found it

helpful to limit the vocabulary from 3 million to only the top 50,000 most frequently occurring tokens,

which eliminated unlikely candidate word-forms. 
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: 

http://creativecommons.org/licenses/by/4.0/
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Initially, we found the 600 most similar words by building a dictionary of each word in the

training data and its corresponding related words. Because we used the same dictionary made from the

training data when running the finalized version on test data, our official submission only looked up

words that occurred in the training data. In our post-hoc experiment for subtask 1, we use all the words

from the test data as well. The results of both systems are below.

LOPE P = 0.596 R = 0.886 F1 = 0.713

LOPE-PH P = 0.623 R = 0.884 F1 = 0.731

Table 1: Compares F1 scores of the original (LOPE) and post-hoc (LOPE-PH) systems on Subtask 1

While the performance of the post-hoc system was slightly better, it did not make substantial

gains on the original system. The recall for the two systems was almost the same despite the original

system not containing the test data, because as long as one of the two words in a pair was in the

dictionary, the system could still find related words.

3 Subtask 2

Subtask 2 asks us to take the related pairs from subtask 1 and determine what their relation is: either

synonyms,  antonyms,  hypernyms,  or  meronyms.  Our  original  system  used  a  crude  method  to

categorize the pairs based on their parts of speech. In the training data, nouns, verbs, and adjectives

occurred at different frequencies for each relation, and we used that information to sort them into their

mostly likely categories. Noun-noun pairs were sorted as hypernyms, adjective-adjective pairs were

sorted as antonyms, and verb-verb pairs were split between antonyms and synonyms based on where

the word pair occurred in the list of 600 similar words. If the word occurred in the first 100 most

similar  it  was  sorted  as  a  synonym,  otherwise  it  was  sorted  as  an  antonym.  The  part  of  speech

information of each pair was determined by finding the most frequent shared part of speech between

the two words as they appeared in the Brown corpus. While this approach was better than a random

baseline, it is not helpful in that it does not provide us with any useful information and the results were

lackluster. 

We  significantly  improved  our  results  in  the  post  hoc  system  by  completely  changing

approach  and  using  a  method  inspired  by  Mikolov  et  al.'s  method  (2013b)  of  finding  linguistic

regularities in word representations. We were curious if this method could be applied to this particular

problem of finding differences between synonyms, antonyms, hypernyms, and meronyms.

We initially implemented a method inspired by Levy and Goldberg (2014). We used three

word representations, one related pair from the training data and one word from the input pair, in order

to predict the other word from the input pair as one of the most similar vectors. The idea being that the

cosine similarity of the target fourth word will be different in the case where the semantic relation of

the input pair matches that of the training pair. 

This assumption was incorrect, and we had to revise our approach. We instead started to find

the cosine similarity between the two sets of words (the input set, and a related set from the training

data).  The  cosine  similarity  was  often  higher  if  the  two  sets  shared  a  relation.  While  this  was

inconsistent  when  comparing  only  two  sets,  we  found  that  we  could  compare  (find  the  cosine

similarity of) an input set to each antonym, synonym, hypernym and meronym set in the training data,

average the results for each semantic relation, and then assign the input pair to the class that had the

highest average. 

LOPE P R F1 LOPE-PH P R F1

SYN 0.304 0.191 0.235 SYN 0.089 0.438 0.148

ANT 0.417 0.217 0.285 ANT 0.447 0.405 0.425

HYPER 0.328 0.406 0.363 HYPER 0.199 0.514 0.287

PART_OF 0.000 0.000 0.000 PART_OF 0.411 0.365 0.387

Subtask 2 0.289 0.231 0.247 Subtask 2 0.373 0.414 0.374

Table 2: Compares F1 scores of the original (LOPE) and the post-hoc (LOPE-PH) system on Subtask 2
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So if the average of the input pair compared to all of the antonym pairs was higher than it was

for the same comparison to all of the synonym, hypernym, and meronym sets, then the input pair was

assigned the relation antonym.  Using this method, we were able to significantly increase our F1 score

for the task and our coverage of which relations we were able to get right (we completely ignored

meronyms  in the first  system).  However,  we still  struggled with some relations more than others.

Synonyms in particular had a very poor precision, and the accuracy of the system on synonyms was

much lower than for the other three relations.

4 Conclusion

There were two mistakes in the initial version of our system. First, the there was no reason not to use

the test data rather than the training data when looking at the top 600 similar representations for each

word in a pair. The difference, however, in the results was relatively small. A much more significant

error was our original system for solving subtask 2, which was both relatively ineffective and didn't

show anything interesting.. 

Despite these errors, we were able to propose a system that while very simplistic and easy to

implement,  was able to achieve good results compared to the rest of the field. Table 3 shows the

results of the various systems in the shared task on both subtask 1 and subtask 2.

Subtask 1 Subtask 2

Team F1 Team F1

GHHH 0.790 LexNET 0.445

Mach5 0.778 GHHH 0.423

LexNET 0.765 LOPE-PH 0.374

ROOT18 0.731 Mach5 0.295

LOPE-PH 0.731 ROOT18 0.262

LOPE 0.713 CGSRC 0.252

HsH-Supervised 0.585 LOPE 0.247

CGSRC 0.431

Table 3: Results of the different systems in the CogALex shared task, with the addition of our post-hoc system

In particular, our method of comparing the input pair to each related pair in the training data,

averaging the results in each relational category,  and assigning the input pair the relation with the

highest average, appears to be effective at categorizing pairs according to their semantic relationship.

Although our exact method was different than that of Mikolov et al. and Levy and Goldberg, it shows

that  the  linguistics  regularities  they  found  in  word  embeddings  are  useable  to  find  this  kind  of

paradigmatic  information  about  the  semantic  relationships  synonymy,  antonymy,  hypernymy,  and

meronymy.

While  not  at  the  top  of  the  table  for  either  subtask,  we  believe  we were  able  to  put  up

respectable results  for a simple system.  It  is  possible that  with a more complex expansion of the

system, we could improve the results even more, particularly by finding ways to increase the accuracy

of synonym detection in subtask 2. 

4.1 Further Study

As a further study, we would like to attempt the task in Chinese. We argue that relation extraction is a

task that could be language/writing system dependent. For example, in Chinese, it would be possible

to exploit  morpho-semantic relations and the character  radical  ontology (paradigmatic  information

embedded in the characters) to re-conduct subtask 2. We are currently underway creating original

Chinese language data from Chinese Word Net to mirror the English data, so as to avoid translating

polysemous words in English that aren't polysemous in Chinese, such as cell (a cell could be a small

room or a part of an organism). 
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Abstract

The CogALex-V Shared Task provides two datasets that consists of pairs of words along with a
classification of their semantic relation. The dataset for the first task distinguishes only between
related and unrelated, while the second data set distinguishes several types of semantic relations.
A number of recent papers propose to construct a feature vector that represents a pair of words by
applying a pairwise simple operation to all elements of the feature vector. Subsequently, the pairs
can be classified by training any classification algorithm on these vectors. In the present paper
we apply this method to the provided datasets. We see that the results are not better than from
the given simple baseline. We conclude that the results of the investigated method are strongly
depended on the type of data to which it is applied.

1 Introduction

In distributional semantics words are represented by a large number context features. In most cases,
words context features are based on co-occurrences number or probabilities with other words. It turns
out that words with similar vectors of co-occurrence based features are semantically related. A simple
approach to decide whether two words are semantically related or not, can be based directly on the
similarity of their associated vectors. This approach has been used in a large number of studies.

In order to improve on the quality reached by this simple approach, a number of papers recently
proposed to use derived distributional features to represent each pair of words by a large distributional
feature vector. Such a vector can be constructed by taking the pairwise sum or pairwise product of the
vectors of two words. Now, the similarity between two words can be learned by a supervised classi-
fication method. In the following, we will see, how this method can be applied to the first part of the
shared task. Since we have feature representations for each pair of words, we can also try to learn several
different relations. We will do so for the second part of the task.

The rest of the paper is organized as follows. Section 2 discusses the related works. In section 3
we will have a short look at the data and the shared task. Section 4 explains the distributional feature
construction, pairwise feature generation and the classification methods. In section 5 and 6, we present
and discuss the results.

2 Related Work

Supervised approaches have not been used extensively in combination with distributional features.
Shimizu et al. (2008) used a learned Mahalanobis distance to rank pairs of synonyms and unrelated
words. In order to make the learning computationally feasible they reduced the number of context fea-
tures massively by selecting the most promising features. Hagiwara (2008) follows a different approach.
He constructed features to represent each pair of words. Subsequently a Support Vector Machine is used
to learn which pairs are pairs of synonyms and which pairs are not. The features for the pair of words
are constructed by pairwise addition or multiplication of the features of each word. Similar approaches
are followed by Weeds et al. (2014) and Aga et al. (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/
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Alternatively, a pair of words can be represented by a small number of features. These features either
represent properties of one of both words, or a property of the pair, e.g. the pointwise mutual information
of these words. Possible features include also similarity measures based on the co-occurrence features.
The use of such a set of features is followed by Bär et al. (2012), Wartena (2013) and Santus et al. (2016)
for example. Turney (2014) combines these type of aggregated features with simple co-occurrence fea-
tures.

3 Task and data

The CogALex shared task consist of two parts. For the first task pairs of words have to be classified as
semantically related or not related. For the second task the type of relation for the related pairs has to be
classified further into 4 semantic relations. For both tasks a test and a training set is provided.

The training data for both tasks contain 3054 pair of words. From these pairs 826 are semantically
related, the remaining 2228 pairs are not related. The test data consists of 4260 pairs, 1201 of which are
related and 3059 are not. In contrast to many other datasets, the words in this set are very heterogeneous:
the set contains nouns, adjectives, verbs and even pronouns. For the second task, the relation between the
related words is classified into 4 classes: synonymy, antonymy, hypernymy and meronymy. Especially,
the combination of different part of speech and antonymy gives rises to unexpected pairs of related
words, like burn–cool or anger-calm. Moreover, pairs like arm–leg or vegetable-meat are considered
as anontonyms and hence related words, while other pairs, that are related somewhat more indirectly,
like breast-leg, vegetable-apple (both co-meronyms) or run-athlete (we could consider athletics as a
hypernym of running) are classified as unrelated. Thus it becomes clear that the dataset is far from trivial
and is a real challenge for automatic classification.

For the construction of the context vectors of the words we use the UKWaC-Corpus (Baroni et al.,
2009).

4 Methodology and Experiment

In this section, we will explain the task description, the feature construction for the words, and our
approach to the task.

4.1 Feature construction
In DS the meaning of a word is represented by a vector of context features. As context features co-
occurrence data with other words in a large text corpus are used.

There are a number of choices that have to be made when building the context vectors for each word.
In the following we will use the choices that turned out to yield the best results in a number of different
tasks in recent studies by Bullinaria and Levy (2007; 2012) and Kiela and Clark (2014).

First it has to be determined what words are used as context features, i.e. for what words co-occurrence
statistics have to be computed. Generally, it is found that mid frequency words are most effective. After
some preliminary experiments we found that including all words in the frequency range from 4 · 103 to
1 · 106 in the UKWaC Corpus is a good compromise between optimal results and acceptable storage and
computing efforts. Therefore, context words which have frequency range from 4 · 103 to 1 · 106 in the
UKWaC Corpus have been considered to construct the context vector for each words. Then each word is
now represented by a vector of 17 400 features.

Next we have to determine the size of the window for co-occurrence. If the training corpus is large
enough all studies show that smaller windows yield better results. We first remove all stop words and
then use a window size of two words on the preprocessed text, respecting sentence boundaries. Syntactic
relations are not used to determine the context of a word.

Finally, we use positive pointwise mutual information (PPMI) as a feature weighting, since it was
shown to give better results than raw co-occurrence probabilities in a number of different studies. For a
context words c and a (target) word t the PPMI is defined as

ppmi(c, t) = max
(

log
p(c|t)
p(c)

, 0
)
. (1)
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Task Method Precision Recall F-score Accuracy

Task 1
All True (Majority) 0.282 1.000 0.440 0.282
Cosine 0.590 0.713 0.646 0.780
Supervised (Addition) 0.362 0.094 0.149 0,698
HsH-Supervised (Multiplication) 0.577 0.593 0.585 0,760

Task 2 All hypernym (Majority) 0.0897 0.318 0.140 0.0897
HsH-Supervised (Multiplication) 0.506 0.154 0.229 0,753

Table 1: Performance of the HsH-Supervised method and two baselines for both tasks on the test set

4.2 Representation of word pairs

The similarity of words can be computed by comparing their feature vectors. In order to decide whether
two words are semantically related, Hagiwara (2008) proposed a novel approach which is learning an
SVM model by taking the distributional features as an input, that were constructed by addition of the
context vectors of both words. In addition, recently, distributional features have also been used directly
to train classifiers that classify pairs of words as being synonymous or not (Weeds et al., 2014; Aga et al.,
2016) and showed good performance on the applied tasks. For the shared task, we have also followed
this approach which is using distributional features directly on classifiers. To construct the feature vector
for each pair of words, we use multiplication. Pairwise multiplication was shown to give good results in
(Weeds et al., 2014) and (Aga et al., 2016).

As a baseline we have been considering the classical cosine similarity between the context vectors of
the two words. On the training data, the optimal split has been learned between the related and non-
related pairs. For the test data, we thus consider pairs with context vectors that have a cosine above
0.0842 to be semantically related.

As a further simple baseline for the first task we use a classifier that considers each pair as semantically
related. In fact, this is a type of majority classifier, that always assigns the largest evaluated category.1

For the second task the largest evaluated category in the training data is the hypernym relation (255
pairs). Thus this classifier assigns hypernym to each pair.

4.3 Supervised Similarity Learning

We have used linear SVM from the liblinear package to learn a model and classify the word pairs rep-
resented by one feature vector. Liblinear is very efficient and fast for training large-scale problems as
showed by Fan Fan et al. (2008). To find the best combination of parameter values for the cost pa-
rameter C and the kernel parameter γ we used grid search. We tested for −5 ≤ log2C ≤ 15 and
−15 ≤ log2 γ ≤ 2 n steps of 0.05. Using cross validation on the training data we found C = 32 and
γ = 0, 00781 as optimal values. The right selection of the hyper-parameters should minimize the risk of
overfitting.

5 Results

The results of the supervised method and our two baselines are given in Table 1. For the first task the
supervised method based on the Hadamard-Product of context vectors could not give better results than
the simple cosine similarity baseline. The multiplication, however, is much better than addition of vectors
and also clearly better than the naive baseline, that considers each pair as related.

For the second task the F1-score of the supervised method is very low, but still far above the naive
baseline. Remarkably, the precision is quite high: half of the pairs found for one of the four semantic
relations indeed have this relation.

1As an anonymous reviewer pointed out, in the special case of task 1 the largest class that is taken into account in the
evaluation, happens to be the smallest class. Thus this baseline could also be coined ”minority classifier”.
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6 Discussion and conclusions

In a number of papers pairwise multiplication of context vectors has been used to represent pair of words.
The feature vectors for the pairs of words created by multiplication (or another operation of two numbers)
then is used to train a supervised model that learns whether the words in the pair are semantically related
or not. We have applied this method to the CogALex shared task.

At first sight it is quite surprising that the supervised method stays behind the simple cosine similarity
approach, since various publications have reported that this method that we applied is slightly better than
cosine similarity.

The main reason for the bad performance of the SVM is probably that the model is overfitting the
training data. We expected the SVM with carefull selection of the C-parameter to be quite robust against
overfitting. In (Aga et al., 2016) we used the same number of features and could improve a lot over the
cosine baseline. In the present study, however, the model clearly is overfitting the training data: when
we apply the learned model to the training data we get a result with an accuracy of about 99%, showing
that the model indeed overfits the training data.

Furthermore, we used a standard SVM that optimizes for overall accuracy, while the official evalua-
tion for the task is the F1-Score of a small class. In fact the accuracy is quite high and the difference
in accuracy between the simple cosine based method and the supervised method is very small. For a
discussion on the differences between optimizing on F-Score and accuracy see e.g. Ye et al. (2012)

Finally, we have the impression that the method is successful in recognizing a loose semantic related-
ness, but is not able to distinguish between very closely related words (like synonyms) and more loosely
related words: In Aga et al. (2016), we studied relatedness of terms in a thesaurus. Here the supervised
method also performs well on pairs of terms that are related to each other by some thesaurus relations via
at most one intermediate concept. The performance is worst on pairs build from alternative labels for the
same concept. Here we have a similar situation, in which we only want to find words with a specific and
precise defined semantic relation, while other words, that have other or more loose semantic relations are
classified as unrelated. Thus it seems that the findings of the present experiment are in-line with previous
results for the same approach.

For future work we will apply dimensionality reduction in order to reduce the number of features and
to prevent the SVM from overfitting.
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Abstract 

This paper deals with a seldom studied object/oblique alternation phenomenon in Japanese, 
which. We call this the bump alternation. This phenomenon, first discussed by Sadanobu 
(1990), is similar to the English with/against alternation. For example, compare hit the wall 
with the bat [=immobile-as-direct-object frame] to hit the bat against the wall [=mobile-as-
direct-object frame]). However, in the Japanese version, the case frame remains constant. 
Although we fundamentally question Sadanobu’s acceptability judgment, we also claim that 
the causation type (i.e., whether the event is an instance of onset or extended causation; Talmy, 
1988; 2000) could make an improvement. An extended causative interpretation could improve 
the acceptability of the otherwise awkward immobile-as-direct-object frame. We examined this 
claim through a rating study, and the results showed an interaction between the Causation type 
(extended/onset) and the Object type (mobile/immobile) in the direction we predicted. We 
propose that a perspective shift on what is moving causes the “extended causation” advantage. 

1 Introduction 

There are many types of object/oblique alternation. A representative one is locative alternation: 
 
(1) a.  Jack sprayed paint onto the wall.   [mobile/theme object] 
 b.  Jack sprayed the wall with paint.   [immobile/location object] 

(Levin, 1993: 51) 
 
Locative alternation is the alternation between a theme-object frame, in which the verb selects the 
mobile theme as the direct object, and a location-object frame, in which the verb selects the immobile 
location (goal) as the direct object. 

The present paper deals with a much less studied alternation in Japanese, which we call the bump 
alternation. Sadanobu (1990) first studied this phenomenon under the label tama-ate daikan (‘bullet-
hit’ alternation). We can regard this to be a variant of locative alternation because it is an alternation 
between a mobile theme and an immobile location. This is similar to what Levin (1993) called the 
with/against alternation, as illustrated below: 
 
(2) a. Brian hit the stick against the fence.  [mobile object] 
 b.  Brian hit the fence with the stick.  [immobile object] 

(Levin, 1993: 67) 
 
However, what is peculiar about the Japanese version is that the case marking remains constant, as 
shown in (3). 

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: 
http://creativecommons.org/licenses/by/4.0/ 
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(3) a. Tama-o    mato-ni  ateru      [mobile object] 
  bullet-ACC target-DAT  hit 
  ‘(lit.) hit the bullet to the target’ = ‘make the bullet hit the target’ 
 b. Mato-o    tama-ni  ateru      [immobile object] 
  target-ACC bullet-DAT  hit 
  ‘(lit.) hit the target to a bullet’ = ‘hit the target with a bullet’ 

(Sadanobu, 1990) 
 
The English translation for (3a) is awkward, but Japanese ateru means ‘to cause something to hit 
somewhere.’ This is much more natural with a mobile/theme object, whereas the immobile/location 
object (3b) sounds more awkward (we will get back to this issue shortly). In this sense, ateru may be 
closer to English bump than hit, which is the reason why we tentatively call this alternation the bump 
alternation. In any case, what is peculiar here is that in (3b), the accusative-dative frame remains 
constant. Sadanobu (1990) claims that both frames denote the same event in which the agent causes 
the mobile object to move, and then bump into the immobile one. Thus, in this alternation, the case 
marking for the two objects is switchable without changing the interpretation. Such an alternation is 
crosslinguistically peculiar, and thus hard to translate directly in English. However, according to our 
intuition (as native speakers of Japanese), Sadanobu’s acceptability judgment of (3b) is questionable. 
It sounds unacceptable when interpreted in the same way as (3a). Thus, the existence of this 
alternation is at stake. 

If this alternation were simply an erroneous observation by Sadanobu, not much would be 
interesting about it. However, it seems to us that this type of alternation can be more acceptable by 
controlling the type of the mobile object. For example: 
 
(4) a.  Doamiraa-o   dentyuu-ni   ateta/butuketa.    [mobile object] 
  door.mirror-ACC utility.pole-DAT hit/bumped 
  ‘bumped the door mirror against the utility pole’ 
 b.  Dentyuu-o   doamiraa-ni   ateta/butuketa.    [immobile object] 
  utility.pole-ACC door.mirror-DAT hit/bumped 
  ‘bumped the utility pole with the door mirror’ 
 
In (4), doamiraa ‘door mirror’ is the mobile entity and dentyuu ‘utility pole’ is the immobile one. 
Sentence (4b) sounds more acceptable than (3b) even though dentyuu ‘utility pole’ is obviously 
immobile. Why is it easier for immobile dentyuu ‘utility pole’ in (4b) to appear as the direct object 
than mato ‘target’ in (3b)? 

In order to account for the difference in acceptability judgment between (3b) and (4b), we claim 
that different kinds of mobile themes induce different types of causation: namely, onset and extended 
causations (Talmy, 1988; 2000). The former type consists of two stages, i.e., the agent’s causative 
action, followed by an autonomous event of the theme’s movement. 

 
(5)  The carton slid (all the way) across the grass from a (single) gust of wind blowing on it. 

(Talmy, 2000: 493) 
 
In (5), an autonomous event (the carton’s movement) follows a causative situation (a single gust of 
wind blowing). This event consists of two such stages, so this is an onset causation event. On the other 
hand, the latter type, extended causation, depicts a situation where “the caused event takes place 
exactly during the duration of the causing event” (Talmy, 2000: 493–494). 

 
(6)  The carton slid across the grass from the wind blowing on it (steadily). 

(Talmy, 2000: 494) 
 

The example in (6), unlike (5), depicts a situation in which the carton continues to move while the 
wind blows on it. Such synchronicity of the causative event and the movement of the theme are 
labeled extended causation. 
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In terms of the causation type, we can regard the event in (3) to be an instance of onset causation. 
The agent pulls the trigger of a gun, which is the causative event; after that, the bullet autonomously 
starts to move to the target, without help from the agent. Thus, the entire event can be construed as 
consisting of two stages, and thus can classify it as an instance of onset causation. By contrast, in (4), 
the door mirror, which is part of a car, keeps moving all the while the agent drives the car. The 
movement of the door mirror and the agent’s causation always coincide. Thus, we can consider the 
event in (4) to be an instance of extended causation. 

We hypothesize that the bump alternation (more specifically, the immobile object variant) is more 
acceptable when the sentence denotes an extended causation. The reason is as follows. In the case of 
extended causation, the agent moves together with the mobile theme. This could trigger a perspective 
shift such that it makes us perceive the immobile entity as if it were a mobile one. For example, when 
you are driving and you approach a huge billboard, you may perceive that the billboard is coming 
closer even though it is not moving. The same may apply to the bump alternation with extended 
causation. In (4), even though the agent moves toward the immobile utility pole while driving a car 
(with door mirrors), it may be possible to perceive this situation in such a way that it is the immobile 
entity (the utility pole) that is moving toward the agent, eventually hitting the door mirror. The 
baseline assumption is that the bump alternation is not really an alternation; the bump verbs in 
Japanese only allow mobile objects. An apparent “alternation” is possible only when the immobile 
entity can appear as a mobile one. That is, it can occur only if the sentence denotes extended causation, 
but not when it denotes onset causation. If this hypothesis is on the right track, it follows that the 
immobile object frame with extended causation such as (4b) is more acceptable than the one with 
onset causation such as (3b). Our research question is whether there is an interaction between the 
Causation type (whether the event’s interpretation involves onset or extended causation) and the 
Object type (whether the direct object is the mobile theme or immobile entity). In particular, we would 
like to examine whether the difference in Causation type affects the acceptability of the immobile 
object frame. 

2 Experiment 

In order to examine the questions shown above, we conducted a questionnaire experiment through 
Lancers, a crowdsourcing service in Japan similar to Amazon Mechanical Turk. As mentioned above, 
the current research question is whether an interaction arises between Causation type (onset/extended) 
and Object type (mobile/immobile). 

2.1 Methods 

Materials 
We prepared materials under a 2x2 factorial design. The first factor was the Causation type. We varied 
the mobile theme to permit interpretation of the causative event as either extended or onset causation. 
For example, if the mobile theme is an entity that someone is likely to throw, like a pebble or a ball, 
the event is likely an onset causation event. On the other hand, if the mobile theme is an entity that is 
likely to move along with the agent, such as a door mirror or a body part (like a shoulder or elbow), 
the event is interpreted as an extended causation event. The second factor was the Object type. In one 
situation, the accusative case -o marks the mobile theme, while the immobile is dative-marked with –
ni. In another case, the immobile object is accusative-marked, with the mobile theme being dative-
marked. The verbs used in this experiment were either ateru ‘to make hit’ or butukeru ‘bump.’ Some 
sample materials are shown below: 

 
(7) Extended causation conditions: 

 a.  Yopparai-ga    ganmen-o  kootuuhyoosiki-ni  ateta. [mobile object] 
drunken.man-NOM face-ACC   traffic.sign-DAT   hit 
‘A drunken man hit his face against the traffic sign.’ 

 b. Yopparai-ga    kootuuhyoosiki-o   ganmen-ni  ateta. [immobile object] 
drunken.man-NOM traffic.sign-ACC   face-DAT hit 
‘A drunken man hit the traffic sign with his face.’ 
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Onset causation conditions: 
  c. Yopparai-ga    isitubute-o  kootuuhyoosiki-ni  ateta. [mobile object] 

drunken.man-NOM pebble-ACC traffic.sigh-DAT  hit 
‘A drunken man hit a pebble against the traffic sign (=made a pebble hit the sign).’ 

  d. Yopparai-ga    kootuuhyoosiki-o  isitubute-ni  ateta. [immobile object] 
drunken.man-NOM traffic.sign-ACC  pebble-DAT hit 
‘A drunken man hit the traffic sign with a pebble.’ 

 
(8) Extended causation conditions: 
  a. Musuko-ga  kata-o    genkantobira-ni   butuketa. 

son-NOM  shoulder-ACC entrance.door-DAT  bumped 
‘My son bumped his shoulder against the entrance door.’ 

  b. Musuko-ga  genkantobira-o    kata-ni    butuketa. 
son-NOM  entrance.door-ACC shoulder-DAT bumped 
‘My son bumped the entrance door with his shoulder.’ 

 Onset causation conditions: 
  c. Musuko-ga  setubun-no mame-o      genkantobira-ni  butuketa.   [mobile object] 

son-NOM     setubun-GEN beans-ACC  entrance.door-DAT bumped 
‘(lit.) My son bumped beans for the setubun festival to the entrance door.’ 
= ‘My son threw beans for the setubun festival against the entrance door.’ 

  d. Musuko-ga  genkantobira-o    setubun-no    mame-ni  butuketa.   [immobile object] 
son-NOM  entrance.door-ACC setubun-GEN beans-DAT bumped 
‘(lit.) My son bumped the entrance door with beans for the setubun festival.’ 
= ‘My son hit the entrance door with beans for the setubun festival.’ 

 
Participants and Procedures 
Participants were 105 native speakers of Japanese, recruited on-line via Lancers. They were asked to 
rate the naturalness of each sentence on a five-point Likert scale by clicking one of radio buttons 
numbered 1-5, with ‘5’ corresponding to ‘natural’ and ‘1’ to ‘unnatural’. They were instructed to rate 
each item quickly following their intuitions. 54 yen was paid for each participant after the task.  

The total of 16x4 sentences were evenly distributed into four lists with a Latin square design. Each 
list also included the same 32 fillers, among which 11 sentences were unacceptable and 21 were 
acceptable. The total of 48 sentences were shuffled in a fixed, pseudo-random order. Additional four 
lists that contained the sentences in a reverse order were prepared to counterbalance potential ordering 
effects. Each participant was assigned one of the eight lists. Each list was rated by 10 to 15 
participants. 

2.2 Predictions 

Because ateru ‘hit’ and butukeru ‘bump’ both by default select a mobile theme as the direct object, 
we predicted there would be no significant difference in the acceptability of the mobile object 
conditions between the two causation types. The immobile object conditions were generally less 
acceptable. However, our hypothesis predicted that the possibility of interpreting the event as extended 
causation should improve the acceptability, compared with the onset causation conditions. 

2.3 Results and Discussion 

The data from one subject was excluded from the analyses because all sentences were rated 5. The 
grand mean of all items was 2.9. The mean rating of each condition is shown in Figure 1. 
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Figure 1: Mean Acceptability Ratings for Four Conditions 

 
It is obvious from the figure that the mean ratings of the immobile object conditions were overall 

much lower than the means of the mobile object conditions. This fits our intuition that these bump 
verbs in Japanese select the mobile-object frame by default. A linear mixed effects model analysis 
conducted with maximal random effects structure (cf. Barr et al., 2013) revealed main effects of the 
onset type (t=19.45) and the causative type (t=2.32), as in Table 1. Most importantly, there was a 
significant interaction (t=-2.70). Planned paired comparisons revealed a highly significant main effect 
of the Causation type in the immobile conditions (t=3.91), but no significant effect in the mobile 
conditions (t=-0.42). These findings conform to our hypothesis that the extended causation may 
improve the acceptability of an otherwise very awkward immobile-as-direct-object frame in the bump 
alternation in Japanese. We assume that the reason for this is that the extended causation can trigger a 
perspective shift such that the immobile object comes across as a mobile entity. 

 
 Estimate Standard Error t value 

Intercept 2.94 0.06 50.67 
Object (mobile) 1.30 0.06 19.45 

Causation (extended) 0.11 0.04 2.32 
Object:Causation -0.14 0.05 -2.70 

Table 1: Linear Mixed Effects Model Coefficients 
 

 Estimate Standard Error t value 
Intercept 1.63 0.08 20.92 

Causation (extended) 0.26 0.07 3.91 
Table 2: Causation Contrast in Immobile Object Conditions 

 
 Estimate Standard Error t value 

Intercept 4.24 0.10 43.18 
Causation (extended) -0.03 0.08 -0.42 

Table 3: Causation Contrast in Mobile Object Conditions 
 
 

3 Conclusion 

The results revealed a significant interaction between Causation type and Object type in the bump 
alternation in Japanese. This extended causation makes the immobile object more acceptable 
compared with the case of onset causation. We interpret this result to be evidence for our hypothesis 
that extended causation could let us interpret the immobile object as if it were a mobile object. This 
occurs because the agent moves with the mobile object toward the immobile object, enabling a 
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perspective shift with respect to what is moving. This in turn improves the acceptability of the 
immobile-as-direct-object frame in the bump alternation, due to reinterpretation of the immobile as 
mobile. In other words, the immobile-as-direct-object frame comes across as the mobile-as-direct-
object frame. Onset causation does not trigger such a perspective shift. 

Our finding also raises questions about the validity of introspective acceptability judgments 
regarding various alternation phenomena reported in linguistics literature (see Bresnan et al., 2007 for 
a criticism in this line). For example, in our case, we found a significant improvement in the 
acceptability of the immobile object frame by introducing extended causation. However, the mean 
acceptability rate was 1.88 for the immobile object × the extended causation condition, which is very 
low. Thus, it is not clear if we can state that this bump alternation phenomenon in Japanese really 
exists. We may also find other cases where quantitative studies do not support the acceptability 
judgments reported in theoretical literature of alternation phenomena. 

Another implication of this finding is that previous theoretical literature may have focused too 
closely on analyzing the semantics of verbs when it comes to alternation phenomena. A finer-grained 
analysis is desirable, especially on the effects of pragmatic interpretation induced by combining the 
verb and its arguments. This study demonstrated that simply changing the type of mobile theme could 
influence the acceptability judgment. Future research should shed more light on the contribution of 
nominal semantics to the interpretation of alternation phenomena. 
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Abstract
German particle verbs represent a frequent type of multi-word-expression that forms a highly productive
paradigm in the lexicon. Similarly to other multi-word expressions, particle verbs exhibit various levels of
compositionality. One of the major obstacles for the study of compositionality is the lack of representative
gold standards of human ratings. In order to address this bottleneck, this paper presents such a gold
standard data set containing 400 randomly selected German particle verbs. It is balanced across several
particle types and three frequency bands, and accomplished by human ratings on the degree of semantic
compositionality.

1 Introduction
German particle verbs (PVs), such as auf|schauen (to look up) represent a type of multi-word expression composed
of a particle and a base verb (BV). As example (1) shows, they may be written together or syntactically separated
but they always form one semantic unit.

(1) a. Das
The

Kind
child

sah
looked

seine
his/her

Mutter
mother

an.
an-PRT.

’The child looked at his/her mother.’
b. ....

...
dass
that

das
the

Kind
child

seine
his/her

Mutter
mother

an|sah.
looked|an-PRT.

’... that the child looked at his mother.’

In German, PVs are particularly frequent and form a highly productive paradigm in the lexicon, which often leads
to neologisms and is subject to creative language use in puns and word plays (Springorum et al., 2013). Like many
other multi-word expressions, PVs differ with respect to their compositionality. Some PVs can be deduced entirely
from the meaning of the BV but others have meanings which are totally distinct. Most PVs fall on a continuum in
between the two extremes. Some examples are the following:

FULLY COMPOSITIONAL: an|leuchten (to illuminate); the BV leuchten means to shine, and an expresses direc-
tionality (among other senses), cf. (2-a).

SEMI-COMPOSITIONAL: ab|segnen means to approve; literally, segnen means to bless. The two verb meanings
are related, but a meaning shift occurred (cf. (2-b)). Semi-compositional PVs are usually part of a productive
paradigm. In our case, ab|segnen patterns with verbs like ab|nicken (also meaning to approve, where the BV
means to nod), and ab|zeichnen (to give the approval signature, where zeichnen means to sign).

NON-COMPOSITIONAL: nach|schlagen means to look up (e.g. a reference) or to consult (e.g. a dictionary); the
BV schlagen means to beat (cf. (2-c)).

(2) a. Peter
Peter

leuchtete
shined

das
the

Bild
picture

mit
with

der
the

Taschenlampe
flashlight

an.
an-PRT.

’Peter illuminated the picture with the flashlight.’

b. Der
The

Chef
boss

segnete
blessed

die
the

Pläne
plans

ab.
ab-PRT.

’The boss approved the plans.’

c. Stella
Stella

schlug
beat

das
the

Wort
word

im
in-the

Wörterbuch
dictionary

nach.
nach-PRT.

’Stella looked up the word in the dictionary.’
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The compositionality of PVs has received some attention in Computational Linguistics. For example, the as-
sessment of compositionality grades has been studied for English (Baldwin et al., 2003; McCarthy et al., 2003;
Bannard et al., 2003; Bannard, 2005; Reddy et al., 2011; Salehi and Cook, 2013; Salehi et al., 2014) and German
(Hartmann et al., 2008; Kühner and Schulte im Walde, 2010; Bott and Schulte im Walde, 2014), mostly with the
use of methods from distributional semantics. A central requirement for such studies is the availability of gold
standards of human ratings which can serve as the basis for evaluation.

Only few gold standards of this kind are available (cf. section 2), and they tend to require a high amount of
human work to create. While humans have relatively clear intuitions on the grade of compositionality of PVs, the
ambiguity of PVs often represents a problem both for the elicitation of ratings and automatic assessment. Most of
the studies that are dedicated to PV compositionality have created their own gold standards, but both the workload
and the issue of comparability among studies make larger, public ally available data sets highly desirable. In
addition, the availability of standard resources is a prerequisite for inter-study comparability. In this paper we
present such a resource containing 400 German PVs. The gold standard was designed as a target selection which
is balanced over different types of particles and various ranges of corpus frequency. A subset of the gold standard
has already been used in Bott and Schulte im Walde (2015) for the assessment of PV-compositionality. The data
set has been created in a larger project which also produced Ghost-NN (Schulte im Walde et al., 2016), a gold
standard for German noun-noun Compounds with a similar design and a similar rating collection process. The
resource is available to the research community under a Creative Commons License.1

In the remainder of this paper, section 2 discusses the availability of similar existing resources. In section 3 we
describe the criteria which were important for the design of the new resource. In sections 4 and 5 we describe the
creation and the properties of the gold standard.

2 Previously Existing Data
The only comparable previously existing data set which contains human ratings on German PVs can be found
in Hartmann (2008). This data set is balanced over 8 frequency bands and rated by 3 expert raters, but it only
contains 99 PVs, corresponding to 11 particles. The collection of this data set considered polysemy by asking
raters to indicate ambiguities and, if they noticed any, to disambiguate them in their own words. The ambiguity
was not a criterion for the selection of the PVs in that data set, and the compositionality ratings did not distinguish
between different word senses. This inability to distinguish between word senses for annotation is a problem with
no obvious solution, as we will argue in section 4.4 below. We found that this resource, even if highly valuable,
was too small for many purposes, especially because statistic significance depends highly on the size of the sample.

Also for English particle verbs, a limited number of data sets do exist. Bannard et al. (2003) present a corpus-
based approach to the semantics of particle verb constructions in English. To this end they collected a gold standard
containing 40 randomly selected phrasal verbs which were rated by 26 annotators. This gold standard contains
ratings on compositionality for each particle verb construction with respect to both the BV and the particle. Ratings
were given regarding only three levels: yes, no and don’t know. For our new gold standard we wanted to avoid a
simple binary classification, cf. the discussion in the previous section (2).

Somewhat related to our topic is the data set created by Cook and Stevenson (2006) for the evaluation of the
prediction of particle senses. This gold standard consists of a list of of 389 English particle verb constructions
with up balanced over three different frequency bands. Each of the PVs was annotated by two annotators for
four different particle senses. The focus of their research was, however, not the study of compositionality, but the
classification of particle meanings, and specified for one particle type.

3 Considerations for the Creation of the Gold Standard
For the creation of the gold standard we defined a series of properties which we wanted to find reflected in the data
set, based on theoretical considerations and previous experiences.

• Scalar judgments on compositionality: As we already argued, the degree of compositionality falls on a con-
tinuum from fully compositional and non-compositional. For this reason we wanted scalar compositionality
judgments.

• Random selection: In order to avoid bias we wanted to obtain a random sample from all existing PVs, but we
also wanted different PV properties reflected in our selection, such as frequency and ambiguity levels.

• Balanced over frequency bands: From earlier studies (Bott and Schulte im Walde, 2014) we know that both
very frequent and very sparse PVs tend to present special problems in comparison to mid-frequency PVs:
high-frequency items tend to be strongly lexicalized and ambiguous, while low-frequency items are often

1http://www.ims.uni-stuttgart.de/data/ghost-pv

126



subject to problems that can be attributed to data sparseness. So we were faced with an inherent conflict
between a strict balancedness of the GS –which would require us to represent PVs from the extreme ends
of the frequency spectrum proportionally– and the goal to select PVs with prototypical behavior –which is
contradicted by the fact that we know a priori that extremely frequent and extremely infrequent PVs tend to
behave idiosyncratically.

• Different ambiguity levels: Polysemy is a factor which influences both human ratings and automatic computa-
tional assessment. We thus wanted semantic ambiguity levels to represent a feature in the data set. Ideally, we
wanted compositionality ratings which correspond to different word senses. In section 4.4 below we discuss
the complications this point brings about.

• Selection of particles: We were interested in de-prepositional particles which are semantically ambiguous and
abstract (Lechler and Roßdeutscher, 2009; Haselbach, 2011; Kliche, 2011; Springorum, 2011). We chose to
sample PVs corresponding to 11 verb particles, which were already used in (Hartmann et al., 2008): an, auf,
aus, nach, ab, zu, ein, über, unter, um, durch. These particles are all de-prepositional, and their semantics are
all highly ambiguous and show a high proportion of abstract readings.

4 Creation of the Gold Standard
The creation of the gold standard involved a number of steps: We collected a list of all PVs across particle types,
as found in a large corpus. From this list a random selection was created automatically, which was balanced over
three different frequency ranges. This initial list was manually filtered and finally this data set was annotated by
human raters for PV compositionality. In the following, we describe these steps in some detail.

Ghost-PV was designed with similar goals and similar desired properties in mind as Ghost-NN (Schulte im
Walde et al., 2016), a gold standard of German noun-noun compounds which was compiled within the same
research project and in a very similar crowdsourcing process. Both PVs and noun-noun compounds are multi-
word-expressions, but their different nature required also some different design-decisions which makes the two
gold standards comparable, but not not entirely parallel.

4.1 Compilation of a Complete List of Existing PVs
We wanted to select PVs out of a list of all PVs that could be attested in German corpora. This required the
compilation of a full corpus-extracted list of PVs. We only targeted PVs which are built with one of the particles
we mentioned in section 3. An automatic detection of adequate candidate lemmas is not entirely trivial for three
reasons.

1. If the lemma of a PV starts with the string that coincides with one of the particles, this can produce false
positive PVs because also non-PVs start with the same string. For example, the simplex verb zupfen (to
pluck/pick) happens to start with the character sequence that is idiomorphic to the particle zu.

2. Lemmatizers and parsers tend to produce errors in the detection and treatment of PVs, especially in the case
of syntactically separate occurrences. This is problematic since prepositions may be wrongly interpreted as
syntactically separated particles.

3. Some particles have counterparts which act as verb prefixes, so prefix verbs may be confounded with PVs.
Some complex verbs are even ambiguous between a prefix verb and a particle verb, e.g. the verb umfahren
in (3), which can be a PV which means to drive over or a prefix verb with the meaning of to drive around.
Prefix verbs resemble particle verbs, but behave syntactically very different because they are never separated
from the BV, as exemplified in example (3-b).

(3) a. Er
He

fuhr
drove

den
the

Baum
tree

um.
um-PRT.

’He knocked over the tree (with a car).’

b. Er
He

umfuhr
over-drove

den
the

Baum.
tree.

’He drove around the tree.’

In order to exclude prefix verbs, we looked for combinations of verbs and particles which occurred both
syntactically separated and written together as one word, relying on a dependency-parsed version of the
SdeWaC corpus (Bohnet, 2010; Faaß and Eckart, 2013).
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4.2 Selection of the Particle Verbs

Since our goal was to create a random but balanced selection of PVs, we automatically selected 938 PVs from the
list obtained in the previous step. We aimed for a selection of 990 PVs (11 particles, 3 frequency bands and 30 PVs
per combination), but for one particle (unter) the corpus only contained 38 PVs. We sampled from three different
frequency ranges: Frequency tertiles were used to determine the three frequency bands: L(ow), M(id) and H(igh).
Since the frequencies of PVs are not independent from the particles they correspond to, the tertiles were computed
for each particle separately.

The frequencies were obtained as the harmonic mean of frequencies obtained from four different corpora:
SdeWaC (Faaß and Eckart, 2013), DECOW12 (Schäfer and Bildhauer, 2012), HGC (Fitschen, 2004) and the Ger-
man Wikipedia (dump dewiki-20110410). The calculation of word frequency over different corpora was done
to balance out known and suspected deficits in the balancedness of each corpus.

4.3 Cleaning of the Gold Standard

Since the original list of PVs was created randomly, the gold standard of 938 PVs still contained a certain amount
of noisy entries. To remedy this problem we created a reduced gold standard which eliminated problematic entries.
The most noticeable problem was the fact that some of the listed verbs were either ambiguous between homophone
versions as a prefix verb and a particle verb (cf. example (3)) or only existed as prefix verbs. This means that we
had to eliminate such verbs which were not detected by the filters described in section 4.1.

A second problem was that the automatically harvested PVs often contained wrong entries which were produced
by parsing or lemmatization errors. We eliminated all verbs for which no consensus among the authors could be
obtained on the basis of their graphic form whether they are existing PVs or not. In the same process also PVs
were deleted which could be attested, but only for a very specific and limited domain, such as the verb ab|teufen
(to sink), which could be attested for highly technical domains, but was not known by all authors.

Finally we considered all highly frequent and highly infrequent PVs as not desirable for practical experiments,
as we found out in earlier experiments (Bott and Schulte im Walde, 2014). For this reason we excluded the 20 PVs
with the highest and lowest frequency for each particle type. As a result of the manual filtering, the balance over
frequency bands changed, as the number of mid-frequency PVs in the final gold standard is now higher than the
number of low-frequency and high-frequency PVs. The distribution across particle types was however kept similar,
because we removed the same number of PVs from the gold standard across particle types. We consider the manual
cleaning more beneficial than harming since it excludes problematic entries while it retains those which are most
prototypical and especially interesting for the task of compositionality assessment. The three parts of Table 1
present the final numbers of PV elements for each particle, frequency band and ambiguity level.

Particle l an auf aus nach ab zu über unter ein um durch
47 45 48 45 47 37 9 12 45 37 28

Frequency l H M L Ambiguity A1 A2 A3 AG3
Level 88 238 74 Level 141 143 56 60

Table 1: Number of items per particle, frequency band and ambiguity band (A1 refers to one PV sense (i.e.,
monosemy); ambiguity of >3 is coded as AG3) after the manual selection process.

4.4 Collection of Compositionality Ratings

We collected compositionality ratings via Amazon Mechanical Turk (AMT)2, allowing only for German native
speakers as raters. Raters were asked to evaluate in how far the meaning of the PV is related to the meaning of its
base verb. Each item was rated by 7 to 31 raters, with an average of 16.14 raters per item. Rating was done on a
scale from 1 to 6, with 6 representing the maximum rating for compositionality. Raters with an insufficient level
of German were detected by the inclusion of non-existing verbs which had to be detected in the rating process. If
participants did not recognize the fake words, all of their ratings were rejected.

One problematic aspect of the collection of ratings on compositionality is the treatment of polysemy. It is evident
that different readings of PVs correspond to different ambiguity levels. For example, the PV zu|schlagen has at
least two meanings: to strike and to take advantage of a good offer/bargain. In addition, it can mean to slam a door
and to hit quickly and hard. The BV schlagen means to hit. It is evident that the strike meaning is closely related

2https://www.mturk.com
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to the meaning of the BV, and even more so the meaning of hit-quickly, while the meaning of take advantage is
less compositional. But how many readings are there exactly? Is striking and hitting one sense or two? Which
sense is predominant, and does the predominant sense exist in terms of frequency or in terms of some cognitive
aspect? We found that these aspects are extremely hard to assess and even more so in a data collection based on
crowd-sourcing. For this reason, we tried not to bias the raters choices by providing them contextual information,
or any other information to disambiguate the target PV. We are aware of the fact that this is problematic, but we
considered any other alternative even more problematic. Items were thus presented without context, and the rated
word sense was assumed to be the predominant word sense as perceived by the raters. Our ongoing and future
work explores alternative methods of data collection which addresses this problem, but which is necessarily more
costly and more limited in scope.

5 Properties of the Gold Standard
The resulting gold standard data set contains 400 PVs accomplished by the following information:

• PV lemma
• Harmonic mean of PV corpus frequencies across four corpora
• The PV frequency band (low, mid, high)
• The PV level of ambiguity (ambiguities of 1, 2, 3 or greater than 3)
• The number of human ratings for the PV
• The mean compositionality rating for each PV
• The standard deviation of ratings among raters, as a measure of agreement
• The proportions of syntactically separated and syntactically non-separated appearances of the PV

The degree of semantic ambiguities is represented as the average grade of semantic ambiguity according to four
lexical resources: GermaNet, Duden online, DictCC and Wiktionary. Any resource shows cases of a) spurious
sense distinctions and b) under-representation of word senses. We tried to overcome definition problems by com-
bining different lexical resources. In practice it is of course still very difficult to find an optimal representative
listing of the number of word senses. Table 2 shows some sample entries of PVs from different frequency and
ambiguity bands.

PV PV freq ambig. no. mean std prop. prop. synt.
freq band band raters rating dev synt. sep. non-sep.

abkratzen 39.80 M AG3 14 5.29 2.52 0.16 0.84
absegnen 23.38 H A1 14 4.07 1.90 0.09 0.91
anleuchten 6.37 L A1 20 5.95 1.50 0.62 0.38
anstiften 7.92 M A2 15 1.80 0.86 0.17 0.83
aufhorchen 74.58 H A1 29 4.55 1.97 0.16 0.84
aufschneiden 43.31 H AG3 14 6.07 1.73 0.32 0.68
ausreizen 19.35 M A2 29 3.62 2.13 0.07 0.93
durchrosten 9.66 M A1 14 6.29 0.73 0.31 0.69
einstampfen 33.34 H A1 14 4.07 2.06 0.15 0.85
nachschicken 22.81 H A1 15 6.00 1.07 0.29 0.71
nachtragen 3.97 L A2 15 4.47 2.03 0.21 0.79
umplanen 14.44 M A2 15 4.93 1.83 0.10 0.90
zukneifen 8.53 M A2 14 4.71 1.77 0.33 0.67
zulegen 4.00 L AG3 14 3.86 2.07 0.29 0.71

Table 2: Sample entries from the gold standard.

The data collection scenario via Amazon Mechanical Turk makes it difficult to calculate inter-annotator agree-
ment. Items were annotated by a varying number of annotators and each annotator annotated a different set of
items. In the gold standard we include the standard deviation per item as a measure of agreement for each PV.
The average standard deviation per rating target was 1.82 points on a 6-point scale. In Figure 1, the distribution of
standard deviation over items can be seen in the form of a histogram. The x-axis shows the standard deviation per
PV, where PVs were binned into intervals of 0.2 points of standard deviation. The y-axis shows the count of PVs
per bin.

The plot shows that the highest peak is reached at a standard deviation of approximately 2.3 on a 6-point scale.
This reflects the difficulty of the annotation task but is also to a certain extent a consequence of the crowd-sourcing
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approach, which on the one hand allows for a larger collection of data, but on the other hand provides less control
on the background of the raters. There is a strong tendency of PVs with a low deviation in rating –the ones that
represent the tail to the left in Figure 1– to be monosemous, like nach|reisen (to follow s.o. or s.th by traveling)
and durch|rosten (to rust through), and the ones with strongly deviating ratings to be polysemous. A good example
for this is the PV ab|kratzen, which can either mean to scratch off or to die. Among the latter group we also
find PVs which are clearly monosemous, like nach|denken (to meditate on s.th.) or durch|rechnen (to thoroughly
calculate). The strong variation in the ratings for such cases is surprising. A final, more expected, tendency that can
be observed is that PVs with strong deviation in ratings also tend be the least compositional ones like unter|jubeln
(to plant s.th. on s.o.).

Standard Deviation Values

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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0

0.
2
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8

1.
0
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Figure 1: Histogram of the distribution and approximate density of standard deviation values for compositionality
ratings across PVs. Standard deviation is provided to approximate inter-annotator agreement per item.

Figures 2 and 3 show the distribution of the obtained ratings and log-transformed word frequencies in relation
to the different particles. The plots confirm some of the already known facts about the particles in question. For
example, the particle über is predominantly locative and nearly always occurs in PVs which express some kind of
movement or state (über|streifen, to pull over), even if it may be implicit (über|schäumen, to foam over). These
PVs are always highly compositional, but not highly frequent. PV with ab, an and ein are much more varied in their
semantics. Consequently, the corresponding PVs show a wider distribution in both frequency and compositionality.
In general, the variation among particles is expected and thus confirmed by the gold standard.

m
ea

n_
ra

tin
gs

2

3

4

5

6

ab an auf aus durch ein nach über um unter zu

Figure 2: Mean ratings of particle verbs across particles types.

Figures 4 and 5 show the variation of ratings over frequency bands and ambiguity levels. We can observe little
variation, which is good, since we intended the gold standard to be balanced. The ratings are quite evenly dis-
tributed over the different frequency bands. The mean value of the ratings is 4.67, which shows that PVs with a
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Figure 3: Log frequencies of particle verbs across particle types.
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Figure 4: Mean compositionality ratings across
frequency bands.
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Figure 5: Mean compositionality ratings across
ambiguity levels.

higher compositionality are slightly more dominant than those with low compositionality. Since the selection of
PVs was done randomly we can assume that this reflects a general tendency of PVs to be compositional. Figure 4
shows the distribution of compositionality ratings for different ambiguity levels. The PVs with the highest poly-
semy (number of senses greater than 3) show a slight tendency to be rated in the medium range of compositionality.
Highly ambiguous PVs tend to have senses with different levels of compositionality. They tend to mix word senses
with different compositionality level, which should result in less PVs in the very high and the very low range.
We expected this effect to be more pronounced than we could finally observe. We did not find a straightforward
explanation for this, except for the already known fact that information on the grade of ambiguity extracted from
lexical resources are never fully reliable, which might have caused the observed behavior.

6 Conclusion

This paper introduced a new gold standard for the evaluation of predicting German particle verb compositionality.
The selection of particle verbs for this data set was carefully designed, especially in compiling a random selection
of PVs which are balanced over different frequency bands. We provided some descriptive statistics which show
that the data set is balanced in the distribution of PV compositionality across frequency and the grade of polysemy.
The gold standard is available for research and education.

One of the problems which we could not resolve in a fully satisfactory way is the fact that the compositionality
ratings per particle verb do not distinguish between different word senses. We have argued that this is a problem
which is difficult to solve in a crowdsourcing approach for various reasons. Ongoing and future work addresses
this specific aspect, but is necessarily limited to smaller amounts of target verbs and a smaller number of ratings.

131



References
Timothy Baldwin, Colin Bannard, Takaaki Tanaka, and Dominic Widdows. 2003. An Empirical Model of Mul-

tiword Expression Decomposability. In Proceedings of the ACL-2003 Workshop on Multiword Expressions:
Analysis, Acquisition and Treatment, pages 89–96, Sapporo, Japan.

Colin Bannard, Timothy Baldwin, and Alex Lascarides. 2003. A Statistical Approach to the Semantics of Verb-
Particles. In Proceedings of the ACL Workshop on Multiword Expressions: Analysis, Acquisition and Treatment,
pages 65–72, Sapporo, Japan.

Collin Bannard. 2005. Learning about the Meaning of Verb–Particle Constructions from Corpora. Computer
Speech and Language, 19:467–478.

Bernd Bohnet. 2010. Very High Accuracy and Fast Dependency Parsing is Not a Contradiction. In Proceedings
of the 23rd International Conference on Computational Linguistics, pages 89–97, Beijing, China.

Stefan Bott and Sabine Schulte im Walde. 2014. Optimizing a Distributional Semantic Model for the Prediction
of German Particle Verb Compositionality. In Proceedings of the 9th International Conference on Language
Resources and Evaluation, pages 509–516, Reykjavik, Island.

Stefan Bott and Sabine Schulte im Walde. 2015. Exploiting Fine-grained Syntactic Transfer Features to Pre-
dict the Compositionality of German Particle Verbs. In Proceedings of the 11th International Conference on
Computational Semantics, page 34–39, London, UK.

Paul Cook and Suzanne Stevenson. 2006. Classifying Particle Semantics in English Verb-Particle Constructions.
In Proceedings of the Workshop on Multiword Expressions: Identifying and Exploiting Underlying Properties,
pages 45–53, Sydney, Australia.

Gertrud Faaß and Kerstin Eckart. 2013. SdeWaC – A Corpus of Parsable Sentences from the Web. In Proceedings
of the International Conference of the German Society for Computational Linguistics and Language Technology,
pages 61–68, Darmstadt, Germany.

Arne Fitschen. 2004. Ein computerlinguistisches Lexikon als komplexes System. Ph.D. thesis, Institut für
Maschinelle Sprachverarbeitung, Universität Stuttgart.

Silvana Hartmann, Sabine Schulte im Walde, and Hans Kamp. 2008. Predicting the Degree of Compositionality
of German Particle Verbs based on Empirical Syntactic and Semantic Subcategorisation Transfer Patterns. In
Talk at the Konvens Workshop’Lexical-Semantic and Ontological Resources.

Silvana Hartmann. 2008. Einfluss syntaktischer und semantischer Subkategorisierung auf die Kompositionalität
von Partikelverben. Studienarbeit. Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart.

Boris Haselbach. 2011. Deconstructing the Meaning of the German Temporal Verb Particle ’nach’ at the Syntax-
Semantics Interface. In Proceedings of Generative Grammar in Geneva, pages 71–92, Geneva, Switzerland.

Fritz Kliche. 2011. Semantic Variants of German Particle Verbs with "ab". Leuvense Bijdragen, 97:3–27.

Natalie Kühner and Sabine Schulte im Walde. 2010. Determining the Degree of Compositionality of German Par-
ticle Verbs by Clustering Approaches. In Proceedings of the 10th Conference on Natural Language Processing,
pages 47–56, Saarbrücken, Germany.

Andrea Lechler and Antje Roßdeutscher. 2009. German Particle Verbs with auf. Reconstructing their Composition
in a DRT-based Framework. Linguistische Berichte, (220):439–478.

Diana McCarthy, Bill Keller, and John Carroll. 2003. Detecting a Continuum of Compositionality in Phrasal
Verbs. In Proceedings of the ACL-SIGLEX Workshop on Multiword Expressions: Analysis, Acquisition and
Treatment, pages 73–80, Sapporo, Japan.

Siva Reddy, Diana McCarthy, and Suresh Manandhar. 2011. An Empirical Study on Compositionality in Com-
pound Nouns. In Proceedings of the 5th International Joint Conference on Natural Language Processing, pages
210–218, Chiang Mai, Thailand.

Bahar Salehi and Paul Cook. 2013. Predicting the Compositionality of Multiword Expressions Using Translations
in Multiple Languages. In Proceedings of the 2nd Joint Conference on Lexical and Computational Semantics,
pages 266–275, Atlanta, GA.

Bahar Salehi, Paul Cook, and Timothy Baldwin. 2014. Using Distributional Similarity of Multi-way Translations
to Predict Multiword Expression Compositionality. In Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Linguistics, pages 472–481, Gothenburg, Sweden.

132



Roland Schäfer and Felix Bildhauer. 2012. Building Large Corpora from the Web Using a New Efficient Tool
Chain. In Proceedings of the 8th International Conference on Language Resources and Evaluation, pages 486–
493, Istanbul, Turkey.

Sabine Schulte im Walde, Anna Hätty, Stefan Bott, and Nana Khvtisavrishvili. 2016. Ghost-NN: A Representative
Gold Standard of German Noun-Noun Compounds. In Proceedings of the 10th International Conference on
Language Resources and Evaluation, pages 2285–2292, Portoroz, Slovenia.

Sylvia Springorum, Sabine Schulte im Walde, and Antje Roßdeutscher. 2013. Sentence Generation and Com-
positionality of Systematic Neologisms of German Particle Verbs. Talk at the 5th Conference on Quantitative
Investigations in Theoretical Linguistics.

Sylvia Springorum. 2011. DRT-based Analysis of the German Verb Particle "an". Leuvense Bijdragen, 97:80–
105.

133



Proceedings of the Workshop on Cognitive Aspects of the Lexicon,
pages 134–144, Osaka, Japan, December 11-17 2016.

_______________ 
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: 
http://creativecommons.org/licenses/by/4.0/ 

Discovering Potential Terminological Relationships from Twitter’s 

Timed Content 

 

Mohammad Daoud 

Department of Computer Science 

American University of Madaba  

Madaba, Jordan 
m.daoud@aum.edu.jo 

Daoud Daoud 

Department of Computer Science 

Princess Sumaya University for Technology 

Amman, Jordan 
d.daoud@psut.edu.jo 

 

Abstract 

This paper presents a method to discover possible terminological relationships from tweets. We match 

the histories of terms (frequency patterns). Similar history indicates a possible relationship between 

terms. For example, if two terms (t1, t2) appeared frequently in Twitter at particular days, and there is a 

‘similarity’ in the frequencies over a period of time, then t1 and t2 can be related. Maintaining standard 

terminological repository with updated relationships can be difficult; especially in a dynamic domain 

such as social media where thousands of new terms (neology) are coined every day.  So we propose to 

construct a raw repository of lexical units with unconfirmed relationships. We have experimented our 

method on time-sensitive Arabic terms used by the online Arabic community of Twitter. We draw rela-

tionships between these terms by matching their similar frequency patterns (timelines). We use dynamic 

time warping as a similarity measure. For evaluation, we have selected 630 possible terms (we call them 

preterms) and we matched the similarity of these terms over a period of 30 days. Around 270 correct re-

lationships were discovered with a precision of 0.61. These relationships were extracted without consid-

ering the textual context of the term.  

1 Introduction 

Internet users are producing 10,000 Microposts on average every second (internetlivestats 2015). Mi-

croposts are short messages containing few sentences written in several languages. These messages 

tend to talk about time sensitive topics (Grinev, Grineva et al. 2011) (Kwak, Lee et al. 2010). Microp-

osts are rich with terminology (Uherčík, Šimko et al. 2013), not only old and well defined terminology 

but also newly coined terms (Becker, Naaman et al. 2011).   

Building and maintaining an up-to-date terminological repository is very important for several ap-

plications (Daoud, Boitet et al. 2010), like machine translation (Vasconcellos, Avey et al. 2001), in-

formation retrieval (Peñas, Verdejo et al. 2001)… However, finding terminology (terms and relation-

ships) is a very difficult task (Cabre and Sager 1999), especially for poorly equipped languages, and 

when the domain is active and changing everyday (new concepts appear every day). Classical ap-

proaches in building terminology depend heavily on terminologists and subject-matter experts 

(Hartley and Paris 1997, Kim, Yang et al. 2005). This approach is very expensive (Gaussier and Langé 

1997, Davidson 1998), and it achieves poor coverage (Daoud 2010) because terminologists have lim-

ited capability and subject matter experts are rare for contemporary domains. Statistical approaches on 

the other hand are less expensive, but they need large and processed corpus/corpora. Besides, statisti-

cal methods might find a list of candidate terms without relationships, so mapping these terms into a 

lexical network can be difficult. Microblogs are massive and can solve the problem of the availability 

of a large textual corpus, however, these microblogs have little textual context (A micropost in Twitter 

is 140 characters only) and they are usually poorly written (Cornolti, Ferragina et al. 2013).  
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We are working on analyzing terms that appear on microblogs over a period of time to monitor their 

evolutions. Our idea is that terms with similar histories (frequency patterns over a period of time) are 

probably similar. For example, if two terms are peaking at the same dates then there is a chance that 

these terms are used by the internet users synonymously. That way rather than using textual context 

(which is almost nonexistent in microblogs), we are using historical context to relate between terms. 

And that will make social media a legitimate source of terminology (terms and relationships). Building 

a terminological database is still challenging (Roche, Calberg-Challot et al. 2009), because terminolo-

gy must be standardized and must have a formal body to approve it. We are proposing to extract un-

confirmed terminological relationships (preterminology relationships) (Daoud, Boitet et al. 2009, 

Daoud, Boitet et al. 2009, Daoud, Kageura et al. 2010) rather than standard terminology. Preterminol-

ogy is considered as raw material for terminology that can be refined to produce standard terminology. 

Matching timelines for terms is a classical time series problem, where time series are searched for 

similarities. There are several approaches to search time series. The performance of these approaches 

depends on the application (Agrawal, Faloutsos et al. 1993). We use an algorithm originally used for 

speech recognition called Dynamic Time Warping algorithm (Sakoe and Chiba 1978) with a normal-

ized Euclidean distance function. This approach will not only measure the distance between timelines, 

but it will consider the slight shifts in the timelines. And this is very suitable for our application be-

cause related terms might not peak on the exact same days. 

This article is organized as follows; the following section introduces terminology evolution in big 

data. The third section presents our approach in finding historical similarity between terms. The fourth 

section shows our data collection method. The fifth section shows the experimental results and evalua-

tion, and finally we will draw some conclusions. 

2 Terminology and Preterminology in Big Data 

A term is a sign to describe a thought in a particular domain (Sager 1990); this sign is a lexical unit 

that corresponds to one or more words (Kageura 2002). According to the extended semantic triangle 

(Suonuuti 1997), a term corresponds to a concept and must have a definition. A terminology is the vo-

cabulary (set of signs) of a domain. Building a term base involves finding precise definitions for each 

term and connecting terms with relationships. Such process is difficult to achieve in dynamic domains 

and mediums (Gaussier and Langé 1997, Davidson 1998, Roche, Calberg-Challot et al. 2009). There-

fore, we propose to collect preterminology rather that terminology (Daoud 2010).  Preterminology is 

considered as raw material for terminology that can be refined to produce standard terminology. Pre-

terminology incorporates neology (Cabré and Nazar 2011) of new concepts with no standard terms.  

Social media posters associate a new concept with a sign (preterm) (Giannakidou, Vakali et al. 

2014). This association was not approved by a standardization body and this preterm may not have a 

specific definition. That is why we call it a preterm rather than a term. A preterm can be processed to 

produce a term. Social media content may associate two terms (preterms), which can lead to an actual 

terminological relationship. That is why in this paper we are investigating possible terms (preterms) 

and their relationships (preterminological relationships). Preterminology can be convenient for useful 

application such as IR and opinion mining, moreover, it can be used to produce actual terminology.  

Extracting knowledge from big data, such as social media generated content, is attracting more and 

more researchers (Chen, Chiang et al. 2012). Data provided by internet users can be used to find new 

trends, prevent diseases (Yang, Horneffer et al. 2013), detect crimes (Kandias, Stavrou et al. 2013), 

and predict future events(Bothos, Apostolou et al. 2010).  Extracting terminology or other lexical se-

mantic information from Twitter (Twitter 2015) or social media in general is an ambitious task 

(Federmann, Gromann et al. 2012). Many succeeded in extracting trending lexical units, finding collo-

cations, classifying tweets, and analyzing positivity/negativity of terms and tweets (Speriosu, Sudan et 

al. 2011, Zhao, Jiang et al. 2011, Daoud, Alkouz et al. 2015). These attempts consider the textual con-

text of lexical units. However, there is a limitation in using Twitter’s textual context as natural lan-

guage processing of tweets is difficult, especially for Arabic. Therefore, while there is a need and a 

possibility to extract real-time terminology from tweets, attempts are faced with challenges.. We are 

proposing a method that considers the textual and the historical context to extract terminological in-

formation and relationships. 
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Traditional terminology has a specific definition that disallows the integration of unconventional re-

sources. That is why a classical standard terminological repository suffers from a lack of linguistic and 

informational coverage (Gallego Hernández and Herrero Díaz 2014), and it cannot deal flexibly with 

hidden or absent terminology (Daoud 2010). We suggest extracting unconfirmed terminological rela-

tionship between terms (preterms). These possible relationships will have a similarity weight indicat-

ing a possible relationship (translation, synonymy, acronym, hyponymy, antonymy, or other). 

3 Timeline Similarity 

We monitor the frequencies of possible terms each day. We create a timeline for each one. The 

timeline shows the daily frequencies of the preterm.  These timelines illustrate the peaks, bottoms, and 

possibly the coining date of a preterm. Figure (1) shows the timeline for “اقتحام لاقصى” (Al-Aqsa raid). 

We can see that the term has peaked on 13 September 2015 with 11,800 frequencies.  

The tool used to produce the figure is an online Arabic social media monitoring platform built by 

the second author. We studied a small set of Arabic preterms and we observed similarities between the 

timelines of related ones. Figure (2) shows the timelines of “ ط , اوبكاسعار النف ” (OPEC, oil prices). We 

can see similarity in the frequencies during the period from 25 August 2015 to 29 September 2015. 

The similarity between terms can occur due to one of the following reasons: 

1. Term collocation: terms that co-occur to convey certain meaning, figure 3 shows an example. 

2. Event co-occurrence:  separate events happened at the same time. Each event has related terms 

that might produce similar timelines.  

3. Same event with different concepts (related terms); Figure (4) shows an example. 

4. Same or similar concept with different lexical units (translation, synonymy, acronym, hypon-

ymy, antinomy, hypernymy). Figure (5) shows an example. 

 
Figure 1. Timeline example for the term “اقتحام لاقصى” (Al-Aqsa raid) 

Our objective based on these observations is to search for similar timelines to build a candidate set 

of relationships between new terms (preterms) extracted from the community of Arabic social media.   
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Figure 2. Timelines of “اسعار النفط , اوبك” 

 

Figure 3. Timeline example (Term collocation) 

 
Figure 4. Event co-occurrence 
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Figure 5. Community generated synonym 

3.1 Time-series similarity search 

Similarity search in timelines (time-series) is an interesting research direction to analyze stock prices 

data, weather forecast, biomedical measurements, etc. While there are several methods to find simi-

larity between time series, the choice of a particular method is an application-dependent. Therefore, 

we are testing our hypothesis with a standard Dynamic Time Warping (Berndt and Clifford 1994) al-

gorithm to measure the similarity between terms. There are several approaches that depend on the ap-

plication. In our case the approach we need to use must consider the following assumptions: 

1. Suppose that t1 and t2 are two timelines for two terms. t1 and t2 are similar if they have simi-

lar shapes. For example, figure (4, from 12/9 to 17/9) shows different frequencies between the 

two timelines. However, the shapes are similar. 

2. Similar terms might not peak in the exact same day. t1 could peak in a particular day and the 

other t2 might peek in the next day. t1 and t2 are considered similar if they have similar peaks. 

3. The presence of the peaks is more important that their magnitudes. 

Dynamic time warping (DTW) is a technique that aligns two time series in which one time serie 

may be “warped” by stretching or shrinking its time axis. This alignment can be used to find corre-

sponding regions or to determine the similarity between the two time series.  

DTW focuses on aligning the peaks of the time lines without focusing on their magnitudes and it 

matches peaks even if they did not appear at the exact same time. This satisfies the assumptions men-

tioned above. DTW would consider t1 and t2 in figure (6) to be similar. 

 

Figure 6. Two similar time series 

3.2 DTW algorithm  

DTW is a time series alignment algorithm that was originally used in voice recognition (Sakoe and 

Chiba 1978) It relates two time series of feature vectors by warping the time axis of one series onto 

another. Given two time series X and Y, Where:  

X = x1 + x2 + x3 + . . . + xi + . . . + xn 

Y = y1 + y2 + y3 + . . . + yi + . . . + yn 

t1

t2
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Algorithm 1 will produce the cost of aligning X and Y (warping them) the cost will be low if the 

two time series are similar. 

  
Algorithm 1. Standard DWT 

We start by filling a distance matrix DTW which has n × m elements; each element represents the 

warping distance between every two points in the time series. The warping distance between xi and yj 

is measured according to the following equation: 

DTW(xi, yi) = d(xi, yi)+ minimum(DTW(xi-1, yj) , DTW(xi  , yj-1),  DTW(xi-1, yj-1)) 

Where d(xi, yi) is a distance function to calculate the distance between xi and yi. This version of 

DTW satisfies the monotonicity, continuity, boundary constrains demonstrated by (Sakoe and Chiba 

1978, Keogh and Ratanamahatana 2004, Salvador and Chan 2007). We use the Euclidian distance as a 

distance function between xi, yi. So the distance will be calculated as follows: 

d(xi, yi) = | xi - yi | 

Frequency reading must be normalized to achieve meaningful results and to give more im-

portance to peaks in relation to the average readings of a particular timeline. A frequency 

reading f is measured according to this equation:  

Norm(f) = f – m 

Where m is the average of frequencies for that term and the returned value from the algorithm indi-

cates the cost of aligning the two normalized timelines. The similarity score described below indicates 

the possible similarity between the two timeline: 
Similarity(X, Y) = 1 – cost/max(n, m) 

Where cost is the returned value from the algorithm, n and m are the lengths of X and Y respective-

ly. High similarity score means the probability that the two terms are related is high. 

4 Data Collection 

We are testing our approach with timelines collected by an online platform that addresses Arabic so-

cial media content and provides a platform to collect, search, monitor and analyze social media con-

tent. The platform has many functions. However, we are interested in the production of timelines 

which are archived through the following steps: 

1. Data collection: Arabic tweets are collected using Twitter API. The online platform receives 

live feed from Twitter. Any non-Arabic tweets will be filtered. 

2. Indexing: tweets are analyzed and indexed according to the terms they carry. Arabic analysis 

component is used for stemming and tokenization.  

int standardDWT(X, Y) {  
// Where X = x1 + x2 + x3 + . . . + xi + . . . + xn and Y = y1 + y2 + y3 + . . . + yi + . . . + yn 
    Create DTW[0..n, 0..m] 
    Set the first row and column of DTW to infinity 
    DTW[0, 0] = 0 
    for i = 1 to n 
        for j = 1 to m  
            DTW[i, j] = d(X[i], Y[j])+ minimum(DTW[i-1, j] ,  

DTW[i  , j-1],   
DTW[i-1, j-1])     

    return DTW[n, m] 
} 
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3. Reporting: the platform reports the frequencies for each term per time interval. Thus, we can 

build a timeline for each term.  

The online system is available currently at “http://45.33.23.107”. We are using its produced time-

lines and terms for our experiment.  

5 Experimentation and Evaluation 

Arabic tweets collected by the online platform during the month of May 2016 were analyzed. We se-

lected 630 timelines for the most popular preterms in that month. Then we searched for similarities 

between them. The produced relationships were evaluated based on precision and recall. 

The top 1108 relationships were rated by 2 evaluators (E1 and E2). Relationship between t1 and t2 

is considered correct if the two evaluators found that t1 and t2 are event related or if they found that 

there is a terminological relationship (synonymy, acronym, hyponymy, antinomy, and hypernymy) 

between them. Using Cohen’s Kappa coefficient (Cohen 1960) the inter-agreement score was 0.93 

which indicates  a substantial agreement between the evaluators. 

5.1 Precision 

We are trying to evaluate the precision of the similarity score according to this equation: 

Precision=Cth/Tth 

Where Cth is number of correct relationships with a score greater than the threshold th. Tth is total 

number of produced relationships with a score that is greater that th. When th is small the produced set 

of relationships increases but precision might decrease. When th = 0.85 the precision is 0.92. Figure 

(7) shows the precision in relation to the threshold. 

 
Figure 7. Precision 

As you can see the precision starts to decline when th is below 0.5. The similarity score proved to 

be a good indicator of a relationship between preterms. 

5.2 Recall 

Recall is measured in terms of number of correct relationships extracted by our approach. When the 

threshold is 0.65 number of correct relationships is 200. Figure (8) shows the recall in relation to the 

threshold. When the threshold is 0.6 the precision is 0.61 and 270 correct relation were extracted from 

630 preterm. 

140



 
Figure 8. Recall 

5.3 Assessment and sample results 

Our approach has correctly identified terminological relationships between time sensitive preterms 

without analyzing the textual context; Table (2) shows sample results.  

Table 2. Sample results 

T1 T1 - English 
Translation  

T2 T2 - English 
Translation  

Similarity Note 

 The great الثورة العربية الكبرى
Arab revolt 

-The Arab re الثورة العربية
volt 

0.98 correct 

 Deputy crown ولي ولي العهد
prince 

 Saudi vision 0202الرؤية السعودية 
2030 

0.96 correct 

 Revolt مئوية الثورة
Centennial 

-The great Ar الثورة العربية الكبرى
ab revolt 

0.89 correct 

 Israeli الاحتلال الإسرائيلي
occupation 

 Occupation قوات الاحتلال
forces 

0.88 correct 

 Independence عيد الاستقلال
 day 

-National holi الاعياد الوطنية
day 

0.88 correct 

-Popular Mobi الحشد الشعبي Iraq العراق
lization Forces 

0.83 correct 

-Popular Mobi الحشد الشعبي War Crimes جرائم حرب
lization Forces 

0.81 correct 

 Ministry of وزارة الداخلية Police الشرطة
interior affairs 

0.8 correct 

 Custodian of ينخادم الحرم Crown prince ولي العهد
the Two Holy 
Mosques 

0.8 correct 

 Deputy crown ولي ولي العهد
prince 

 Mohammad محمد بن سلمان
bin Salman 

0.8 correct 

 Russian القصف الروسي
bombing 

-Russian ag العدوان الروسي
gression 

0.76 correct 

 Ministry of وزارة الصحة
health 

 Petrol (oil) 0.73 incorrect البترول

 The great الثورة العربية الكبرى
Arab revolt 

 Deputy crown ولي ولي العهد
prince 

0.7 incorrect 
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Extracting relationships between terms is a challenging task that needs large corpora, and special-

ists. The challenge increases when the terms are time sensitive Arabic terms. Our approach extracted 

480 of relationships from 630 preterms with high precision; these relationships can be used in many 

applications, such as: 

1. Extracted relationships can be post edited by specialists to enrich Arabic term bases.  

2. Lexicon for social media analysis: auto microblogs classifications, auto tagging, sentiment 

analysis. In fact, we intend to use these relationships to dynamically extend a polarized lexi-

con for Arabic sentiment analysis. 

3. These relationships can locate newly coined terms on an ontological resource. 

The approach will be used on a larger scale to automatically discover related terms on-the-fly by 

analyzing online microblog feeds. The importance of this approach is that it does not rely on textual 

context; in fact many extracted relations were between terms that did not appear in the same tweet. 

Most of the wrongly extracted relationships were between key terms describing two separate events 

that took place at the same time. These errors can be reduced when the timeline is longer than 30 days.  

 

6 Conclusions 

We have presented an approach to extract terminological relationships between time-sensitive Arabic 

preterms. Our hypothesis is that terms that have similar history (timeline) are similar or related. We 

used Dynamic Time Warping algorithm to measure the similarity between terms. Our experiment pro-

duced 270 correct relationships out of 630 preterms with a precision of 0.61. The extracted infor-

mation is crucial because it maps time-sensitive terms into a wider terminological map.  The approach 

can be used to identify and connect terminology on-the-fly by analyzing microblogs feeds online, 

without relying on textual context (which is very limited in the case of online microblogs).  
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Abstract 

A lexical function represents a type of relation that exists between lexical units (words or expressions) in 

any language. For example, the antonymy is a type of relat ion that is represented by the lexical function 

Anti: Anti(big) = small. Those relations include both paradigmatic relations, i.e. vertical relations, such 

as synonymy, antonymy and meronymy and syntagmatic relat ions, i.e. horizontal relations, such as 

objective qualification (legitimate demand), subjective qualificat ion (fruitful analysis), positive 

evaluation (good review) and support verbs (pay a visit, subject to an interrogation). In this paper, we 

present the Lexical Functions Ontology Model (lexfom) to represent lexical functions  and the relation  

among lexical units . Lexfom is divided in four modules: lexical function representation (lfrep), lexical 

function family (lffam), lexical function semantic perspective (lfsem) and lexical function relations 

(lfrel). Moreover, we show how it  combines to Lexical Model for Ontologies (lemon), for the 

transformation of lexical networks into the semantic web formats. So far, we have implemented 100 

simple and 500 complex lexical functions, and encoded about 8,000 syntagmatic and 46,000 

paradigmat ic relations, for the French language. 

 

Keywords: lexical functions, lexical ontology, lexical network, collocations  

1 Introduction 

We present in this paper the Lexical Functions Ontology Model (lexfom), a model for the 
representation of lexical functions (Mel’čuk, 1998) of the Meaning-Text Theory (MTT) (Mel’čuk, 
1997). 

A lexical ontology uses the semantic web formalism (RDF/OWL languages) to represent different 
aspects of the lexicon, such as meaning, morphology, part of speech, as well as the relation among 
lexical units, such as syntactic, semantic and pragmatic relations.  

We show in this paper how our ontology can be used to represent relations among lexical units in 
lexical networks. This is an important aspect since most of the existing lexical networks do not 
implement syntagmatic information (Schwab et al., 2007) provided by some Lexical Functions (LFs). 
Moreover, we show how this model can be used to represent collocations in a lexical network since the 
relation among lexical units in a collocation is a syntagmatic relation (Mel’čuk 1998). 

We do not intend to recreate lexical representations already realized by previous works, such as 
lemon (McCrae et al., 2012), LexInfo (Buitelaar, 2009) or LMF (Francopoulo, 2007). Our proposal is 
to use, whenever possible, the lexical information already implemented by those models, such as the 

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: 

http://creativecommons.org/licenses/by/4.0/ 
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classes “LexicalEntry” and “LexicalSense” in the lemon model, and create the necessary classes for 
the implementation of lexical functions information. 

The present paper is organized as follows: in the Section 2, we report state-of-the-art related to the 
problem. Section 3 presents our proposed scheme for an ontology to represent LFs. In Section 4 we 
give a summary of the lexical functions and lexical relations encoded within our model. Finally, 
Section 5 summarizes our work and gives future perspective. 

2 Foundations and Related Work 

We present in this section the theoretical information about LFs and related work, as follows: In Sec-
tion 2.1, we give the definition of collocation adopted in this paper. Section 2.2 explains LFs and gives 
some examples. In Section 2.3, we discuss the French Lexical Network (in French, Réseau Lexical du 
Français), which is based on LFs. In Section 2.4, we present a semantic classification for LFs. Finally, 
in Section 2.5, we discuss the lemon model and how we intend to combine it with our model to repre-
sent sense relations in a lexical network.  

2.1 Definition of collocation 

Before giving the definition of collocation, we present an example to show how frequent collocations 
are and the importance of treating them in computer applications. This example was taken from 
Mel’čuk (2004): 

 
Government troops have spread a DRAGNET across the country in a SEARCH for 
three heavily ARMED guerrillas. The FARC has claimed RESPONSIBILITY for 
the ATTACK launched Tuesday in which four ROCKETS were fired at an ARMY 
camp. 

 
In this example, each underlined expression is a collocation. The capitalized word is the base or 

keyword of the collocation and the non capitalized word is the collocate. Note that collocates have a 
more idiomatic than prototypical meaning in each collocation and ignoring them can cause problems 
in machine translation, information retrieval and text generation applications. 

A phrase is unrestrictedly constructed when the rules used in its construction are not obligatory. For 
example, instead of saying "pay for a lunch" we could say "pay for a meal". In contrast, an expression 
such as "pay attention" is fixed. We cannot say "pay care", even if it is grammatically correct. There-
fore, "pay attention" is a phraseme, since it is not unrestrictedly constructed. 

A phase is regularly constructed when its words are combined according to general rules of a 
grammar and its sense can be derived exclusively from sense of its constituent words. The phrase "red 
house" is regularly constructed because it follows the rules of the English grammar and its sense can 
be obtained from its constituent words. On the other hand, the expression "red neck" is not regularly 
constructed: it follows the rules of the English grammar. However, its sense cannot be completely de-
rived from its constituent words. 

A collocation is a kind of phraseme, as defined by Mel’čuk (1998). There are two types of phase-
mes: pragmatic phrasemes or pragmatemes and semantic phrasemes, as defined by Morgan (1978). 
The pragmatemes are defined as: 

 Expressions whose signified and signifier (Saussure, 1983) are not unrestrictedly con-
structed, even if they are regularly constructed. For example: "all you can eat", "see you 
later"; 

 Expressions whose signified only is not unrestrictedly constructed. For example: greetings, 
technical expressions and phrases like "it is forbidden to smoke".  

 
In semantic phrasemes, the signified is free (it is unrestrictedly constructed, although it may not be 

regularly constructed) and its signifier is not free. There are three types of semantic phrasemes: 

 Idioms: the sense of the expression is larger than the sense of its constituent words, which 
are not included in the sense of the expression. Examples: "to kick the bucket", "to spill the 
beans"; 
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 Quasi-phrasemes or quasi idioms: the signified of the expression includes the signified of 
its constituent words. However, it also contains a signified that goes beyond the signified 
of each isolated word. Example: "start a family", "bed and breakfast"; 

 Collocations: The signified of the expression includes the signified of one of its constituent 
words (w1), which is freely chosen, and another word or expression, (w2), which is chosen 
contingent to (w1). There are different types of collocations (Manning and Schütze, 1999): 
light verbs constructions (to pay attention, to make a decision), phrasal verbs (to take out, 
to give up), etc. 
 

According to Polguère (2000), a collocation is a semi-idiomatic expression having the form L1+L2 , 
where one of the components, the collocate (L2) is chosen to express a specific sense in a specific syn-
tactic role contingent to the selection of the other component, the base or keyword (L1). The selection 
of collocate depends strongly on the lexeme chosen as keyword (Heid and Raab 1989). 

2.2 Lexical Functions 

Bolshakov and Gelbukh (1998) defined a lexical function (LF) as a formalism for the description and 
use of combinatorial properties of individual lexemes. A more technical definition, given by Mel’čuk 
(1998), says that a “Lexical Function f is a function that associates with a given lexical unit L, which is 
the argument, or keyword, of f, a set {Li} of (more or less) synonymous lexical expressions – the value 
of f – that are selected contingent on L to manifest the meaning corresponding to f: 

 

f(L) = {Li} 
 

The LFs considered in this paper are the standard ones, differentiated from the non-standard by the 
fact that the former can be coupled with a higher number of possible keywords and value elements 
(Mel’čuk 1998). For example, the LF Bon, which represents the sense “subjective qualifier”, can be 
coupled with many keywords (e.g. cutN, struggleN, proposal, service, place and many others) to give 
different values : Bon(cutN) = {neatly, cleanly}; Bon(struggleN) = heroic; Bon(proposal) = tempting; 
Bon(service) =  first-class; Bon(place) = prominent; (Mel’čuk 1998). On the other hand, the sense 
“additionné de…” (with the addition of…) is a non-standard LF in French, because it can only be cou-
pled with a few number of keywords (café; fraises; thé), to create the expressions: café crème, fraises 
à la crème (and not *café à la crème, *fraises crème); café au lait; café arrosé; café noir; thé nature; 
etc (Mel’čuk 1992). About 70 simple standard LFs have been identified (Kolesnikova, 2011).  

LFs can be classified as paradigmatic or syntagmatic, according to the kind of lexical relation they 
model. The paradigmatic LFs model the vertical, “in absence” or “in substitution” relation among 
lexical units (Saussure, 1983). For example, antonymy, Anti(big) = small; synonymy, Syn(car) = 
automobile; hyponymy, Hypo(feline) = {cat, tiger, lion, etc.}. Syntagmatic LFs model the horizontal, 
“in presence” or “in composition” relations among lexical units (Saussure, 1983). For example: 
magnification, Magn(committed) = deeply; confirmation, Ver(argument) = valid; laudatory, 
Bon(advice) = {helpful, valuable}.  

Another important concept is that of semantic actant (Sem-actant) (Mel’čuk, 2004).  In logic, a 
predicate is a falsifiable assertion. Each predicate has one or more arguments. For example, in the 
assertion “Rome is the capital of Italy”, we can define the predicate ‘capital’ having two arguments, 
‘Rome’ and ‘Italy’: capital(Italy, Rome).  

In linguistics, the predicate is called “predicative sense” and the arguments are its “semantic 
actants”. Each LF represents a different predicative sense and the semantic actants are represented by 
subscripts. For example, the LF S (actantial noun) gives the equivalent noun of the value to which it is 
applied. S1 gives the first actant (the one who executes the action), S2 gives the second actant (the 
object of the action) and S3 gives the third actant (the recipient of the action): S1(to teach) = teacher; 
S2(to teach) = {subject; matter}; S3(to teach) = {pupil; student}. Other subscripts give circumstantial 
information. For example: Sloc – local of the action/event; Sinstr – instrument used; etc. 

LFs can be classified according to their semantic or syntactic behaviour. For example, in (Mel’čuk, 
1998) we find the following classification: 

 Semantic derivatives: S1(to teach) = teacher; S3(to teach) = pupil; Sloc(to fight) = battlefield; 
Sinstr(murderV,N) = weapon; A1(angerN) = angry; Adv1(anger) = angrily;  
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 Support verbs: Oper1(support) = [to] lend [~ to N]; Oper1(promiseN) = [to] make [ART ~]; 
Func2(proposal) = concerns [N]; 

 Realization verbs: Real1(bus) = [to] drive [ART ~]; Real2(bus) = [to] ride [on ART ~]; 
Real1(promiseN) = [to] keep [ART ~]; 

 Modifiers: Magn(injury) = serious; Ver(citizen) = loyal; Bon(analysis) = fruitful. 
 

Complex LFs are formed by the combination of simple standard ones: for example, the LFs Anti 
and Bon can be combined to form the LF AntiBon: AntiBon(hotel) = {seedy, sleazy, //flea bag}. The 
symbol “//” before “flea bag” represents a fused element: the keyword hotel does not compose with the 
value of the LF function to form a collocation. Compare to: seedy hotel, sleazy hotel.  

The advantage of using LFs for modeling relations between lexical units are many. We present here 
some of them, as stated by Kolesnikova (2011): 

 LFs are universal. They represent semantic relations that are present in virtually all 
languages. This allows us to use them for building representations in several languages for 
multilingual alignments, to be used in automatic translation applications, multilingual 
information search, ontology alignment in different languages, etc; 

 LFs are idiomatic. This allows the representation of a "non-typical" sense that emerges 
only when certain words are found together. For example, in English we can say "to know 
firmly". In this expression, the sense of "know firmly" is idiomatic. One can use the LF 
Magn (magnification or intensification) to represent this relation:  Magn (know) = {firmly}; 

 Some LFs are the converse of one another, which can account for the paraphrase and 
passivization of collocations: Oper1 (analysis) = {[to] carry out DET ~} (John carries out 
the analysis); Func1 (analysis) = {DET ~ is due [to] N} (The analysis is due to John); 

2.3 French Lexical Network 

The French Lexical Network (FLN) (Lux-Pogodalla and Polguère, 2011) is based on the MTT, more 
specifically on the LFs. We extract from FLN the LFs that appear in lexical relations, in a total of 
about 100 simple LFs and 500 complex ones. The total number of LFs is elevated because, for in-
stance, Oper1, Oper2, Oper3 and Oper4 are considered distinct LFs and there are many different com-
plex LFs, for instance, CausFinOper1 and S0SingReal1. 

FLN has been built manually by a lexicographic team of around 15 persons. Luxpogodalla and Pol-
guère (2011) explain that lexicographic strategies used to extract linguistic information from corpora 
are based on the Explanatory Combinatorial Lexicology (Mel’čuk et al, 1995) and that they also make 
extensive use of the Trésor de la Langue Française informatisé (Dendien and Pierrel, 2003) as a lexi-
cal database from which to extract lexicographic information.  

An important idea we extracted from the FLN is the concept of LF family. For example, Oper1, 
Caus1Oper1, Caus2Oper1, Caus3Oper1, FinOper1, etc., all belong to the LF family Oper1.  

2.4 Semantic Perspective 

Jousse (2010) presents a system for the classification of lexical functions in four different ways: a 
semantic, a syntactic, a combinatorial and a paradigmatic classification. We present here the semantic 
classification, the only one we have included in our model, to this date. 

In the semantic classification, LFs are divided in twelve classes: action-event, causativity, element-
set, equivalence, form (or way), location, opposition, participants, phase-aspect, qualification, seman-
tically-empty-verb and support-verb. Each class is divided in one or more sub-classes. For example, 
action-event has nine sub-classes: attempt, creation, decrease/degradation, imminence, manifestation, 
etc., and location has two: spatial/temporal and typical place. 

Each LF has at least one meaning associated to it, and then each LF is classified in one or more se-
mantic perspective. For example, Magn (intensification) is associated with the class “qualification”, 
sub-class “intensity”, while the LF Bon is also associated with the class “qualification”, however with 
the sub-class “judgement”.  
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2.5 The lemon Model 

lemon (McCrae et al., 2012) is a model for sharing lexical information on the semantic web. It is based 
on earlier models, such as LexInfo (Buitelaar, 2009) and LMF (Francopoulo, 2007). As its main 
advantages over these previous models, we cite: 

 separation between the linguistic and the ontological information;  
 linguistic information, such as “partOfSpeech” and “writenForm” are represented as RDF 

properties, differently of LMF, which represent them as attributes of a property, which makes 
easier the use of other resources, like the SPARQL query language; 

 lemon uses ISOCat, data categories homologated by ISO (for example, “partOfSpeech”, 
“gender” and “tense”); 

 lemon is an easily extensible model; 

 there are already many linguistic resources in lemon format, like WordNet and DBPedia 
Wiktionary. 

Lexical units are represented in the lemon model using the classes “LexicalEntry” and 
“LexicalForm”. The “LexicalEntry” class is connected to the lexical unit sense, which is represented 
by the “LexicalSense” class. The connection between the lemon model and external ontologies are 
made through this last class. 

In our model, the keyword and the value of a LF will be represented as a lemon “LexicalSense” 
class. In MTT, the different senses of a word are represented by subscripts, using Roman and Arabic 
numbers and Latin letters (Mel’čuk, 1995), which we illustrate here with an example. Consider the 
word “ocean”. It has concrete senses, like “a body of water that covers the planet” and abstract senses, 
like in “ocean of people”. In MTT, the concrete senses of “ocean” would be represented as “OceanI” 
and the abstract senses as “OceanII”. Inside “OceanI” we could have subdivisions:  

 OceanI.1a: “extension of water that covers the planet” (always in singular); 

 OceanI.1b: the set of oceans in general (always in plural) – “the oceans are polluted.”; 

 OceanI.2: a part of OceanI.1a in a specific region – Atlantic Ocean, Pacific Ocean, Arctic 
Ocean, etc.  

In our model, the word “ocean” is represented by a lemon object “LexicalEntry” and OceanI, Oce-
anI.1a, OceanI.1b, OceanI.2 and OceanII are each represented by a “LexicalSense” lemon object. The rea-
son for this is explained as follows: the semantic connection represented by an individual LF is be-
tween senses, and not between lexical forms or lexical entries. By doing so, we can have an already 
disambiguated lexical network when connecting lexical units with a LF. 

3 The lexfom Model 

This section presents our model for the representation of LFs. The lexical function ontology model 
(lexfom) is divided in four modules: lexical function representation (lfrep), lexical function family 
(lffam), lexical function semantic perspective (lfsem) and lexical function relations (lfrel). Each 
subsection presents one of these modules. 

3.1 The lfrep Module 

Figure 1 illustrates the lfrep module and its connection to lffam and lfsem. The central class in this 
module is “lexical_function”.  In this figure and in the following ones, a black arrow represents an 
object property relation between classes and a white arrow represents a sub-class relation. 

In yellow, we have classes which represent characteristics of a LF, e.g. if it is simple or complex, 
standard or semi-standard, etc. In grey, we have classes representing constituent of a LF. Most of those 
classes are specific to some LF families. For example, the “spatial specification” appear in the LF Loc: 
Locab, Locad and Locin and “intensification dimension” in the LF Magn: Magn_behaviour, 
Magn_height, Magn_size, etc. 

In this module we can indicate to which LF family a LF belongs, using the object property 
“belongsToLFF” and we can also connect a LF to the meaning it denotes, using the object property 
“hasSemanticPerspective”. Each of this properties connects to classes which belongs to different 
modules, lffam (lexical function family) and lfsem (lexical function semantic perspective), respectively, 
which will be presented in the next two sections.  
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Figure 2(a) illustrates the part of the lfrep module used to represent complex LFs and Figure 2(b) 
shows an example of a complex LF (AntiBon) represented in RDF/OWL format (turtle dialect), 
following the general schema of Figure 2(a).  

 

 
Figure 1: Module to represent a lexical function (lfrep) and its connection to lfsem and lffam. 

3.2 The lffam Module 

Figure 3 illustrates the module lffam. This module is used to cluster the LFs into families, according to 
their semantic/syntactic similarity, as introduced in Section 2.3. There are two main groups, the 
paradigmatic and the syntagmatic LF. The last one is subdivided in support verbs, phasal verbs (which 
indicate the start, continuation or finalization of an action), realization verbs, causation verbs (cause, 
permission and liquidation of an action) and some other functions which are not classified in any 
specific sub-group. The paradigmatic LFs are subdivided in nine groups, e.g. actantial nouns, 
adjectives and adverbs, circumstantial nouns, syntactic conversion, etc. 

The concept of family was extracted from FLN. Complex LFs whose base LF is the same belong to 
the same family, as explained in Section 2.3. FLN contains about 100 LF families, each one roughly 
corresponding to a simple LF. It is important to note that similar LFs, differentiable one from another 
only by their syntactic actant, such as Oper1, Oper2, Oper3, etc, is each one the head of a LF family. For 
example, we have the Oper1 family (Oper1, Caus1Oper1, Caus2Oper1), the Oper2 family (Oper2, 
Caus1Oper2, Caus2Oper2, Caus3Oper2, FinOper2, etc.) and so on. 

3.3 The lfsem Module 

Figure 4 illustrates the LF semantic perspective module, as introduced in Section 2.4. Twelve semantic 
classes are represented, each one divided in one or many sub-classes. A LF can have one or more 
semantic perspective, depending on the context and on the lexical units it connects.  

For example, the LF Magn (intensification) has the semantic perspective “qualification/intensity” 
and the LF Syn (synonymy) has the semantic perspective “equivalence/similar lexical units”.  

Figure 5 shows a RDF representation of the LF Anti. Note how the modules “lfrep”, “lffam” and 
“lfsem” are used to represent it. 
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lfrlf:LF-AntiBon rdf:type 

    lfrep:complexLF; 

lfrep:constituentComplexLF  

    : CCLF-AntiBon-Anti, 
          CCLF-AntiBon-Bon. 

 

 

:CCLF-AntiBon-Anti rdf:type  

    lfrep:componentComplexLF; 

lfrep:justapositionComposition  

    :CCLF-AntiBon-Bon; 

lfrep:correspondsTo lfrlf:LF-Anti. 

 

 

 

:CCLF-AntiBon-Bon rdf:type 

    lfrep:componentComplexLF; 

lfrep:correspondsTo lfrlf:LF-Bon. 

 

(a) Part of the lfrep module used to represent complex LFs. (b) RDF/OWL representation of the complex LF 

AntiBon, using the module lfrep. 

 
Figure 2: Representation of complex LFs. 

3.4 The lfrel Module 

Figure 6 illustrates the lexical function relation module (lfrel), which represents the way lexical units 
are connected by a LF.  

We decided to connect the LF keyword and the LF value using an intermediate class 
(lfSenseRelation), which is a subclass of a the lemon class “SenseRelation”, instead of connecting 
them directly with the LexicalFunction class because in this way we can connect to the 
lfSenseRelation information that is specific to the relation between two lexical units, independently of 
the LF connection them, and we can connect to a LF information that is independent of the lexical 
units that it connects. Also, the paradigmatic/syntagmatic information (LRType) is connected to the 
LexicalRelation class instead of being connected to the LexicalFunction class. 

Although the LFs usually have a definite type (paradigmatic or syntagmatic), some of them do not 
have it, which will depend on the lexical units they model.  

The property “hasGovPattern” is used to indicate the government pattern (GP) in the sense/lexical 
relation. For example, the collocation “receive an order from N”, is modeled by the LF Oper3(orderN) 
= receive and its GP is [ART ~ from N]. For the moment, the GPs are represented by strings in our 
model, but we intend to create a module “lfgpat” with a hierarchy of the most commons GPs.  

Figure 7 illustrates how the collocation “close friend” can be represented. It is modelled by the LF 
Magn (predicative sense = intensification): Magn(friendI.1) = closeIII.1a; Since also Magn(friendI.1) = 
goodII, we could have another LexicalRelation (Magn_02) connecting the LexicalSense goodII and the 
LexicalSense friendI.1. 

The lexical relation is connected to the value of the collocation using the property “hasLFValue” 
and to the keyword using the property “hasLFKeyword”. The property “hasLRType” informs that the 
relation between “closeIII.1a” and “friendI.1”, modelled by the LF “Magn”, is a syntagmatic relation.  

As explained in Section 2.5, it is important to note that the lexical units that appear in our example, 
“friendI.1”, and “closeIII.1a” will be modeled as “LexicalSense” and not as a “LexicalEntry” lemon ob-
ject. This means that our model will connect to the lemon model via the sense of the lexical units. This 
allows the construction of already disambiguated lexical networks. Finally, the lexical variations (e.g. 
plural) can be treated at the level of the LexicalEntry lemon object, already implemented by lemon.
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1 
https://www.w3.org/2016/05/ontolex/#syntax-and-semantics-synsem 

2
 https://www.w3.org/2016/05/ontolex/#variation-translation-vartrans 

3
 http://dbpedia.org/ontology/ 

 
Figure 3: Module lffam, which represents the lexical functions families. 

 
Figure 4: Semantic perspective module (lfsem) contains twelve classes used to indicate the semantics 

of a LF. 
 

One advantage of representing lexical units as lemon LexicalSense/LexicalEntry is that lemon im-
plements the Syntax and Semantics (synsem)

1
 module, which can be used to connect its LexicalEntry 

class to syntactic and morphological information about lexical units.  
For example, we can use the property “syntacticBehavior” to indicate that a lexical unit is a transi-

tive verb, to indicate its direct object, etc. We can also indicate alternative spelling of a lexical unit 
(e.g. American/British spelling). lemon also implements the Variation and Translation (vartrans)

2
, 

which can be used to connect a lexical unit to its translations in other languages. 
Another advantage of using lemon is the following: it implements the connection of a LexicalSense 

to a concept defined by an external ontology, such DBPedia
3
, through the “reference” property.
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lfrlf:LF-Anti rdf:type lfrep:simpleLF; 

       lfrep:belongsToLFFamily lffam:LFF-par-Anti; 

       lfrep:dimension lfrep:type-paradigmaticLF; 

       lfrep:semanticPerspective lfsem:pSem-op-semanticOpposite. 

 

Figure 5: RDF representation of the simple LF Anti, using the modules lfrep, lffam and lfsem. 
 

 
Figure 6: Lexical function relation module (lfrel). 

 

 
 

Figure 7: Representation of the collocation “close friend” using the lfrel module. 

4 Application 

The information about LFs, lexical units and the syntagmatic relation between lexical units were ex-
tracted from FLN. In this lexical network, this information is stored in a relational data bank and can 
be extracted by SLQ table dumps or SQL queries. 

FLN has about 600 standard LFs (about 100 simple and 500 complex LFs) and we encoded all of 
them using lexfom. 

We also encoded the lexical relations mediated by these standard LFs. So far we have encoded us-
ing the lexfom model about 54,000 relations, being 46,000 paradigmatic and 8,000 syntagmatic. 

Figure 8 shows the RDF representation of the French collocation porter un vêtement (to wear a 
clothe). It is intermediated by the LF Real1: Real1 (vêtement) = {porter}. Each word is first represented 
as a lemon:LexicalEntry, and each sense of the words are represented as a lemon:LexicalSense. The 
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LF Real1 is represented with its properties, using the modules lfrep, lffam and lfsem. Finally, the mod-
ule lfrel is used to represent the sense relation between porter and vetêment. 

 
:lex_vêtement a ontolex:LexicalEntry, 

                ontolex:Word; 

 ontolex:canonicalForm:form_vêtement; 

 ontolex:sense :vêtement_sense_I.2; 

 ontolex:sense :vêtement_sense_I.1; 

 ontolex:sense :vêtement_sense_II; 

 ontolex:sense :vêtement_sense_III.1; 

 ontolex:sense :vêtement_sense_III.2; 

 rdfs:label "vêtement"@fr. 

:form_vêtement a ontolex:Form; 

    ontolex:writtenRep "vêtement"@fr . 

 

vêtement_sense_I.2   a ontolex:LexicalSense. 

vêtement_sense_I.1   a ontolex:LexicalSense. 

vêtement_sense_II    a ontolex:LexicalSense. 

vêtement_sense_III.1 a ontolex:LexicalSense. 

vêtement_sense_III.2 a ontolex:LexicalSense. 

 
:lex_porter a ontolex:LexicalEntry, 

  ontolex:Word; 

  ontolex:canonicalForm :form_porter; 

  ontolex:sense :porter_sense_I; 

  ontolex:sense :porter_sense_II; 

  rdfs:label "porter"@fr. 

:form_porter a ontolex:Form; 

  ontolex:writtenRep "porter"@fr . 

 

porter_sense_I a ontolex:LexicalSense. 

porter_sense_II a ontolex:LexicalSense. 

LF-Real1 rdf:type lfrep:simpleLF, 

     lfrlf:Real1,owl:NamedIndividual; 

lfrep:belongsToLFFamily  

  lffam:LFF-synt-realV-Real1; 

lfrep:hasSyntActant  

  lfrep:lfrep-const-sa-ASynt_1; 

lfrep:dimension  

  lfrep:lfrep-type-syntagmaticLF; 

lfrep:semanticPerspective  

  lfsem:pSem-ae-utilTypicalOperation. 

:lfsr_11420 a 

           lfrel:SyntagmaticLFSenseRelation; 

   lfrel:hasLexicalFunction lfrep:LF-Real1; 

 lfrel:hasLFKeyword 

           ontolex:vêtement_sense_I.2; 

 lfrel:hasLFValue ontolex:porter_sense_IV; 

 lfrel:hasGovPattern  

           lfgpat:"DET ~s"^^xsd:string; 

lfrel:relationDirection lfrel:valueKeyword; 

lfrel:hasFusedElement "false"^^xsd:boolean. 

 
Figure 8: RDF representation of the LF Real1, the lexical units vêtement and porter and the sense re-

lation between vêtement and porter to form the French collocation porter un vêtement. 

5 Conclusion and Future Work 

We present in this paper an ongoing project, called Lexical Functions Ontology Model (lexfom), 
aimed at the representation of the lexical functions of Meaning-Text Theory as a lexical ontology.  

Most of the existing lexical networks lack important semantic information, especially the 
syntagmatic relations between lexical units. Lexical functions are a powerful tool for the 
representation of linguistic relations. In particular, syntagmatic lexical functions can fill the present 
gap in the representation of syntagmatic relations in lexical networks. 

Moreover, the combination of the descriptive logic embedded in the OWL language with the 
semantic, syntactic, paradigmatic and combinatorial information, provided by lexical functions, creates 
a strong tool for studying human reasoning, the relation between lexical units and can be used by 
diverse natural language processing applications and tools. 

Finally, this work can be seen as a new form of representation of collocations. It is important to 
observe that we deal with collocations as defined by Mel’čuk (1998), and not the definition usually 
employed in NLP articles, which usually states a collocation as “word cooccurrences whose 
idiosyncrasy is of statistical nature only” (Vincze et al., 2016). 

Dealing with collocations, as stated in Section 2.1, is of vital importance for a real understanding 
and correct identification and representation of the relations between lexical units. 

As a future work, we intend to use our model to transform the French Lexical Network , from its 
present relational database format to an ontology format. We have so far encoded about 100 simple 
LFs and 500 complex LFs, extracted from FLN, and also encoded about 54,000 lexical relations, being 
46,000 paradigmatic and 8,000 syntagmatic relations.  

Also, similarly to the lfsem module, new modules will be created to represent the remaining classi-
fications presented by Jousse (2010): a syntactic, a combinatorial and a paradigmatic classification 
module. 

Finally, we intend to combine the semantic information in our ontology with a word embeddings 
model to enhance the automatic construction of lexical networks. 
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Abstract 

The objectives of the work described in this paper are: 1. To list the differences between a 

general language resource (namely FrameNet) and a domain-specific resource; 2. To devise 

solutions to merge their contents in order to increase the coverage of the general resource. 

Both resources are based on Frame Semantics (Fillmore 1985; Fillmore and Baker 2010) and 

this raises specific challenges since the theoretical framework and the methodology derived 

from it provide for both a lexical description and a conceptual representation. We propose a se-

ries of strategies that handle both lexical and conceptual (frame) differences and implemented 

them in the specialized resource. We also show that most differences can be handled in a 

straightforward manner. However, some more domain specific differences (such as frames de-

fined exclusively for the specialized domain or relations between these frames) are likely to be 

much more difficult to take into account since some are domain-specific. 

 

1 Introduction 

During the past two decades, Frame Semantics (Fillmore, 1985; Fillmore and Baker, 2010) has drawn 

the attention of an increasing number of scholars interested in accounting for the relationship between 

the lexicon and background knowledge that speakers of a language are assumed to share (details about 

Frame Semantics are given in Section 2.1). This led to the compilation of a number of lexical re-

sources in different languages (English, German, Spanish, Japanese, Chinese, Portuguese, etc.)
1
 to de-

scribe what we will call from now on the general lexicon. In this paper, we refer to the English re-

source FrameNet (Fillmore et al., 2003; Ruppenhofer et al., 2010). 

Frame semantics is also increasingly cited in terminology and other fields focusing on specialized 

lexical items and has been used to describe terms in different domains, such as the environment, law, 

soccer and biomedicine (Schmidt, 2009; Faber, 2012, among others). Semantic frames are especially 

attractive in terminology since it is assumed that there is a connection between the conceptual struc-

ture of specialized fields of knowledge and the linguistic units used to convey this knowledge.  

However, work on the general lexicon and specialized terms is usually carried out separately result-

ing in resources that could be linked but that seldom are. The objective of the work reported in this 

paper is twofold. Assuming that it would be productive to link existing resources (specialized and gen-

eral) to increase the coverage of the lexicon contained in different kinds of texts: 

1. List the differences observed between a domain-specific resource that contains terms related to 

the environment (the Framed DiCoEnviro, 2016; L’Homme and Robichaud, 2014) and the con-

tents of FrameNet.  

                                                
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: 

http://creativecommons.org/licenses/by/4.0/. 
1
 Frame Semantics based projects are listed here: 

https://framenet.icsi.berkeley.edu/fndrupal/framenets_in_other_languages. 
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2. Devise solutions in order to manage these differences and propose ways to link the content of a 

domain-specific resource and a general resource such as FrameNet. It should be pointed out 

that the two resources considered in this paper are under construction. Hence, the solutions 

proposed must take this fact into consideration. 

It is assumed that the sets of lexical units (LUs) recorded in these resources (terms in the Framed 

DiCoEnviro and general LUs in FrameNet) share the same fundamental linguistic properties and that 

their relationship to human cognition is the same.
2
 However, differences might occur at more superfi-

cial levels that should be managed inside Frame Semantics. This extension of Frame Semantics to spe-

cialized terms has theoretical implications and opens new perspectives for Natural Language Pro-

cessing (NLP). From a theoretical viewpoint, this work implies that two different areas of the lexicon 

that were traditionally separated artificially – general and specialized – could be unified, thus reveal-

ing the general processes leading to the construction of meaning. From a more applied viewpoint, this 

new integration can lead to improving automated semantic processing systems by training them on 

texts annotated according to Frame Semantics.
3
  

Previous studies have examined solutions to merge the contents of resources based on the same the-

oretical and/or methodological framework (e.g. Amaro and Mendes, 2012; L’Homme and Polguère, 

2007; Magnini and Speranza, 2001). However, to our knowledge, no attempt has been made to devise 

methods to link general and domain-specific resources based on Frame Semantics. As will be seen 

below, Frame Semantics accounts for both a lexical level and a conceptual representation. While dif-

ferences at the lexical level have already been studied, the conceptual level raises challenges that other 

resources (such as WordNet, for example) do not. 

The paper is organized as follows. Section 2 is a brief overview of the structure and contents of 

FrameNet and the Framed DiCoEnviro and gives details about the subset of data analyzed. Section 3 

lists the lexical and conceptual (frame) differences that were discovered in this data. Section 4 presents 

a series of solutions to deal with these differences and shows how they were implemented in the 

Framed DiCoEnviro. 

2 Frame Semantics, FrameNet and a framed based domain-specific resource 

2.1 Frame Semantics and FrameNet 

Linguistic theories, including Frame Semantics, have been influenced by the seminal work on proto-

type theory, developed by Rosch in Berkeley in the 70s. Prototype theory highlighted the role played 

by cognitive processes of subjects in categorization. It soon became an alternative to the classic Aris-

totelian theory of categorization (based on necessary and sufficient conditions), a theory that constitut-

ed – albeit implicitly – the semantic basis of Western linguistic theories in the 80s. Research work car-

ried out by Rosch (1973, 1975) provided experimental evidence that categorization is not achieved 

based on an abstract model, but rather is construed based on the comparison of objects or experience 

that better represent a category. Rosch’s pioneering experiments showed that for a given semantic cat-

egory, certain member concepts are consistently understood as more central to the category—the pro-

totypes—than others.  

Rosch’s findings led linguistics to research on cognitive models, like semantic frames (Fillmore, 

1985), image schemas (Lakoff, 1987), i.e. cognitive models which are created as a result of our inter-

action with our environment at a pre-conceptual level. It is these conceptual models that allow the 

speaker and the hearer to construct and understand the meanings that shape linguistic communication.  

                                                
2
 This being said, it should be pointed out that in given fields of knowledge, efforts are made to standardize ter-

minology and the way it is used and defined (e.g., animal and plant species, medical concepts). This might result 

in meanings assigned to lexical units that differ from those that appear in “general usage”. Although these efforts 

usually concern a subset of the lexicon used in specialized texts, their impact on the lexicon need to be taken into 

account.  
3
 Hence terms in domain-specific resources and lexical units in FrameNet could be unified, thus allowing the use 

of this “extended” lexicon in specialized language NLP using the same program (namely SEMAFOR 

http://www.cs.cmu.edu/~ark/SEMAFOR/) or other programs that combine statistically based systems such as 

SEMAFOR with the use of semantic frame hierarchies to extend the potential of lexical disambiguation and au-

tomatic semantic role labeling (Matos, 2014). 
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More specifically, Frame Semantics is based on the assumption that the meanings of lexical units 

are constructed in relation to background knowledge (experience, beliefs, conventions, etc.). Frame 

Semantics has devised a theoretical model and a methodology for structuring this background 

knowledge and make the connection between lexical units and the knowledge explicit. Prototypical 

situations are structured within “semantic frames” that are evoked by a certain number of lexical units.  

In all the projects based on this theory, a large number of frames evoked by lexical units (LUs) were 

analyzed along with hierarchical semantic relations that hold between frames.  The descriptions appear 

in FrameNets devoted to different languages. 

FrameNet describes frames and lexical units in three different modules: 

1. The description of the frame itself (in which a definition of the frame is given along with lin-

guistic examples and a list of obligatory and optional participants (in Frame Semantics, partic-

ipants are called frame elements (FEs)). For instance, a situation whereby “an organic sub-

stance undergoes the natural process of decaying from an initial state to a result” is structured 

in a frame called Rotting (FrameNet, 2016). This situation has a Patient (an obligatory partic-

ipant, called a core FE, that undergoes the process of decaying) and a Degree, Circumstances, 

Duration, Frequency, etc. (optional participants, called non-core FEs).  

2. Lexical entries: each LU that evokes a frame is described in a separate entry (that contains a 

short definition of the LU and lists of syntactic or valence patterns). For instance, the follow-

ing LUs evoke the Rotting frame: decay.n, decay.v, decompose.v, fester.v, moulder.v, per-

ish.v, putrefy.v, rot.n, rot.v, spoil.v. and each has its own entry. 

3. Contextual annotations: a list of sentences – extracted from the British National Corpus – in 

which specific LUs appear are annotated in order to highlight their syntactic behaviour. The 

examples below show how sentences in which the verb decay appears are annotated: 

Were the corpses' hands honourably amputated during the funeral rites -- 

or later, after [Patientthe flesh] had DECAYED
Target

 ? 

[PatientTheir flesh] DECAYS
Target

, their shells and their bones become scat-

tered and turn to powder. 

-- Carnivorous animals -- which readily transmitted infection in a warm 

climate where [Patientflesh] DECAYED
Target

 [Speedrapidly]. 

4. Finally, frames are interconnected based on a number of relations (Is Causative of, Inherits, Is 

Subframe of, etc.) giving a more complete and precise picture of a general conceptual situation 

in which a frame is involved. Figure 1 shows the relationships held by the Rotting frame with 

other ones. Figure 2 shows how the Run_risk frame is connected to other frames defined in 

FrameNet (2016). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Relations between frames: Rotting        
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Figure 2: Relations between frames: Run_risk 

 

The FrameNet data to which we refer in this paper is that contained in the 1.6 XML release (Baker 

and Hung, 2010). 

2.2 A frame-based domain-specific resource 

In previous work (L’Homme et al, 2014; L’Homme and Robichaud, 2014), we showed that the the-

ory of Frame Semantics and the methodology devised within the FrameNet project (Fillmore et al., 

2003; Ruppenhofer et al., 2010) provide useful means to account for the semantic and constructional 

aspects of terms (especially terms that denote events). It also provides for a connection between lin-

guistic descriptions and a more abstract conceptual structure related to a terminological domain (in 

other words, relate the frame evoked by a term to a hierarchy of conceptual structures). 

The specialized data considered in this work is extracted from a resource on the environment (called 

the Framed DiCoEnviro). In this resource, terms (e.g. sustainable, contaminate, biodegradable, emis-

sion) are grouped according to the frames they evoke. In addition, most frames are interconnected and 

these relations account for larger scenarios that inform about situations that occur in the field of the 

environment (e.g., Species activities, Risks, Contamination).  

This first resource is linked to a terminological resource in which lexical descriptions of terms are 

given (called the DiCoEnviro. Dictionnaire fondamental de l’environnement). In addition, most lexical 

entries provide contextual annotations that show how terms combine with their participants (argu-

ments and adjuncts). Figure 3 shows an example of the frame Rotting along with an entry and annota-

tions that can be found in the DiCoEnviro. Figure 4 shows how relationships between the Rotting and 

the Run_risk frames were defined in the Framed DiCoEnviro. 

This work takes into consideration the English data recorded in the Framed DiCoEnviro. This in-

cludes 363 terms that evoke 176 different frames.
4
 Verbs, nouns, and adjectives have been dealt with 

at this point. All terms have up to 20 annotated sentences that are extracted from corpora that contain 

specialized texts on the environment. Annotated sentences for the terms analyzed amount to 7,189. 

2.3 Basic differences between FrameNet and the environmental resource 

Although the Framed DiCoEnviro was compiled according to the methodology devised in the 

FrameNet project (Ruppenhofer et al., 2010), some methodological choices were made that affect the 

way terms are described. We mention the most important ones below: 

In the Framed DiCoEnviro (FD), participants are labelled arguments (for obligatory ones) and ad-

juncts (for optional ones). As was seen above, in FrameNet, participants are labelled frame elements, 

FEs (and these are divided into core and non-core). 

 

                                                
4
 Note that the frames defined also include French and Spanish terms. However, for the purpose of the compari-

son with FrameNet, only the English data was considered. 
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Figure 3: Rotting frame and lexical entry and annotations for the term biodegradable 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In the FD, the methodology for discovering frames is bottom-up. According to this method-

ology, the definition of argument structures of terms precedes the description of frames. 

Once the terms and their argument structures have been described, we locate terms that 

have similar arguments structures and see if these terms can be associated to frames. The 

FrameNet methodology is slightly different. It consists of defining frames, their frame ele-

ments and then associate LUs to these defined frames. This methodological difference often 

results in different numbers of arguments vs. FEs between the two resources. For instance, 

Figure 4: Relations between frames: Rotting and Run_risk 
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in FrameNet the Cause_change_of_temperature frame has three core frame elements 

(Agent | Cause
5
, Item, Hot_cold_source). The environmental terms that evoke this frame 

have only two arguments (Agent | Cause, Patient). 
 In the FD, labels used for participants are more traditional (Agent, Patient, Destination) 

since they are defined for the entire set of terms in the resource. In FrameNet, FEs are de-

fined according to a frame. This results in a much larger number of labels in FrameNet that 

may correspond to a single one in the FD (for instance, Patient, Theme, Undergoer, Item in 

FrameNet correspond to Patient in the FD). 

 Alternations: Some distinctions were made in the lexical entries of the FD that are not al-

ways made in FrameNet. For instance, the FD contains two different entries for the verb 

predict: predict1a (a model predicts a change); predict1b (an expert predicts a change with a 

model). In many cases, the two terms are placed in the same frame, since they evoke the 

same situation. 

 

We do not focus on these differences in this work since they are linked to methodological choices ra-

ther than relying on true semantic or conceptual differences between lexical units, terms or frames. 

However, we do account for them in the FD. First, we state if the number of arguments recorded in the 

FD differs with respect to the number of core FEs in FrameNet. We also mention cases of alternations. 

Finally, the FD lists (on demand) the different labels for participants used in each resource, as shown 

in Figure 5. 

 
Cause_temperature_change 
[…] 

Notes: 

This frame is based on Cause_temperature_change in FrameNet. The number of actants vs. core FEs differs. 

[…] 

 

Framed Di-

CoEnviro 

Participants(1) 

Agent | Cause 

Patient 

Participants (2) 

Time (3), Degree (2), Value (2), Location (2), Duration (1), Re-

sult (1), Method (1) 

FrameNet FrameNet Core FEs:    

    Agent 

    Cause 

    Hot_Cold_Source 

    Item 

FrameNet  

Core-Unexpressed FEs 

FrameNet Non-Core FEs: 

Container, Degree, Duration, 

Instrument, Manner, Means, 

Place, Temperature_change, 

Temperature_goal, Tempera-

ture_start, Time 

Figure 5: Labels for participants in the FD and FrameNet 

3 Specificities in specialized fields of knowledge 

Many lexical items and lexical units (LUs) are similar in the Framed DiCoEnviro and FrameNet, and 

thus do not raise problems from the point of view of linking resources. However, several terms display 

some degree of difference with the lexical content of FrameNet. In this section, we make a list of the 

differences we observed keeping in mind the consequences these differences may have on the poten-

tial integration or specialized data in a general resource such as FrameNet. 

3.1 Specificities at the lexical level 

A.1 New lexical items: Many lexical items recorded in the FD do not appear in FrameNet. Some of 

these lexical items are highly specialized (eutrophication, acidification, deforestation); others have 

simply not been added yet to the general resource (biodegradable, introduce, landfill). These new lex-

ical items are likely to evoke existing frames in FrameNet or lead to the creation of a new potentially 

domain-specific frame. 

                                                
5
 We consider the “Agent | Cause” case as a split argument in the Framed DiCoEnviro. Hence we count it as one 

and apply to same principle when comparing this data to that contained in FrameNet. 
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A.2. New senses and A.3 Specific “environmental” uses: In this case, the lexical item is recorded in 

FrameNet, but the meaning accounted for is not the one observed in the environment data. As with 

new lexical items, lexical units with different senses can evoke existing frames in FrameNet or require 

the creation of new ones.  

We observed two different phenomena regarding meanings. First, there are new meanings per se 

(A.2). For instance, the adjectives green and clean do appear in FrameNet, but for the time being no 

frame accounts for their environmental meaning which can loosely read as follows: “that does not 

have a negative impact on the environment”.  

Specific “environmental” uses (A.3 ) apply to terms that cannot be said to convey a different meaning 

(such as green mentioned above). However, we noted a series of “sense modulations” caused by usage 

in a specialized field of knowledge, or a restriction imposed on arguments due again to the fact that the 

LU is used in a specialized field of knowledge (this latter case may be related to phenomena that Cruse 

(2011) labelled microsenses or spectral subsenses). 

For instance, the verb introduce is used in the field of the environment to denote an activity whereby 

someone places a species in an area where it can live and reproduce (Toad populations, predatory fish 

should not BE INTRODUCED into breeding ponds). It is related to reintroduce and introduction and 

is opposed to eliminate and extirpate. In the general lexicon, introduce has a much broader meaning 

and includes activities in which someone places something in a given location. We also made meaning 

distinctions that appear relevant for the field of the environment but that might not be relevant in other 

contexts. For instance, two different meanings were identified for the verb hunt. One corresponds to 

the activity whereby an animal chases and captures other animals for food; the second corresponds to 

the activity carried out by human beings that consists in chasing animals for other kinds of reasons, 

this activity having a negative impact on the conservation of species. Hunt1 is linked to other terms, 

such as predation, and predate; while hunt2 is linked to poach, capture, and fish.A.4 Different rela-

tionships between lexical units: This phenomenon is a consequence of the previous one (case A.3). 

Since lexical units such as introduce can be defined differently in the field of the environment, they 

are also likely to appear in different lexical networks. We already mentioned the relationship between 

introduce and reintroduce in the environment as well as the two sets of terms to which hunt1 and hunt2 

are linked respectively. Given the broader use of introduce in general language, it is linked to a much 

larger set of different LUs (such as imbed, implant, insert, place, etc.). 

3.2 Specificities at the level of frames 

B.1 Different lexical contents: Many LUs we analyzed are compatible with the data that appear in 

FrameNet. We can thus consider that they evoke the same frames. However, in many of those frames, 

the LUs recorded in FrameNet and those that we could identify in our corpora differ as shown in Fig-

ure 6. 

 
Rotting in FrameNet Rotting in Framed DiCoEnviro 

decay.n, decay.v, decompose.v, fes-

ter.v, moulder.v, perish.v, putrefy.v, 

rot.n, rot.v, spoil.v 

biodegradable 1, biodegradation 1, 

biodegrade 1, decay 1, decay 1.1, 

decompose 1a, decomposition 1 

Figure 6: Different lexical contents for the Rotting frame in FrameNet and the FD 

  

B.2 “New” frames: new frames need to be created to account for environmental data. For the data con-

sidered in this work, 96 new frames were created (54,5% of frames necessary for the terms analyzed), 

Some of these frames include new lexical items and new senses (cases A.1 and A.2), some comprise 

LUs that are recorded in FrameNet but correspond to “environmental” uses (case A.3). For instance, a 

new frame called Adding_species_in_location was created for the LUs introduce (and contains terms 

such as reintroduce, and introduction). Similarly, a new frame called Man_hunting was created for 

the LUs hunt2, (and will also contain verbs such as capture, poach and fish (a different frame – based 

on the one found in FrameNet – contains the term hunt1). 

B.3 Relationships between frames: Some relations between frames used in the FD are entirely compat-

ible with relations frames hold in FrameNet. However, given that new frames were created (case B.2) 

and that some LUs lend themselves to “sense modulations”, frames can appear in relations that differ 

from the ones described in FrameNet. Most of these appear to be domain specific. For instance, a 
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whole set of new frames were created in the FD to account the different situations in which waste is 

managed: Managing_waste, Collecting, Sorting, etc. These frames are connected according to the 

order in which these different activities are carried out. The relations are certainly valid as far as the 

environment is concerned, but their generality might be questioned from the point of view of the gen-

eral lexicon.  

4 Dealing with differences 

In this section, we present the solutions we devised and implemented to account for the similarities 

and highlight the differences between the two resources. For the time being, these solutions were im-

plemented in the environmental resource. 

4.1 Dealing with differences at the level of lexical units 

Cases A.1 and A.2 can be solved quite easily. New LUs are added to an existing frame provided that 

there is one that accounts for their meaning (e.g. biodegradable is added to the Rotting frame). If no 

frame exists, then the solution consists in creating a new one (e.g. a frame Judg-

ment_of_impact_on_the_environment was created for the LUs green, clean, and environmental2).  

Case A3 may lend itself to different solutions. New frames may be created (case B.2) (for instance, an 

Adding_species_in_location frame is created to account for the use of introduce in the field since it 

evokes a situation that differs in the environment). For this reason, we did not add this term to the ex-

isting Placing frame.  

It should be mentioned at this point that some “environmental uses” were not considered different 

enough from general usage to justify a separate description or the creation of a new frame in the FD. 

For instance, the transitive verb warm (as in carbon dioxide warms the Earth) is used in the field of 

the environment with a restricted set of arguments (Agents or Causes such as gas, energy, increase; 

and Patients such as atmosphere, surface, Earth). In general usage – at least based on the description 

given in FrameNet – the use of warm is much broader and includes but is not limited to the uses ob-

served in the field of the environment. However, we did not create a new frame to account for warm in 

this case since the description given in FrameNet could be applied to it. 

Case A.4 is described in the next section (when dealing with case B.3). 

4.2 Dealing with differences at the level of frames 

B.1. Resources can provide views on the lexical content of frames that differ between general lan-

guage and specific fields of knowledge if this lexical content is defined precisely. The lexical contents 

of FrameNet and the FD are highlighted as shown in Figure 7 for the frame Rotting. 

 

Frame: Rotting 

[…] 
    Notes: 

    This frame is based on Rotting in Framenet. 

 

English LUs (in FD) 

 biodegradable 1  

 biodegradation 1  

 biodegrade 1  

 decay 1 

 decay 1.1  

 decompose 1a 

 decomposition 1  

[…] 

FrameNet LUs in FD: 

decay.v, decompose.v 

FrameNet LUs not in FD: 

decay.n, fester.v, moulder.v, perish.v, putrefy.v, rot.n 

Figure 7: Lexical contents in the FD and FrameNet 
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B.2. New frames (96) are created on the basis of the environmental data. Frames created specifical-

ly for the environment are distinguished from others with a green color, as shown in Figure 8. They 

could also be added to the general resource and be connected to existing frames according to the solu-

tion devised for case B.3.  

B.3. Cases in which frames appear in relations that would not necessarily be valid from the point of 

view of the general lexicon are much more difficult to handle since many appear to be domain-

specific. For the time being, we provide access to the specific views on relations as they are recorded 

in each resource. Figure 8 shows the interconnections between the Rotting and Run_risk frames in 

the FD, on the one hand, and in FrameNet, on the other. As was mentioned earlier, domain-specific 

frames are those in the green rectangles. Frames that are common to both resources appear in the black 

rectangles. Finally, frames that were defined in FrameNet, but not used in the FD appear in ellipses. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Relations in the FD and FrameNet for Rotting and Run_risk 

5 Conclusion 

In this paper, we made a list of lexical and conceptual differences observed between a terminological 

resource on the environment and FrameNet. The proposals made apply to the environmental terms 

(363) and frames (176) that we analyzed. At the lexical level, differences observed were: new lexical 

items, new meanings (or new lexical units) and sense modulations that can be explained by domain 

specific uses of units (sense distinctions that might appear irrelevant from the point of view of general 

language, more restricted used of LUs in the environment). Sense modulations can also lead to new 

relationships between LUs.  

At the level of frames, differences can be summarized as: differences in lexical contents of similar 

frames, the need for new frames, and finally different relationships held between frames.  

We devised various strategies to deal with these differences and implemented them in the Framed 

DiCoEnviro. The implementation allows users to view how the lexicon and frames differ when con-

sidered from the perspective of a specialized subject while still seeing how these connect to the way 

the general lexicon was defined and represented in a general resource such as FrameNet. In addition, if 

changes are introduced in either resources (since they are both under construction), there are immedi-

ately taken into account. 

As future work, we plan to extend these strategies to Spanish (since we have started adding Spanish 

terms to the FD and that it could be compared to the content of Spanish FrameNet). We could also de-

vise strategies to make the environmental lexical content and frames visible in the general resources 

themselves (FrameNet and Spanish FrameNet). 
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Abstract 

The present paper investigates the phenomenon of antonym canonicity by providing new behavioural 
and distributional evidence on Italian adjectives. Previous studies have showed that some pairs of 
antonyms are perceived to be better examples of opposition than others, and are so considered 
representative of the whole category (e.g., Deese, 1964; Murphy, 2003; Paradis et al., 2009). Our goal is 
to further investigate why such canonical pairs (Murphy, 2003) exist and how they come to be 
associated. In the literature, two different approaches have dealt with this issue. The lexical-categorical 
approach (Charles and Miller, 1989; Justeson and Katz, 1991) finds the cause of canonicity in the high 
co-occurrence frequency of the two adjectives. The cognitive-prototype approach (Paradis et al., 2009; 
Jones et al., 2012) instead claims that two adjectives form a canonical pair because they are aligned 
along a simple and salient dimension. Our empirical evidence, while supporting the latter view, shows 
that the paradigmatic distributional properties of adjectives can also contribute to explain the 
phenomenon of canonicity, providing a corpus-based correlate of the cognitive notion of salience.  

1 Introduction 

Antonymy is one of the most important semantic relations between words and/or word-senses (Lyons, 
1977; Cruse, 1986; Murphy, 2003; Jones et al., 2007; Jones et al., 2012; Paradis et al., 2009; Paradis et 
al., 2012; Van de Weijer et al., 2012) and a key organizational principle of the mental lexicon and of 
adjectives in particular. One important phenomenon about antonymy is that some adjectival pairs are 
perceived to be better examples of the relation than others, even when near-synonymic alternatives are 
available (Murphy, 2003; Paradis et al., 2009; Jones et al., 2012). For example, if we ask what the 
antonym of hot is, the majority of speakers will answer cold, even if freezing and cool are near-
synonyms of cold and both express opposite concepts of hot. Thus, hot – cold is perceived as a better 
example of antonymy than hot – freezing or hot – cool. Antonymic pairs such as hot – cold are 
typically called canonical antonyms (Murphy, 2003) and the whole phenomenon – which is the central 
topic of the present paper – is known as antonym canonicity. 

As first showed by Deese (1964) and later confirmed by others psycholinguistics studies (Gross et 
al., 1989; Charles and Miller, 1989; Paradis et al., 2009), members of canonical pairs are the ones 
eliciting one another in free word association tasks and whose responses are shared by the majority of 
speakers. Additionally, canonical pairs are perceived to be in opposition even when no context is 
available and they are stable across word senses (Lehrer, 2002; Murphy, 2003). Murphy (2003) and 
Paradis et al. (2009) claim that a canonical pair arises when two words that are semantically in 
opposition become “conventionalized” as a pair in language, that is they are strongly associated and 
learnt as a form-sense unit. Thus, cognitive evidence suggests that conceptual opposition is not a 
sufficient condition for an antonymic pair to be a canonical pair. At this point two questions arise: why 
do canonical pairs exist at all? What are the conditions that determine antonym canonicity? 

Another question concerns the nature itself of canonicity. Gross et al. (1989) support a dichotomous 
                                                
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: 
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view, according to which a small group of canonical antonyms is strictly contrasted with a larger 
group of non-canonical ones. On the other hand, the fact that speakers are able to discriminate between 
“better” and “less good” instances of antonymy led some linguists to suggest that canonicity is a scalar 
phenomenon showing a prototypical structure, rather than a dichotomous one (Herrmann et al., 1986; 
Murphy, 2003; Paradis et al., 2009). In this sense, antonymic pairings would be aligned along a 
continuum of “goodness of opposition” with a few pairs – canonical ones – as representative members 
of the relation. As also confirmed by the data reported in the following sections, it is possible to 
individuate different degrees of canonicity, depending on reciprocal elicitation frequency of the 
adjectives, a fact that we also use as the main criterion to define canonicity. 

The aim of this research is to bring new evidence on antonym canonicity and on its possible 
explanations. In particular, we show that pairs of adjectival antonyms with different degrees of 
canonicity exist in Italian as well, thereby complementing available data about English and Swedish 
and supporting the cross-linguistic validity of the phenomenon. In the next section, we discuss the two 
main models of canonicity. In the second part of the paper, we present the results of an elicitation 
experiment and distributional analysis of Italian canonical antonyms. 

2 Models of canonicity 

The existence of a group of antonymic pairs whose members elicit one another in free word 
association tasks was first reported by Deese (1964). He noticed that this kind of association seems to 
be consistent with most frequent English adjectives and proposed that two adjectives form a canonical 
pair because they share linguistic contexts (Deese, 1964; Deese, 1965). Two major models of 
canonicity have been proposed in the literature. Following the terminology used by Paradis et al. 
(2009), we refer to them as the lexical-categorical approach and the cognitive-prototype approach. 

The former approach was developed within the structuralist framework, which is based on the 
assumption that the relations are the semantic primitives, meanings therefore derive from the relations 
words have among them in the lexical network (e.g., Lyons, 1977). In this sense, antonyms form a set 
of “stored lexical association”, with an adjective having or not having a canonical antonym. This view 
is best exemplified by the way adjectives are organized in the Princeton WordNet model (Miller, 
1995). Antonymy is treated here as a lexical relation and a group of canonical pairs – the direct 
antonyms – is strictly contrasted with a group of non-canonical ones – the indirect antonyms –, 
thereby creating a strict dichotomy. In order to explain canonicity within the lexical-categorical model, 
Charles and Miller (1989) claim that Deese’s idea that direct (canonical) adjectives share linguistic 
contexts can be defined in two different ways: according to the substitutability hypothesis, two 
adjectives are learned as direct antonyms because they are interchangeable in most contexts, while 
according to the co-occurrence hypothesis, direct antonyms co-occur in sentences significantly more 
often than chance. Charles and Miller (1989) bring psychological evidence supporting the latter view, 
and Miller and Charles (1991) add that the substitutability hypothesis by itself would not allow to 
discriminate between antonyms and synonyms, since they both tend to co-occur in similar contexts. 
Additionally, Justeson and Katz (1991) individuate some syntactic patterns in which antonymic 
adjectives are often found to co-occur, such as between X and Y and X or Y. Moreover, Fellbaum 
(1995) argues that also nominal, verbal and cross-categorical antonyms (e.g., to begin (V) – endless 
(Adj)) co-occur in a sentence more often than chance, suggesting that antonyms do not have to be 
adjectives or to belong to the same syntactic category to express semantic opposition. Therefore, 
antonym canonicity would be explained by the syntagmatic nature of the relation, in accord with the 
co-occurrence hypothesis (Charles and Miller, 1989; Justeson and Katz, 1991). 

On the other hand, the cognitive-prototype approach – developed in the Cognitive Linguistic 
framework – argues that producing antonyms is not a matter of automatic lexical association but a 
knowledge-driven process (Murphy and Andrews, 1993; Murphy, 2003; Paradis et al., 2009). 
Meanings are here considered to be conceptual in nature, therefore they do not form a stored network 
but are constantly negotiated by the speakers in the contexts where they occur, thanks to general 
cognitive processes (Paradis et al., 2009; Paradis et al., 2015). As suggested by Murphy and Andrews 
(1993) and later showed by Jones et al. (2007) and Van de Weijer et al. (2012), conceptual opposition 
turned out to be the cause of lexical relation, instead of the other way around. This evidence has led to 
treat antonymy as a context-sensitive semantic relation. In this respect, canonicity is a scalar 
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phenomenon: Antonymic pairs are aligned along a continuum from “better” to “less good” examples 
of the relation – as first noted by Herrmann et al. (1986) –, but at the same time the category shows a 
prototype structure (Murphy, 2003; Paradis et al., 2009). Various studies have in fact pointed out the 
special status canonical antonyms enjoy, since the members of a canonical pair have both a relation of 
opposition and a strong lexical entrenchment in memory. The relation is therefore semantic and lexical 
(Jones et al., 2007; Paradis et al., 2009; Van de Weijer et al., 2012; Jones et al., 2012). In diagnosing 
an adjectival pair as canonical, Paradis et al. (2009) suggest that what is crucial is the dimension of 
alignment, which has to be cognitive salient. This means that the antonymic pairs perceived as the best 
examples of the relation by the speakers would be the ones describing simple (i.e., easily identifiable) 
properties, in which the two members occupy the opposite poles, with equal distance from the 
midpoint. 

The behavioural data on Italian adjectives reported in the sections below confirm that antonym 
canonicity has indeed the gradient nature predicted by the cognitive-prototype model. Moreover, we 
show that canonicity has also an important distributional correlate, which however does not depend on 
their syntagmatic co-occurrence, as claimed by Miler & Charles (1989), but rather on their 
paradigmatic distributional similarity. 

3 Elicitation Experiment 

We have conducted an elicitation experiment to identify antonymic pairs with different degrees of 
canonicity in Italian. Each participant was asked to provide the best opposite for some Italian 
adjectives, divided in two different test sets. The antonymic pairs obtained in such way were classified 
accordingly to the frequency of reciprocal elicitation. Subject's production frequency has then been 
used to categorize the elicited data into canonical and non-canonical pairs: Two adjectives A and B are 
canonical if and only if A elicited B as the most frequent response and vice versa. 

The elicited pairs were later analysed with respect to their frequency of co-occurrence (in terms of 
Pointwise Mutual Information, as a measure of association strength). The aim was to evaluate the 
lexical-categorical approach, in particular to test whether the co-occurrence hypothesis provides a 
good explanation of canonicity. 

Even if the experiment was designed following the guidelines of Paradis et al. (2009), stimuli were 
selected on the basis of a different criterion, namely concreteness. Moreover, we also added adjectives 
that could generate morphologically derived antonyms. Furthermore, according to the view of 
canonicity as a scalar phenomenon (Herrmann et al., 1986; Murphy, 2003; Paradis et al., 2009), we 
expect that the number of response for each adjective will be extremely variable. 

3.1 Stimuli 

Two different datasets were used in the elicitation experiment and tested separately. The first set – Set1 
– was formed by 70 Italian adjectives selected manually on the basis of their concreteness: 35 were 
concrete adjectives – describing a concrete property (e.g., aperto “open”) – while 35 were abstract 
ones (e.g., felice “happy”). Unmarked members of canonical pairs from Paradis et al. (2009) and Jones 
et al. (2007) were included in this test set, conveniently translated. The second test set – Set2 – was 
formed by all the adjectives elicited by Set1, removing duplicates and items already included in Set1. 
Set2 has therefore been used to investigate which adjectives mutually elicit each other. Set2 consists of 
132 stimulus words. Nonce words were included in both Set1 and Set2 and subjects were instructed to 
identify them. This was necessary in order to ensure that all participants were native Italian speakers. 

3.2 Task 

The task was performed on the online crowdsourcing platform Crowdflower.com1. Each participant 
was asked to provide the best opposite for 10 randomized adjectives from one of the two test sets. For 
each item a specific blank space was provided. Responses were automatically collected by the 
platform. Twenty answers were collected for each stimulus word. An example was given in the 
instructions, along with the recommendation to write one single word for each stimulus and mark 
nonce words. The participants were all Italian native speakers. 

                                                
1Crowdflower.com allows users to access an online workforce of millions of people to clean, label and enrich data. 
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3.3 Results 

As a pre-processing step, orthographic and typing errors were corrected and non-pertinent responses 
were cancelled (e.g., synonyms). Nouns, verbs and adverbs were eliminated or transformed into 
adjectives. 

Data were then analysed taking into account the number of distinct responses provided from the 
participants for each stimulus adjective. As expected, the results confirm the previous findings stating 
the existence of a continuum of lexical association (Herrmann et al., 1986; Paradis et al., 2009). The 
mean value of distinct responses per adjective is 2.85, but the number varies from a minimum of 1 to a 
maximum of 10 distinct responses (see Table 1). The standard deviation value, 2.96, indicates that the 
majority of stimulus elicited just one or two antonyms. Moreover, Set1 was more consistent than Set2. 
Set1 responses mean value is 2.14 (sd 1.54), while Set2 responses mean value is 3.23 (sd 2.53).  

Type-Token Ratio and Entropy were calculated in order to evaluate the amount of dispersion in 
responses. An entropy value equal to 0 was observed for 75 stimulus adjectives, suggesting they all 
elicited one and the same antonym (e.g., veloce “fast”, buono “good”, vivo “alive”, facile “easy”). The 
highest entropy values were instead observed for abstract adjectives and for a group of Set2 stimuli 
(e.g., sciocco “fool”, 0.92; austero “austere”, 0.9; serio “serious”, 0.85; libero “free”, 0.75). 
 

Category Response mean Std. deviation Entropy mean 
All Stimuli 2.85 2.96 0.22 
Set1 2.14 1.54 0.15 
Set2 3.23 2.53 0.25 

 
Table 1. Response and entropy mean for the two datasets. 

 
We investigated to what extent adjective frequency estimated in a corpus2 and concreteness 

influence the amount of dispersion in responses – in terms of entropy values. The first parameter does 
not seem to be correlated with entropy values (Pearson's correlation value, r= -0.211), indicating that 
the number of responses obtained is independent from the frequency the adjective is used in texts. On 
the other hand, there is a significant difference between entropy values of concrete and abstract 
adjectives, the abstract ones eliciting more different antonyms (Wilcoxon: p-value < 0.001, W=6670). 

Stimuli were then paired with each antonym and we recorded the reciprocity of their elicitation, 
taking into account how many times the two members of each pair elicited one another (i.e., the 
frequency of reciprocal elicitation across participants). Among the 446 pairs emerged, 250 were not 
analysed because one of the members was not included in the stimuli. Remaining pairs were classified 
on the basis of their frequency of reciprocal elicitation into three groups: non-reciprocal, reciprocal 
and canonical. We observed 66 non-reciprocal pairs and 130 reciprocal ones. The canonical antonyms 
are a subset of the reciprocal pairs, for which the first member elicited as most frequent response the 
second one and vice versa. These consist of 65 pairs (see Appendix A). 

Furthermore, different patterns of adjective reciprocity were individuated. Participants strongly 
agreed on 24 pairs, which were perceived as perfectly binary. Two different antonyms were provided 
for 16 adjectives in a one-to-two match. In the majority of these cases the two options were 
respectively an opaque and a morphologically derived antonym (e.g., attivo – passivo/inattivo “active 
– passive/inactive”, felice – triste/infelice “happy – sad/unhappy”, vestito – nudo/svestito “dressed – 
naked/undressed”, perfetto – difettoso/imperfetto “perfect – defective/imperfect”). The other two 
reciprocity patterns were one-to-many and many-to-many. We observed the former in five cases (i.e., 
concreto “concrete”, comico “comical”, fragile “fragile”, libero “free”, intelligente “smart”), in which 
a single adjective elicited up to 8 possible antonyms and the relation held also in the opposite 
direction. Four instances of the many-to-many patterns were observed (i.e., mobile “movable”, 
improvviso “sudden”, calmo/tranquillo “calm/quiet”, sbagliato “wrong”), where multiple and complex 
relations arose defining a highly complex semantic field of antonyms and synonyms. 
                                                

2The adjectives frequencies were recorded on the Italian online corpus PAISÀ. It is a fully annotated corpus of authentic 
contemporary Italian texts from the web. It contains about 250M tokens. It is freely available at this website: 
http://www.corpusitaliano.it/. 
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In order to look more deeply into the canonicity phenomenon and its lexical or semantic nature, we 
recorded on the Italian online corpus PAISÀ the co-occurrence frequency of each pair3 – and 
compared it with their expected frequency. The difference turned out to be always statistically 
significant (chi-squared test: p-value < 0.05), both for canonical and non-canonical pairs. 

Pointwise Mutual Information (PMI) was also calculated and used as a measure of lexical 
association between the adjectives. We limited the analysis only to pairs with co-occurrence frequency 
≥ 5. These were 217 pairs: 63 canonical – 27 abstract and 36 concrete – and 154 non-canonical – 91 
abstract and 63 concrete. Moreover, pairs were marked according to frequency of production in both 
directions. Complete production data were observed for 138 pairs – all the 63 canonical pairs and 75 
non-canonical, 36 concrete and 39 abstract. 

There is a significant difference between the PMI of canonical and non-canonical pairs (t-test: p-
value < 0.001, t = 6.7144). This confirms the statement that canonical antonyms have a strong lexical 
association. Actually, the correlation values between PMI and subjects production frequency reveal an 
interesting pattern. For canonical antonyms, no significant Pearson's correlation was observed (r = 
0.107), suggesting that even the best examples of the relation could have a low PMI value. 
Conversely, the correlation between PMI and subject production frequency for non-canonical pairs is 
significantly higher (r = 0.419): The more the two members of a non-canonical pair are lexically 
associated the more they tend to elicit one another.  

Concreteness does not influence these values. Even if abstract adjectives elicit more possible 
antonyms, abstract and concrete pairs are not significant different with respect to PMI values (t-test: p-
value=0.1928, t=-1.3068). Both (non-)canonical abstract and (non-)canonical concrete pairs can be 
found and we can assume that concreteness is not a parameter of influence in canonicity. However, it 
is worth noting that the majority of abstract pairings – both canonical and non-canonical – are 
morphologically derived. 

To sum up, both canonical and non-canonical pairs co-occur significantly more often than chance, 
against the prediction of the lexical-categorical approach. On the other hand, it is true that canonical 
adjectives have higher association strength as measured by PMI, even if this value does not correlate 
with subject production frequency. That is, there are frequently produced canonical pairs, which have 
low values of association strength. Conversely, PMI appear to correlate (albeit moderately) with the 
subject production frequency of non-canonical pairs. We can surmise that the fact they are strongly 
associated allow speakers to recognize them as antonyms, increasing their production frequency. 

4 Distributional Analysis 

The results of the elicitation experiment did not fully support the lexical-categorical model of antonym 
canonicity, and are instead consistent with the gradient interpretation of canonicity advocated by the 
cognitive-prototype approach. However, the notion of “salient dimension”, which is central to the 
latter model, is not defined in a precise way. Moreover, when a pair such as hot – cold – whose 
dimension is clearly identifiable as TEMPERATURE in its basic literal interpretation – is used in a 
metaphorical sense, its dimension of alignment is not equally easy to identify. 

With the aim of providing a more solid empirical grounding to this notion, we propose a 
distributional interpretation of the concept of “salient dimension” as similarity of the nominal contexts 
co-occurring with adjectives. Therefore, we argue that the salience of the dimension expressed by 
canonical adjectives depends on the fact that they share a high number of similar nominal co-
occurrence contexts. As a matter of fact, if – as stated by Lehrer (2002) – a canonical pair can extend 
its opposition to a new semantic field when one of the members acquires a new sense, we would 
expect both members of the opposition to occur with the same nouns, thanks to the great amount of 
possible ontological domains they can apply in. Moreover, Paradis et al. (2015) demonstrate that 
members of canonical pairs are used in the same semantic contexts and structures not only when they 
co-occur but also when they are used individually. In the present case, we define nominal contexts of 
co-occurrence as the nouns each adjective modifies or is a predicate of. We have then represented 
adjectives with distributional vectors and used the cosine as a measure of context similarity. Since we 
assume that canonical pairs share a higher number of contexts than non-canonical ones, we predict that 
                                                

3Co-occurrence frequencies were estimated using a text window from 0 to >3, specifying both words had to be tagged as 
adjective, and restricting search within sentence boundaries. 
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the cosine values of canonical pairs are significantly higher than those for non-canonical pairs. 

4.1 Data 

The distributional analysis was performed on the 138 pairs with co-occurrence frequency ≥ 5 and 
mutually produced by the subjects. Eight pairs were removed because one of the members was not 
included in the distributional model used for this analysis (cf. below) or were erroneously lemmatized 
(i.e., as past participle forms). Therefore, the distributional analysis was performed on 130 pairs, 62 
canonical and 68 non-canonical. 

4.2 Procedure 

Noun-adjective co-occurrences were automatically extracted from La Repubblica corpus (Baroni et al., 
2004) with LexIt (Lenci, 2014)4. All the nouns each adjective in the test pairs modifies or is a predicate 
of were collected. Co-occurrences were weighted with Positive PMI (PPMI) and represented as a 
multidimensional vector for each adjective. The cosine was used to measure the distributional 
similarity of each test pair (Turney and Pantel, 2010). Therefore, the higher the cosine of an antonymic 
pair, the more its members tend to co-occur with the same nouns. 

4.3 Results 

The overall mean cosine is 0.11 (sd 0.07) (see Table 2). Considering the two groups separately a 
relevant difference can be noted. The mean cosine value for the canonical pairs is 0.21 (sd 0.2), while 
for non-canonical ones is 0.12 (sd 0.17). Moreover, maximum cosine for canonical pairs (0.44) is 
much larger than the maximum one for non-canonical pairs (0.27). 
 

Category Mean Std. Deviation Max. Value 
All Pairs 0.11 0.07 - 
Canonical (62) 0.21 0.20 0.44 
Non-canonical (68) 0.12 0.17 0.27 

 
Table 2. Mean cosine and maximum values. 

 
The difference between the cosines of canonical and non-canonical adjectives is highly significant 

(Wilcoxon test: p-value < 0.001, W=313). Once again, it turned out that concreteness is not a relevant 
factor. Nevertheless, it seems interesting to notice that canonical pairs with the lowest cosine values 
are the morphologically derived and abstract ones. What seems to be relevant is the correlation 
between cosine values and pair production frequency. The Pearson's correlation for canonical pairs (r 
= 0.29), though weak, is clearly larger than that for non-canonical ones (r = 0.07). In general, the 
distributional analysis shows that the goodness of opposition of a canonical pair of antonyms tends to 
be directly proportional to the distributional similarity of the adjectives with respect to the nominal 
contexts they co-occur with. 

5 Summary and Discussion 

The aim of the present paper was to identify antonymic pairs with different degrees of canonicity in 
Italian. We have defined as canonical those adjectives with the highest mutual production frequency in 
an elicitation task. We also intended to verify if – as suggested by Herrmann et al. (1986), Murphy 
(2003) and Paradis et al. (2009) – canonicity is a scalar phenomenon, that is if pairs are distributed on 
a scale – a continuum of “goodness of opposition” – from better to less good examples of the relation. 
The second goal of our research was to further investigate the canonicity phenomenon in order to 
explain the different behaviour of canonical and non-canonical antonyms. In particular, we tested the 
two previous approaches in the literature – lexical-categorical and cognitive-prototype – to determine 

                                                
4LexIt is a platform to explore distributional profiles of Italian nouns, verbs and adjectives. LexIt distributional profiles 
contain a vast array of statistical information, automatically extracted from corpora with state-of-the-art computational 
linguistic methods. The contexts extracted are freely accessible at this website: http://lexit.fileli.unipi.it/. 
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which are the parameters that cause the strong association between the two members of a canonical 
pair. An elicitation experiment and a distributional analysis were carried out. 

The elicitation experiment confirmed the existence of a continuum of “goodness of opposition”, as 
already stated by the cognitive-prototype approach and contrary to the dichotomous view of the 
relation offered by the lexical-categorical approach. We observed pairs with strong agreement among 
the participants – only one or two distinct antonyms were elicited for a given stimulus – as well as 
adjectives that produced up to 10 distinct responses. Moreover, classifying pairs as canonical and non-
canonical on the basis of the frequency of production allowed us to individuate different patterns of 
reciprocity, corresponding to different degrees of canonicity. Thus, as already stated by Jones et al. 
(2007), we can state that canonicity – and the whole antonymy relation in general – is not strictly 
binary in the sense that it does not require exclusivity. On the other hand, a small group of pairs 
obtained full agreement among the speakers, since members produced one another as unique response 
in the elicitation experiment. These pairs have a strong lexical association and entrenchment in 
memory, and confirm the prototypical internal structure of antonymy (Murphy, 2003; Paradis et al., 
2009). Interestingly, these results also suggest the cross-linguistic validity not only of the scalar and 
prototypical structure of antonymy, but also of what adjectives are considered the best examples of the 
relation. Italian data, in fact, reveal a picture highly similar to the previous studies on Swedish and 
English and the best examples of the relation are the same in the three languages. 

For what concern how canonical antonyms come to be associated, the elicitation experiment offered 
the possibility to evaluate the lexical-categorical approach. As noticed, observed co-occurrence 
frequency was always larger than expected both for canonical and non-canonical pairs. This means 
that both canonical and non-canonical pairs co-occur significantly more often than chance. Hence, the 
co-occurrence hypothesis alone is not sufficient to explain the existence of the canonicity phenomenon 
because it does not allow to discriminate between canonical and non-canonical antonyms. We found 
instead a correlation between PMI values and production frequency for the non-canonical pairs. This 
means that association strength, as measured by PMI, is a good indicator of the tendency of non-
canonical antonyms to elicit one another, suggesting that the more they are observed and used together 
in text the more they are perceived as “good” antonyms. 

Even if production statistics support the cognitive-prototype approach, the notion of “salience of 
dimension” used by such explanation lacks clear empirical criteria. As already mentioned, when a pair 
is used in a metaphorical sense the dimension of alignment is not so easy to identify. This seems to be 
confirmed by the behaviour of abstract and morphologically derived pairs, whose behaviour deserve 
further investigation. Therefore, we have proposed a distributional interpretation of the notion of 
salient dimension. We carried out a distributional analysis of the nouns co-occurring with the 
adjectives (in modification and predication contexts), assuming that the opposition between the two 
members of a canonical pair is stable across their senses. Thus, our hypothesis is the more the 
antonyms occur in the same nominal contexts, the more they are perceived as canonical. Vector cosine 
was used as a measure of the distributional similarity of adjectives in nominal contexts. As predicted, 
we found a significant difference between the cosine values of canonical and non-canonical pairs. This 
means that the members of a canonical pair tend to modify or be predicate of the same nouns. 

In summary, our experimental evidence suggests that, contra Charles and Miller (1989, strong 
paradigmatic distributional similarity, rather than syntagmatic co-occurrence, is the distinctive feature 
of canonicity. Two adjectives form a canonical pair because they are used to describe the same things 
and the same situations, but from two opposite points of view. What can be tall can be also short, as 
what is hot can be also cold. This allows the opposition to be moved into a new semantic field when 
one of the members of a canonical pair acquires a new sense (Lehrer, 2002). Hence, high frequency of 
co-occurrence – in similar syntactic structures – has to be considered as an effect of this kind of 
relation. As correctly argued by Miller and Charles (1991), paradigmatic substitutability can not be 
used to characterize antonymy in general, since this feature is also shared by other semantic relations, 
most notably synonymy. However, paradigmatic substitutability can instead be used as an empirical 
criterion to define the subset of canonical adjectives. It is in fact likely that paradigmatic 
substitutability is also one of the factors determining the high cognitive salience of the property 
expressed by canonical adjectives. 
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Appendix A. Canonical antonyms emerged from the elicitation experiment. 
 
veloce lento “fast – slow” ordinato disordinato “orderly – messy”  
forte debole “strong – weak” rilevante irrilevante “relevant – irrelevant”  
grande piccolo “big/large – small/little” scuro chiaro “dark – light”  
largo stretto “wide – narrow” grasso magro “fat – slim”  
buono cattivo “good – bad” sicuro insicuro “secure – insecure”  
bello brutto “beautiful – ugly” mangiabile immangiabile “eatable – uneatable”  
aperto chiuso “open – close” mobile immobile “movable – unmovable”  
povero ricco “poor – rich” organico inorganico “organic – inorganic”  
alto basso “tall – short” calmo agitato “calm – rough/upset”  
lungo corto “long – short” piacevole spiacevole “pleasant – unpleasant”  
vivo morto “alive – dead” preciso impreciso “precise – imprecise”  
maschile femminile “male – female” duro morbido “hard – soft”  
pieno vuoto “full – empty” morale immorale “moral – immoral”  
pesante leggero “heavy – light” giusto sbagliato “right – wrong”  
sporco pulito “dirty – clean” uguale diverso “identical – different”  
stabile instabile “stable – unstable” credibile incredibile “credible – incredible”  
facile difficile “easy – hard” concreto astratto “concrete – abstract”  
pubblico privato “public – private” intelligente stupido “smart – stupid”  
positivo negativo “positive – negative” vestito nudo “dressed – naked”  
civile incivile “civilized – uncivilized” vecchio giovane “old – young”  
legale illegale “legal – illegal” attivo inattivo “active – inactive”  
onesto disonesto “honest – dishonest” attivo passivo “active – passive”  
fortunato sfortunato “lucky – unlucky” abbondante scarso “abundant – scarce”  
iniziale finale “initial – final” libero prigioniero “free – prisoner”  
bianco nero “white – black” luminoso buio “bright – dark”  
bagnato asciutto “wet – dry” felice triste “happy – sad”  
comodo scomodo “comfortable – uncomfortable” spesso sottile “thick – thin”  
completo incompleto “complete – incomplete”    

simmetrico asimmetrico “symmetrical – asymmetrical”    

vero falso “true – false”    

logico illogico “logical – illogical”    

limitato illimitato “limited – unlimited”    

possibile impossibile “possible – impossible”    

razionale irrazionale “rational – irrational”    

perfetto imperfetto “perfect – imperfect”    

pari dispari “even – odd”    

certo incerto “sure – unsure”    

dolce amaro “sweet – bitter”    
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Abstract
Understanding the semantic relationships between terms is a fundamental task in natural lan-
guage processing applications. While structured resources that can express those relationships in
a formal way, such as ontologies, are still scarce, a large number of linguistic resources gathering
dictionary definitions is becoming available, but understanding the semantic structure of natural
language definitions is fundamental to make them useful in semantic interpretation tasks. Based
on an analysis of a subset of WordNet’s glosses, we propose a set of semantic roles that compose
the semantic structure of a dictionary definition, and show how they are related to the definition’s
syntactic configuration, identifying patterns that can be used in the development of information
extraction frameworks and semantic models.

1 Introduction

Many natural language understanding tasks such as Text Entailment and Question Answering systems
are dependent on the interpretation of the semantic relationships between terms. The challenge on the
construction of robust semantic interpretation models is to provide a model which is both comprehensive
(capture a large set of semantic relations) and fine-grained. While semantic relations (high-level binary
predicates which express relationships between words) can serve as a semantic interpretation model, in
many cases, the relationship between words cannot be fully articulated as a single semantic relation,
depending on a contextualization that involves one or more target words, their corresponding semantic
relationships and associated logical operators (e.g. modality, functional operators).

Natural language definitions of terms, such as dictionary definitions, are resources that are still under-
utilized in the context of semantic interpretation tasks. The high availability of natural language defini-
tions in different domains of discourse, in contrast to the scarcity of comprehensive structured resources
such as ontologies, make them a candidate linguistic resource to provide a data source for fine-grained
semantic models.

Under this context, understanding the syntactic and semantic “shape” of natural language definitions,
i.e., how definitions are usually expressed, is fundamental for the extraction of structured representations
and for the construction of semantic models from these data sources. This paper aims at filling this gap
by providing a systematic analysis of the syntactic and semantic structure of natural language definitions
and proposing a set of semantic roles for them. By semantic role here we mean entity-centered roles, that
is, roles representing the part played by an expression in a definition, showing how it relates to the entity
being defined. WordNet (Fellbaum, 1998), one of the most employed linguistic resources in semantic
applications, was used as a corpus for this task. The analysis points out the syntactic and semantic
regularity of definitions, making explicit an enumerable set of syntactic and semantic patterns which can
be used to derive information extraction frameworks and semantic models.

The contributions of this paper are: (i) a systematic preliminary study of syntactic and semantic rela-
tionships expressed in a corpus of definitions, (ii) the derivation of semantic categories for the classifica-
tion of semantic patterns within definitions, and (iii) the description of the main syntactic and semantic
shapes present in definitions, along with the quantification of the distribution of these patterns.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/
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The paper is organized as follows: Section 2 presents the basic structural aspects of definitions ac-
cording to the classic theory of definitions. Section 3 introduces the proposed set of semantic roles for
definitions. Section 4 outlines the relationship between semantic and syntactic patterns. Section 5 lists
related work, followed by the conclusions and future work in Section 6.

2 Structural Aspects of Definitions

Swartz (1997) describe lexical, or dictionary definitions as reports of common usage (or usages) of a
term, and argue that they allow the improvement and refinement of the use of language, because they can
be used to increase vocabulary (introducing people to the meaning and use of words new to them), to
eliminate certain kinds of ambiguity and to reduce vagueness. A clear and properly structured definition
can also provide the necessary identity criteria to correctly allocate an entity in an ontologically well-
defined taxonomy (Guarino and Welty, 2002).

Some linguistic resources, such as WordNet, organize concepts in a taxonomy, so the genus-differentia
definition pattern would be a suitable way to represent the subsumption relationship among them. The
genus and differentia concepts date back to Aristotle’s writings concerning the theory of definition (Berg,
1982; Granger, 1984; Lloyd, 1962) and are most commonly used to describe entities in the biology
domain, but they are general enough to define concepts in any field of knowledge. An example of
a genus-differentia based definition is the Aristotelian definition of a human: “a human is a rational
animal”. Animal is the genus, and rational is the differentia distinguishing humans from other animals.

Another important aspect of the theory of definition is the distinction between essential and non-
essential properties. As pointed by Burek (2004), stating that “a human is an animal” informs an essential
property for a human (being an animal), but the sentence “human is civilized” does not communicate a
fundamental property, but rather something that happens to be true for humans, that is, an incidental
property.

Analyzing a subset of the WordNet definitions to investigate their structure, we noticed that most
of them loosely adhere to the classical theory of definition: with the exception of some samples of
what could be called ill-formed definitions, in general they are composed by a linguistic structure that
resembles the genus-differentia pattern, plus optional and variable incidental properties. Based on this
analysis, we derived a set of semantic roles representing the components of a lexical definition, which
are described next.

3 Semantic Roles for Lexical Definitions

Definitions in WordNet don’t follow a strict pattern: they can be constructed in terms of the entity’s
immediate superclass or rather using a more abstract ancestral class. For this reason, we opted for using
the more general term supertype instead of the classical genus. A supertype is either the immediate
entity’s superclass, as in “footwear: clothing worn on a person’s feet”, being footwear immediately under
clothing in the taxonomy; or an ancestral, as in “illiterate: a person unable to read”, where illiterate is
three levels below person in the hierarchy.

Two different types of distinguishing features stood out in the analyzed definitions, so the differentia
component was split into two roles: differentia quality and differentia event. A differentia quality is an
essential, inherent property that distinguishes the entity from the others under the same supertype, as in
“baseball coach: a coach of baseball players”. A differentia event is an action, state or process in which
the entity participates and that is mandatory to distinguish it from the others under the same supertype.
It is also essential and is more common for (but not restricted to) entities denoting roles, as in “roadhog:
a driver who obstructs others”.

As any expression describing events, a differentia event can have several subcomponents, denoting
time, location, mode, etc. Although many roles could be derived, we opted to specify only the ones that
were more recurrent and seemed to be more relevant for the definitions’ classification: event time and
event location. Event time is the time in which a differentia event happens, as in “master of ceremonies:
a person who acts as host at formal occasions”; and event location is the location of a differentia event,
as in “frontiersman: a man who lives on the frontier”.
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A quality modifier can also be considered a subcomponent of a differentia quality: it is a degree,
frequency or manner modifier that constrain a differentia quality, as in “dart: run or move very quickly
or hastily”, where very narrows down the differentia quality quickly associated to the supertypes run and
move.

The origin location role can be seen as a particular type of differentia quality that determines the
entity’s location of origin, but in most of the cases it doesn’t seem to be an essential property, that is, the
entity only happens to occur or come from a given location, and this fact doesn’t account to its essence,
as in “Bartramian sandpiper: large plover-like sandpiper of North American fields and uplands”, where
large and plover-like are essential properties to distinguish Bartramian sandpiper from other sandpipers,
but occurring in North American fields and uplands is only an incidental property.

The purpose role determines the main goal of the entity’s existence or occurrence, as in “redundancy:
repetition of messages to reduce the probability of errors in transmission”. A purpose is different from a
differentia event in the sense that it is not essential: in the mentioned example, a repetition of messages
that fails to reduce the probability of errors in transmission is still a redundancy, but in “water faucet: a
faucet for drawing water from a pipe or cask”, for drawing water is a differentia event, because a faucet
that fails this condition is not a water faucet.

Another event that is also non-essential, but rather brings only additional information to the definition
is the associated fact, a fact whose occurrence is/was linked to the entity’s existence or occurrence, ac-
counting as an incidental attribute, as in “Mohorovicic: Yugoslav geophysicist for whom the Mohorovicic
discontinuity was named”.

Other minor, non-essential roles identified in our analysis are: accessory determiner, a determiner
expression that doesn’t constrain the supertype-differentia scope, as in “camas: any of several plants
of the genus Camassia”, where the expression any of several could be removed without any loss in
the definition meaning; accessory quality, a quality that is not essential to characterize the entity, as in
“Allium: large genus of perennial and biennial pungent bulbous plants”, where large is only an incidental
property; and [role] particle, a particle, such as a phrasal verb complement, non-contiguous to the other
role components, as in “unstaple: take the staples off ”, where the verb take off is split in the definition,
being take the supertype and off a supertype particle.

The conceptual model in Figure 1 shows the relationship among roles, and between roles and the
definiendum, that is, the entity being defined.

Figure 1: Conceptual model for the semantic roles for lexical definitions. Relationships between [role]
particle and every other role in the model are expressed as dashed lines for readability.
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4 Identifying Semantic Roles in Definitions

Once the relevant semantic roles were identified in the manual analysis, the following question emerged:
is it possible to extend this classification to the whole definitions database through automated Semantic
Role Labelling? Although most SRL systems rely on efficient machine learning techniques (Palmer et
al., 2010), an initial, preferably large, amount of annotated data is necessary for the training phase.

Since manual annotation is expensive, an alternative would be a rule-based mechanism to automati-
cally label the definitions, based on their syntactic structure, followed by a manual curation of the gen-
erated data. As shown in an experimental study by Punyakanok et al. (2005), syntactic parsing provides
fundamental information for event-centered SRL, and, in fact, this is also true for entity-centered SRL.

To draw the relationship between syntactic and semantic structure (as well as defining the set of
relevant roles described earlier), we randomly selected a sample of 100 glosses from the WordNet
nouns+verbs database1, being 84 nouns and 16 verbs (the verb database size is only approximately 17%
of the noun database size). First, we manually annotated each of the glosses, assigning to each segment
in the sentence the most suitable role. Example sentences and parentheses were not included in the clas-
sification. Figure 2 shows an example of annotated gloss. Then, using the Stanford parser (Manning
et al., 2014), we generated the syntactic parse trees for all the 100 glosses and compared the semantic
patterns with their syntactic counterparts.

Figure 2: Example of role labeling for the definition of the “lake poets” synset.

Table 1 shows the distribution of the semantic patterns for the analyzed sample. As can be seen,
(supertype) (differentia quality) and (supertype) (differentia event) are the most frequent patterns, but
many others are composed by a combination of three or more roles, usually the supertype, one or more
differentia qualities and/or differentia events, and any of the other roles. Since most of them occurred
only once (29 out of 42 identified patterns), it is easier to analyze the roles as independent components,
regardless of the pattern where they appear. The context can always give some hint about what a role
is, but we would expect the role’s main characteristics not to change when their “companions” in the
sentence varies. The conclusions are as follows2, and are summarized in Table 2:

Supertype: it’s mandatory in a well-formed definition, and indeed 99 out of the 100 sentences ana-
lyzed have a supertype (the gloss for Tertiary period – “from 63 million to 2 million years ago” lacks a
supertype and could, then, be considered an ill-formed definition). For verbs, it is the leftmost VB and,
in some cases, subsequent VBs preceded by a CC (“or” or “and”). This is the case whenever the parser
correctly classifies the gloss’ head word as a verb (11 out of 16 sentences). For nouns, in most cases (70
out of 83) the supertype is contained in the innermost and leftmost NP containing at least one NN. It is
the whole NP (discarding leading DTs) if it exists as an entry in WN, or the largest rightmost sequence
that exists in WN otherwise. In the last case, the remaining leftmost words correspond to one or more
differentia qualities. If the NP contains CCs, more than one supertype exist, and can be identified follow-
ing the same rules just described. The 13 sentences that don’t fit this scenario include some non-frequent
grammatical variations, parser errors and the presence of accessory determiners, described later.

Differentia quality: for verbs, this is the most common identifying component in the definition. It
occurs in 14 out of the 16 sentences. The other two ones are composed by a single supertype (that would
better be seen as a synonym), and by a conjunction of two supertypes. The differentia quality is usually
a PP (5 occurrences) or a NP (4 occurrences) coming immediately after the supertype. JJs inside ADJPs
(3 occurrences) or RBs inside ADVPs (1 occurrence) are also possible patterns, where the presence of

1Adjectives and adverbs are not organized in a taxonomy in WordNet, so are less likely to follow a supertype-differentia
pattern, probably requiring a different classification strategy

2POS tags and non-terminal symbols lists can be found at https://goo.gl/8ndYCw and https://goo.gl/kuJEc2, respectively
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Pattern Total
(supertype) (differentia quality) 27
(supertype) (differentia event) 13
(differentia quality) (supertype) 6
(supertype) (differentia event) (event location) 5
(supertype) (differentia quality) (purpose) 3
(accessory determiner) (supertype) (differentia event) 3
(accessory determiner) (supertype) (differentia quality) 2
(supertype) OR(differentia quality)+ 2
(supertype) (origin location) 2
(differentia quality) (supertype) (differentia quality) 2
OR(supertype)+ (differentia event) 2
(differentia quality)+ (supertype) 2
(differentia quality)+ (supertype) (differentia event) 2
Other 29
Total 100

Table 1: Distribution of semantic patterns for the analyzed definitions. “Other” refers to patterns that
ocurred only once. (role)+ indicated the occurrence of two or more consecutive instances of the role, and
OR(role)+ indicates the same, but with the conjunction “or” connecting the instances.

CCs indicates the existence of more than one differentia quality. For nouns, two scenarios outstand: the
differentia quality preceding the supertype, where it is composed by the leftmost words in the same NP
that contains the supertype but are not part of the supertype itself, as described above; and the differentia
quality coming after the supertype, predominantly composed by a PP, where the prevailing introductory
preposition is “of”. These two scenarios cover approximately 90% of all analyzed sentences where one
or more differentia qualities occur.

Differentia event: differentia events occurs only for nouns, since verbs can’t represent entities that
can participate in an event (i.e., endurants in the ontological view). They are predominantly composed
by either an SBAR or a VP (under a simple clause or not) coming after the supertype. This is the case in
approximately 92% of the analyzed sentences where differentia events occur. In the remaining samples,
the differentia event is also composed by a VP, but under a PP and immediately after the introductory
preposition.

Event location: event locations only occur in conjunction with a differentia event, so they will usually
be composed by a PP appearing inside a SBAR or a VP. Being attached to a differentia event helps to
distinguish an event location from other roles also usually composed by a PP, but additional character-
istics can also provide some clues, like, for example, the presence of named entities denoting locations,
such as “Morocco” and “Lake District”, which appear in some of the analyzed glosses.

Event time: the event time role has the same characteristics of event locations: only occurs in conjunc-
tion with a differentia event and is usually composed by a PP inside a SBAR or a VP. Again, additional
information such as named entities denoting time intervals, for example, “the 19th century” in one of the
analyzed glosses, is necessary to tell it apart from other roles.

Origin location: origin locations are similar to event locations, but occurring in the absence of an
event, so it is usually a PP that does not appear inside a SBAR or a VP and that frequently contains
named entities denoting locations, like “United States”, “Balkan Peninsula” and “France” in our sample
glosses. A special case is the definition of entities denoting instances, where the origin location usually
comes before the supertype and is composed by a NP (also frequently containing some named entity),
like the definitions for Charlotte Anna Perkins Gilman – “United States feminist” – and Joseph Hooker
– “United States general [. . . ]”, for example.

Quality modifier: quality modifiers only occur in conjunction with a differentia quality. Though
this role wasn’t very frequent in our analysis, it is easily identifiable, as long as the differentia quality
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component has already been detected. A syntactic dependency parsing can show whether some modifier
(usually an adjective or adverb) references, instead of the supertype, some of the differentia quality’s
elements, modifying it.

Purpose: the purpose component is usually composed by a VP beginning with a TO (“to”) or a
PP beginning with the preposition “for” and having a VP right after it. In a syntactic parse tree, a
purpose can easily be mistaken by a differentia event, since the difference between them is semantic (the
differentia event is essential to define the entity, and the purpose only provide additional, non-essential
information). Since it provides complementary information, it should always occur in conjunction with
an identifying role, that is, a differentia quality and/or event. Previously detecting these identifying roles
in the definition, although not sufficient, is necessary to correctly assign the purpose role to a definition’s
segment.

Associated fact: an associated fact has characteristics similar to those of a purpose. It is usually
composed by a SBAR or by a PP not beginning with “for” with a VP immediately after it (that is,
not having the characteristics of a purpose PP). Again, the difference between an associated fact and a
differentia event is semantic, and the same conditions and principles for identifying a purpose component
also apply.

Accessory determiner: accessory determiners come before the supertype and are easily recognizable
when they don’t contain any noun, like “any of several”, for example: it will usually be the whole
expression before the supertype, which, in this case, is contained in the innermost and leftmost NP
having at least one NN. If it contains a noun, like “a type of”, “a form of”, “any of a class of”, etc., the
recognition becomes more difficult, and it can be mistaken by the supertype, since it will be the leftmost
NP in the sentence. In this case, a more extensive analysis in the WN database to collect the most
common expressions used as accessory determiners is necessary in order to provide further information
for the correct role assignment.

Accessory quality: the difference between accessory qualities and differentia qualities is purely se-
mantic. It is usually a single adjective, but the syntactic structure can’t help beyond that in the accessory
quality identification. Again, the presence of an identifying element in the definition (preferably a dif-
ferentia quality) associated with knowledge about most common words used as accessory qualities can
provide important evidences for the correct role detection.

[Role] particle: although we believe that particles can occur for any role, in our analysis it was very
infrequent, appearing only twice and only for supertypes. It is easily detectable for phrasal verbs, for
example, take off in “take the staples off”, since the particle tends to be classified as PRT in the syntactic
tree. For other cases, it is necessary a larger number of samples such that some pattern can be identified
and a suitable extraction rule can be defined.

Role Most common syntactic patterns
Supertype innermost and leftmost NP containing at least one NN
Differentia quality leftovers3 in the innermost and leftmost NP; PP beginning with “of”’
Differentia event SBAR; VP
Event location PP inside a SBAR or VP, possibly having a location named entity
Event time PP inside a SBAR or VP, possibly having a time interval named entity
Origin location PP not inside a SBAR or VP, possibly having a location named entity
Quality modifier NN, JJ or RB referring to an element inside a differentia quality
Purpose VP beginning with TO; PP beginning with “for” with a VP right after
Associated fact SBAR; PP not beginning with “for” with a VP right after
Accessory determiner whole expression before supertype; common accessory expression
Accessory quality JJ, presence of a differentia quality, common accessory word
[Role] particle PRT

Table 2: Most common syntactic patterns for each semantic role.

3Words that are not part of the largest sequence in the NP found as an entry in WN
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5 Related Work

The task described in this work is a form of Semantic Role Labeling (SRL), but centered on entities
instead of events. Typically, SRL has as primary goal to identify what semantic relations hold among a
predicate (the main verb in a clause) and its associated participants and properties (Màrquez et al., 2008).
Focusing on determining “who” did “what” to “whom”, “where”, “when”, and “how”, the labels defined
for this task include agent, theme, force, result and instrument, among others (Jurafsky and Martin,
2000).

Liu and Ng (2007) perform SRL focusing on nouns instead of verbs, but most noun predicates in
NomBank, which were used in the task, are verb nominalizations. This leads to the same event-centered
role labeling, and the same principles and labels used for verbs apply.

Kordjamshidi et al. (2010) describe a non-event-centered semantic role labeling task. They focus
on spatial relations between objects, defining roles such as trajectory, landmark, region, path, motion,
direction and frame of reference, and develop an approach to annotate sentences containing spatial de-
scriptions, extracting topological, directional and distance relations from their content.

Regarding the structural aspects of lexical definitions, Bodenreider and Burgun (2002) present an
analysis of the structure of biological concept definitions from different sources. They restricted the
analysis to anatomical concepts to check to what extent they fit the genus-differentia pattern, the most
common method used to classify living organisms, and what the other common structures employed are,
in the cases where that pattern doesn’t apply.

Burek (2004) also sticks to the Aristotelian classic theory of definition, but instead of analyzing ex-
isting, natural language definitions, he investigates a set of ontology modeling languages to examine
their ability to adopt the genus-differentia pattern and other fundamental principles, such as the essential
and non-essential property differentiation, when defining a new ontology concept by means of axioms,
that is, in a structured way rather than in natural language. He concludes that Description Logic (DL),
Unified Modeling Language (UML) and Object Role Modeling (ORM) present limitations to deal with
some issues, and proposes a set of definitional tags to address those points.

The information extraction from definitions has also been widely explored with the aim of constructing
structured knowledge bases from machine readable dictionaries (Vossen, 1992; Calzolari, 1991; Copes-
take, 1991; Vossen, 1991; Vossen and Copestake, 1994). The development of a Lexical Knowledge
Base (LKB) also used to take into account both semantic and syntactic information from lexical defini-
tions, which were processed to extract the definiendum’s genus and differentiae. To populate the LKB,
typed-feature structures were used to store the information from the differentiae, which were, in turn,
transmitted by inheritance based on the genus information. A feature structure can be seen as a set of at-
tributes for a given concept, such as “origin”, “color”, “smell”, “taste” and “temperature” for the concept
drink (or for a more general concept, such as substance, from which drink would inherit its features),
for example, and the differentiae in a definition for a particular drink would be the values that those
features assume for that drink, for example, “red”, “white”, “sweet”, “warm”, etc. As a result, concepts
could be queried using the values of features as filters, and words defined in different languages could
be related, since they were represented in the same structure. To build the feature structures, restricted
domains covering subsets of the vocabulary were considered, since having every relevant attribute for
every possible entity defined beforehand is not feasible, being more overall strategies required in order
to process definitions in large scale.

6 Conclusion

We proposed a set of semantic roles that reflect the most common structures of dictionary definitions.
Based on an analysis of a random sample composed by 100 WordNet noun and verb glosses, we identified
and named the main semantic roles and their compositions present on dictionary definitions. Moreover,
we compared the identified semantic patterns with the definitions’ syntactic structure, pointing out the
features that can serve as input for automatic role labeling. The proposed semantic roles list is by no
means definitive or exhaustive, but a first step at highlighting and formalizing the most relevant aspects
of widely used intensional level definitions.
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As future work, we intend to implement a rule-based classifier, using the identified syntactic patterns
to generate an initial annotated dataset, which can be manually curated and subsequently feed a machine
learning model able to annotate definitions in large scale. We expect that, through a systematic classifi-
cation of their elements, lexical definitions can bring even more valuable information to semantic tasks
that require world knowledge.
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Abstract

Although quantifiers/classifiers expressions occur frequently in everyday communications or

written documents, there is no description for them in classical bilingual paper dictionaries, nor

in machine-readable dictionaries. The paper describes a corpus and dictionary development for

quantifiers/classifiers, and their usage in the framework of French-Japanese machine translation

(MT). They often cause problems of lexical ambiguity and of set phrase recognition during analy-

sis, in particular for a long-distance language pair like French and Japanese. For the development

of a dictionary aiming at ambiguity resolution for expressions including quantifiers and classifiers

which may be ambiguous with common nouns, we have annotated our corpus with UWs (interlin-

gual lexemes) of UNL (Universal Networking Language) found on the UNL-jp dictionary. The

extraction of potential classifiers/quantifiers from corpus is made by UNLexplorer web service.

Keywords : classifiers, quantifiers, phraseology study, corpus annotation, UNL (Universal Net-

working Language), UWs dictionary, Tori Bank, French-Japanese machine translation (MT).

1 Introduction

Recent Machine Translation (MT) evaluation tends to be conducted based on (1) Automatic evaluation

metrics use reference translations for each segment such as BLEU, NIST, METEOR (Papineni et al.,

2001; Banerjee and Lavie, 2005; Doddington, 2002).

This shows frequent efforts for MT, by measuring a similarity or a distance between a translation

hypothesis and its post-editions. Basic operations used for post-editions are substitution, deletion, and

insertion of words or phrases in a sentence, whatever the MT system is. (2) Subjective measures are

based on human judgements of ”intelligibility”, ”fidelity”, “adequacy” and “fluency” of MT outputs.

These methods are really suitable for evaluating the progress of MT systems, but they do not contribute

directly to improve the quality ofMT outputs. Here we focus on lexical ambiguities, which are considered

as a main cause of the degradation of the quality in MT for spoken or written sentences. Several types of

ambiguity appear on each phase of MT for different types of documents.

We have categorized ambiguity problems according to the levels of MT analysis and to the MT con-

texts in which they are encountered, and we have proposed a formal ambiguity representation as well as

guidelines for ambiguity labelling to build an ambiguity data base1.

In fact, according to our studies of ambiguities, 14% of analysis errors2 are due to polysemous words.

Also, (G.Wisniewski and al., 2013) say the most frequent necessary post-edition in their French corpus

translation into English is to correct articles like «les», «le», «du», etc., and the next one concerns lexical

transfer errors of polysemous words. In addition, when polysemous words are used in their abstract or

figurative meaning where they could be classifier or quantifier, translation results produced by current

This work is licensed under a Creative Commons Attribution 4.0 International Licence.
1We have done research on ambiguity analysis from the lexical, semantic and contextual points of view since 1996. Ambi-

guities have been defined, categorized, and formalized as objects in an ambiguity database, and we have used this theoretical

background to label ambiguities in Japanese-English interpreted dialogues, collected for the development of a speech translation

system at ATR in Japan (1994 ). (Boitet and Tomokiyo, 1995; Boitet and Tomokiyo, 1996; ?)
2The ambiguity analysis includes assignment of speech acts, although generally speaking speech act ambiguity isn’t taken

account of, so the percentage is important.
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MT systems are not at all good. Even measure words like cm, km, kg, etc. may be ambiguous with

acronym (Anil K. et al., 2013).

Example: cm→ centimètre, congrégation de la mission, coût marginal, etc.

The following example shows that «pincée (pinch, つまみ, tsumami) » in a quantifier phrase appears in

form of «une pincée de», and is used in its figurative meaning. When one looks at the translation outputs

produced by commercial MT systems, it’s not hard to deduce there is a lack of phraseology studies and

polysemy disambiguationmethod for the word «pincée»3. For the treatment of the classifier/quantifier ex-

pressions, at first, we must knowwhether a word or an expression in a document is the classifier/quantifier

or not, and which kind of information is necessary to handle it in MT.

Example: Ajoutez une pincée de sel. (Add a pinch of salt.) →
塩のつねりを加えなさい/塩のピンチを加えなさい (Shio no tsuneri wo kuwaenasai/Shio no pinchi wo
kuwaenasai)4

Sections 1 & 2 discuss the problems encountered in the processing of classifiers and quantifiers arising

for meaning determination in the source language and from the structural differences between a language

pair in the framework of MT. Section 3 describes morpho-syntactic problems between two languages

for quantifier/classifier expressions. In Section 4, the difficulty of quantifiers/classifiers extraction is

described. In Section 5, we propose a solution using a dictionary, edited from collected documents,

themselves annotated with semantic UNL (hyper)graphs, presented as a parallel corpus, and give somme

details about a small French-Japanese dictionary for quantifiers/classifiers, built for MT experimentation

with an UNL system5.

2 Lexical ambiguity for classifiers/quantifiers

We call here words or phrases which are used in some languages to indicate the class of nouns or nomi-

nal/adjectival phrases, depending on the type of these referent, classifiers/quantifiers, when they appear

in quantitative expressions. They denote:

(a) temporal/spatial quantity of the referent and

(b) states of the referent in an idiomatic expression.

Type (a) classifiers/quantifiers express concrete measurement, and type (b) classifiers/quantifiers express

quantitative states of the referent based on speaker’s observation.

Examples:

Type (a): 2g de sel (2グラムの塩, 2-guramu-no shio, 2g of salt)

Type (b): une pièce de viande (一切れの肉, hitokire-no niku, a piece of meat) / un brin de causette

(ちょっとしたおしゃべり, chottoshita osyaberi, a little chat)
Classifiers/quantifiers of type (a) are obligatory in quantitative expressions, and they often cause

acronym ambiguities for MT as mentioned above, and also ambiguities due to the “floating quantifier”

(Inoue, 1989) phenomenon in Japanese.

For classifiers/quantifiers of type (b), there are three different sorts of problems. The first one is the fact

that classifiers/quantifiers have many to many meaning corespondences between source-target languages

pairs. In the following example, the French word «pièce» is translated into «切れ, kire», «枚, mai», «点,
ten», «頭, tou», etc. in Japanese, because, in many cases, Japanese classifiers depend upon the visual

forms of referents.

The second problem arises in the case where classifiers/quantifiers don’t appear explicitly in one lan-

guage of a language pair, nevertheless they are mandatorily expressed in the other, like «冊», satsu in
Japanese.

3“pincée” is used as quantifier/classifier for pulverized substances.
4These translations don’t make sense. http://www.reverso.net/translationresults.aspx?langF̄R&directionf̄rancais-japonais.

http://www.worldlingo.com/fr/products_services/worldlingo_translator.html.
5TheUNL (Universal Networking Language) system denotes a language for computer, multilingual encoder-decoder system,

UNL-UWs dictionary, parallel corpus, and linguistic ontology system. It has been developed under the aegis the Organization

of United Nations University in form of international consortium for written languages processing since 1996. We are one of

the pioneer members of the consortium. Bilingual dictionaries with UNL-UWs dictionary are edited by each ”UNL language

center”. http://www.undl.org/unlsys/unl/unl2005/attribute.htm
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Table 1: Translation of French word ”pièce” into Japanese

French

en-

tries

Examples Source Japanese translations

pièce une pièce de toile Royal 一枚(mai)の布 (ichimai no nuno,

a piece of cloth)

une pièce de mobilier Royal 一点(ten)の家具 (itten no kagu, a

piece of furniture)

dix pièces de bétail Royal １０頭(tou)の家畜 (jyuttou no

kachiku, ten cattles)

plusieurs pièces de bois Royal 数枚(mai)の板 (suumai no ita,

some boards)

une pièce de vin est un

tonneau de vin contenant

environ 220 litres.

Wiki, pièce 一樽(hitotaru)のワインとは
約２２０リットルを含むワイン
樽である (hitoraru no wain toha

yaku 220 littoru wo fukumu

waindaru dearu, a barrel of wine

includes 220 littles of wine)

J’ai reçu une demi-pièce

de ce vin.

Vinothèque わたしは半樽(hantaru)
のワインを受け取った。
(watashiha hantaru no wain

wo uketotta, I have received half

barrel of this wine.)

Dans une pièce de théâtre,

il n’y a pas de narrateur

pour raconter les faits.

http://www.etudes-

litteraires.com/etudier-

piece-de-

theatre.php

ある作品(sakuhin)
では事実を語るナレータがいない。
(aru sakuhin deha jijitsuwo

kataru nare)ta) ga inai, There is

no narrator in a program.)

Une pièce de viande Royal 一切れ(kire)の肉 (hitokire no

niku, a slice of meat)

Une pièce de blé Royal 一枚 (mai)の麦畑 (ichimai no

mugibatake, a field of wheat)
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Table 2: Translation of the French expression «pointe» into Japanese

French

en-

tries

Examples Source Jp translation E.n translation

Pointe une pointe d’ironie

mal placée

J.L. Carré 場違いの皮肉をちくりと the tip of , a hint of,

a note of, a trace of

relever la sauce avec

une pointe d’ail

Livre de cuisine ソースにニンニクをちょっときかせる pick up the sauce

with a hint of garlic

avec une pointe

d’agacement dans la

voix

T. Jonquet 声にすこし苦しみをにじませて with a hint of irrita-

tion in the voice

mettre une pointe

d’ironie dans sa

question

Royal 質問にちくりと皮肉を込める with a suggestion

of sarcasm

Examples:
2 livres→ 二冊の本 (ni-satsu no hon, two books)
un chat→ 一匹の猫 (i-ppiki no neko, a cat) (see →Table 1)
The third problem occurs during the analysis/transfer phase as locutions problem like «un brin

de»: «brin» signifies «茎, kuki, small stalk», and «un brin de» means «a little of». It’s translated into
«ちょっとした (chottosita, small)» in Japanese. This is due to the polysemy of «brin» and to the cognitive
or metonymic differences between two languages.
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Table 3: KWIC of “pointe” from Sketch Engine

doc#357 qui marque le déclin définitif de

cette

pointe de poussée et de sécrétions des hor-

mones

doc#397 la sierra Pacaraima, qui con-

stituent une

pointe avancée du Sertao brésilien.

</p><p> En janvier

doc#457 de nouveauté, un soupçon de

douceur, une

pointe d’exotisme : commence par te met-

tre dans

doc#517 Tafer ne sont capables d’évoluer

seuls en

pointe . </p><p> Arles - Marseille En con-

cédant une

3 Morpho-syntactic differences between French-Japanese classifiers/quantifiers

As for the behaviour of floating quantifiers in Japanese (Inoue K.1989), the problem we encounter in
building a Japanese-French MT lies in the fact that the Japanese quantifiers can be freely positioned
between phrasal units in a sentence except after predicative verbs. They are morphosyntactically clas-
sified into two types of quantifier expressions: (1) noun phrases in form of “Number+Quantifier+の(no,
of)+Noun («NQのN» type)”, and (2) noun phrases in form of Noun+Number+Quantifier («NQN» type).
The NQN type can syntactically be divided into «N» part and «QN» part and it’s possible to use «QN» like
an adverb before a predicative verb in a sentence.
Hence, three types of expressions are possible for the same meaning : (1) 二冊の本 (ni-satsu no
hon, two books ), (2) 本二冊 (hon ni-satsu, two books) and also (3) 本を二冊 (hon-wo ni-satsu, two
books)6. The floating quantifier can produce meaningless translation result in some cases. For instance,
“3kgの子豚がいました (3 kiloguramu no kobutaga imashita, There was a 3kg piglet.)” is acceptable as
Japanese sentence, but “子豚が3kgいました(kobuta ga 3kiloguramu imashita)”7 doesn’t literally make
sense, because, «子豚 (kobuta, piglet)» means only an alive pig and co-occurs with いました (there was),
but “3kg” cannot do [12]. So, to avoid the translation output “子豚が3kgいました”, we need to have
supplementary information for “子豚 ” and the verb “いる(iru, there is, or exist)” and implement method
to use it. For that reason, we use the UWs dictionaries of the UNL system, which allows us to describe
semantic constraints between words.

4 Recognition difficulty of quantifiers/classifiers

We extract type (a) quantifiers/classifiers from Tori Bank8(See Annex), while referring to existing weights
and measures dictionaries. For type (b) quantifiers/classifiers, it’s laborious to pin down phrasemes9 in
row data.
Eg. “pointe” from Sketch Engine (Table 3).
However, French and English phrasemes are, in many cases, composed of “Number+Noun+de

(Number+noun+of)+Noun without particle” like “une poignée de sable (a handful of sand)”, “une
pointe d’ironie (a touch of irony)”, “un pouce de terre (a handful of)”, so in order to collect data
of type (b), we take note of the morphologic characteristic (Petit, 2004), and utilize a multilingual
corpus management software, called Sketch Engine10. The software gives a list of tri-grams of
keywords in context. The used documents are journals, magazines, novels, existing expression
dictionaries, French, Japanese and English leaner’s manuals. The assignment of the QC for obtained
keywords is made by linguistic intuition, while watching output from MT experiences on UNL Explorer11.

6In the full sentence, I bought 2 books  (本を二冊 買いました, hon-wo nisatsu kaimashita)
7子豚が3kgいました, For the piglet, there was 3 kg*.
8Tori Bank is a phrase corpus which has been developed at Tottori Unversity in Japan in 2007. http://unicorn.ike.tottori-

u.ac.jp/toribank/about_toribank.html
9The term ”phraseme” means set phrase, idiomatic phrase, polylexical expression, etc.
10The Sketch Engine refers to a text corpus management and analysis software developed by Lexical Computing Limited

since 2003. (http://en.wikipedia.org/wiki/Sketch_Engine)
11UNL Explorer is a web-based application, which combines all the components of the UNL system to be accessible online.
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5 Specification of classifiers/quantifiers corpus

The corpus includes sentences which are manually or semi-automatically collected from novels, cooking
articles, news papers, dictionaries, Tori Bank, etc. The description for ”pointe” is given below as a
typical example. The annotated keywords include, at the present time, about 1000 classifier/quantifier
expressions for Japanese, French and English in PhraseBook II12 (see Annex).
1. Identification number: XX
2. Keywords and class: pointe (n.)
3. English sentence: to season the sauce with a hint of garlic
4. French sentence: relever la sauce avec une pointe d’ail
5. Japanese sentence: ソースにニンニクをちょっときかせる
6. Source: Royal
7. UNL annotation (simplified):
{org:fr} Relever la sauce avec une pointe d’ail {/org}
{unl}
agt(season(agt>person, obj>dish, icl>action>thing).@entry.@imperative, you)
obj(season(agt>person, obj>dish, icl>action>thing).@entry.@imperative, sauce(icl>cooking).@def)
met(season(agt>person, obj>dish, icl>action>thing).@entry.@imperative, garlic(icl>cooking))
qua(garlic(icl>cooking), a hint of(icl>quantity))

{/unl}
{en} Season the sauce with a hint of garlic {/en}
{jp} ソースにニンニクをちょっときかせる {jp}

Figure 1: UNL graph for ”Relever la sauce avec une pointe d’ail”

6 UNL-UWs dictionary for quantifiers/classifiers

The collected documents in Japanese, French, English are annotated by their UNL expressions13, which
are composed of interlingual lexemes called “universal words (UWs)14, semantic boolean features, ”
and semantic relation tags15. In general, a UW is made of an English word or locution, its ”headword”,
disambiguated by a list of restrictions. The set of UWs can be used as a lexical “pivot” between the

12The corpus is going to become larger by extracting classifiers/quantifiers expressions from Tori Bank
13UNL is a language for computer to represent the meaning of natural language expressions. The ”Universal Words” (UWs)

constitute its vocabulary. A UW is in effect aninterlingual lexeme. Each node of a ”UNL expression” (in effect, a semantic

hypergraph) bears a UW and a possibly empty set of semantic attributes (Uchida et al.,2006).
14The UNL-UWs dictionary contains, at the moment 1269421 word senses (mapped to as many UWs) for Japanese, 520305

word senses for French, and 1458686 word senses for English.
15The semantic relations are represented by a fixed set of 42 relation 3-letter symbols, like agt, aoj, gol, etc., and the attributes

are boolean, like .@def or .@soon-begin. There are about 200 attributes in the UNL specifications, and developers may introduce

new attributes. These predefined attributes include syntactic, semantic or pragmatic information. The annotation labels are in

fact, “icl”, “equ”, “quantity”, etc. in description example.
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“lexical spaces” of any set of natural languages, and the UNL graphs can similarly be used as an
“anglo-semantic” abstract pivot language. The added information for classifier/quantifier expressions is
merged into the UNL dictionaries. Here is an extract of our 3-lingual UNL dictionary. The first entry
has 2 languages (jp, fr.). The second entry has 3 languages (jp, fr, en). The forth has again 2 languages
(fr, en).
樽 (taru, pièce): cask(icl>wine,equ>2200 litres)
冊 (satsu, volume): volume(icl>quantity)
relever (to season): season(agt>person, obj>dish, icl>action>thing)
pointe (touch): touch(icl>amount) → une pointe de (a touch of)

“icl“ and “equ” in our UW dictionary are semantic relation tags, and mean headword’s sub-meaning
and equivalent quantity, respectively. The semantic relation “agt” indicates that the volitional agent of
“relever” is “person”.

Perspectives and Conclusion

We are making French-Japanese MT experiments using the UNL system.
We have studied the methodology for phraseology treatment on MT systems while developing a French-
Japanese-English parallel corpus and have concluded that a deeper linguistic analysis (Petit, 2004, Mari,
2011) is necessary for UW dictionary description. Our corpus will be useful for software developers,
as well as for learners of languages, because it covers semantic information which cannot be yet found
in any bilingual dictionary. We also plan to develop a language software by processing the corpus,
where corresponding words between 2 languages are shown on demand by character blinking or where
the meaning of nouns or verbs in a sentence is shown without any ambiguity by interpreting the UNL
annotations. A prototype of the software has been already presented in a PhD thesis (Chenon, 2005).
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Annex「鳥バンク」(Tori Bank)

Examples: 「 塁 (rui, base)」 , 「寸 (sun, approx. 3.03 cm)」
AC00046100 P 11:二塁走者の生還を許し :VP@28:allowing the runner to score from second:VP
AC00046100 P 4:一塁へ悪投し、:VP@7:threw wild to first:VP
AC01599600 C6:一寸先も見え:CL@27:we could not see an inch ahead:CL
AC01599600 P6:一寸先も見え:VP@40:see an inch ahead:VP

192



Author Index

Aga, Rosa Tsegaye, 114
Aoki, Natsuno, 119
Attia, Mohammed, 40, 86

Biemann, Chris, 1, 57
Boitet, Christian, 185
Bott, Stefan, 125

Chersoni, Emmanuele, 98

Dagan, Ido, 24, 80
Daoud, Daoud, 134
Daoud, Mohammad, 134
Davis, Brian, 30
Diab, Mona, 40

Evert, Stefan, 69, 92

Fonseca, Alexsandro, 145
Freitas, André, 30, 176

Gladkova, Anna, 69
Guggilla, Chinnappa, 104

Handschuh, Siegfried, 30, 176
HSIEH, Shu-Kai, 110
Huerliman, Manuela, 30

Kågebäck, Mikael, 51
Kallmeyer, Laura, 86
Khvtisavrishvili, Nana, 125
Kisselew, Max, 125

L’ Homme, Marie-Claude, 156
Lareau, François, 145
Lebani, Gianluca, 8
Lenci, Alessandro, 8, 69, 166
Lopukhin, Konstantin, 19
Lopukhina, Anastasiya, 19
Luce, Kanan, 110

Maharjan, Suraj, 86

Nakatani, Kentaro, 119

Pastena, Andreana, 166

Rambelli, Giulia, 98

Robichaud, Benoît, 156

Sadat, Fatiha, 145
Salomonsson, Hans, 51
Samih, Younes, 86
Santos, Vivian, 30
Santus, Enrico, 69, 98
Schulte im Walde, Sabine, 125
Shwartz, Vered, 24, 80
Silva, Vivian, 176
Solorio, Thamar, 86
Subirats, Carlos, 156

Tomokiyo, Mutsuko, 185

Wartena, Christian, 114

Yu, Jiaxing, 110

Zirikly, Ayah, 40
Zock, Michael, 57

193


	Program
	Vectors or Graphs? On Differences of Representations for Distributional Semantic Models
	"Beware the Jabberwock, dear reader!" Testing the distributional reality of construction semantics
	Regular polysemy: from sense vectors to sense patterns
	Path-based vs. Distributional Information in Recognizing Lexical Semantic Relations
	Semantic Relation Classification: Task Formalisation and Refinement
	The Power of Language Music: Arabic Lemmatization through Patterns
	Word Sense Disambiguation using a Bidirectional LSTM
	Towards a resource based on users' knowledge to overcome the Tip of the Tongue problem.
	The CogALex-V Shared Task on the Corpus-Based Identification of Semantic Relations
	CogALex-V Shared Task: LexNET - Integrated Path-based and Distributional Method for the Identification of Semantic Relations
	CogALex-V Shared Task: GHHH - Detecting Semantic Relations via Word Embeddings
	CogALex-V Shared Task: Mach5 -- A traditional DSM approach to semantic relatedness
	CogALex-V Shared Task: ROOT18
	CogALex-V Shared Task: CGSRC - Classifying Semantic Relations using Convolutional Neural Networks
	CogALex-V Shared Task: LOPE
	CogALex-V Shared Task: HsH-Supervised -- Supervised similarity learning using entry wise product of context vectors
	A Study of the Bump Alternation in Japanese from the Perspective of Extended/Onset Causation
	GhoSt-PV: A Representative Gold Standard of German Particle Verbs
	Discovering Potential Terminological Relationships from Twitter’s Timed Content
	Lexfom: a lexical functions ontology model
	A Proposal for combining “general” and specialized frames
	Antonymy and Canonicity: Experimental and Distributional Evidence
	Categorization of Semantic Roles for Dictionary Definitions
	Corpus and dictionary development for classifiers/quantifiers towards a French-Japanese machine translation

