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Abstract

We propose and evaluate a method for identifying co-hyponym lexical units in a terminological
resource. The principles of term recognition and distributional semantics are combined to extract
terms from a similar category of concept. Given a set of candidate terms, random projections
are employed to represent them as low-dimensional vectors. These vectors are derived automat-
ically from the frequency of the co-occurrences of the candidate terms and words that appear
within windows of text in their proximity (context-windows). In a k-nearest neighbours frame-
work, these vectors are classified using a small set of manually annotated terms which exemplify
concept categories. We then investigate the interplay between the size of the corpus that is used
for collecting the co-occurrences and a number of factors that play roles in the performance of
the proposed method: the configuration of context-windows for collecting co-occurrences, the
selection of neighbourhood size (k), and the choice of similarity metric.

1 Introduction

Automatic term recognition (ATR) deals with the extraction of domain-specific lexical units from text.
The input of ATR is a large collection of documents, i.e., a special corpus,1 and the output is a vocabulary
that is used for communicating specialized knowledge (L’Homme, 2014). This vocabulary comprises
a collection of single-token and multi-token lexical units—respectively known as simple and complex
terms—that form a terminological resource. For example, in computational linguistics, lexicon and
parsing are examples of simple terms, while multilingual corpus and information extraction are complex
terms. Similarly, in molecular biology, collagen and cortisol are examples of simple terms, and I kappa
B and plasma prednisolone are examples of complex terms.

Terms, extracted by an ATR system, represent a broad spectrum of concepts that exist in a domain
knowledge. Terms and their corresponding concepts, however, can be further organized in several cate-
gories to form a taxonomy; each category characterizes a group of terms from ‘similar’ concepts in the
domain of study (Figure 1). For example, in computational linguistics, the terms lexicon and multilingual
corpus can be categorized under the category of language resources, while parsing and information ex-
traction can be categorized under the concept of technologies. Likewise, in molecular biology, instances
such as collagen and I kappa B are categorized as proteins, while cortisol and plasma prednisolone are
classified as lipid substances.

If the concept categories are not known, a method is used to suggest an organization for terms (e.g.,
Dupuch et al. (2014)); Cederberg and Widdows (2003)). However, concept categories are usually known,
or at least, a partial knowledge of them exists. In these scenarios, typically a manually annotated corpus
is employed to develop an entity tagger in a supervised fashion, often in the form of a sequence classifier.
Bio-entity tagging is an established example of this kind of tasks (Nobata et al., 1999). These methods,
however, rely heavily on manually annotated corpora, in which each mention of a term and its concept-

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/

1Following the terminology proposed by Sinclair (1996), we use the term special corpus; that is, a corpus containing
sublanguage material.
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Figure 1: Venn diagram that illustrates the relationship between candidate terms, valid terms, and a
particular category of terms Cp. ATR targets the extraction of candidate terms and the identification of
valid terms. However, term classification targets the identification of terms that belong to a concepts-
category, i.e., a subset of valid terms.

category must be annotated. Provided that enough training data is available, a reasonable performance
can be attained in these recognition tasks (Kim et al., 2004).

Yet in several scenarios, the targeted concept categories (similar to entity recognition tasks) are known
but no manual annotation is available for the training and development of an entity tagger. This is a
familiar problem when a terminological resource with a hierarchical structure must be constructed from
scratch, a task with many practical applications (see e.g. Chakraborty et al. (2014)) and renewed interests,
e.g., as addressed in cold-start knowledge base population (Ellis et al., 2012; Mayfield et al., 2014) and
ontology learning. Similarly, this problem surfaces in maintaining terminologies, where constant update
and extension is required to accommodate new vocabularies and their usages (Habert et al., 1998).

This paper suggests a method to address this situation: the extraction of terms from a particular class
of concepts in the absence of training data for the development of an entity tagger. The proposed method
(similar to ATR and in contrast to entity recognition task) works at the corpus level and does not deal
with individual term mentions. However, in contrast to ATR (which extracts terms from diverse concept
categories in a specific domain knowledge) and similar to entity tagging, the proposed method is designed
to extract a subset of terms that belongs to a particular category of concepts in a domain knowledge (i.e.,
co-hyponym terms). Note that each category can be further organised into more refined subcategories to
provide abstractions at different levels of granularity. Since co-hyponymy is an inheritable relationship,
terms under each category, disregarding the subcategory that they belong to, are still co-hyponym.

Since polysemy is less frequent in specialized vocabularies than in general vocabularies, the proposed
approach is effective and useful. We support this claim with a comparison between the proportion of pol-
ysemous entries in WordNet (Miller, 1995), i.e., a general vocabulary, and the terminological resource
that is induced from the annotated terms in the GENIA corpus (Kim et al., 2003). In WordNet, approxi-
mately 17% of entries are polysemous. The GENIA corpus (which is a well-known special corpus in the
domain of molecular biology) provides manual concept-category annotations for 92,722 term mentions.
These term mentions constitute a vocabulary of 34,077 distinct entries, of which only 1,373 are poly-
semous (i.e., their individual mentions are annotated with at least two concept categories). Therefore,
compared to WordNet, the GENIA terminological resource contains only a small fraction of polysemous
entries, i.e., 1372

34077 = 4%.2

The proposed term classification method is realized as an ad hoc term-weighting procedure on top of
an ATR system. ATR typically comprises a two-step procedure: candidate term extraction followed by
term weighting and ranking (Nakagawa and Mori, 2002). Candidate term extraction deals with term for-
mation and the extraction of candidate terms (Ananiadou, 1994). Following the extraction of candidate
terms, as stated byKageura and Umino (1996), an ATR system often combines scores that are known as
unithood and termhood to weight terms. Unithood indicates the degree to which a sequence of tokens
can be combined to form a complex term. It characterizes syntagmatic relations between tokens to iden-
tify collocations (therefore is only defined for complex terms). Termhood, however, “is the degree that
a linguistic unit is related to · · · some domain-specific concepts” (Kageura and Umino, 1996). Hence,
termhood is defined for both simple and complex terms. From a linguistic perspective, termhood char-

2This comparison can be biased since WordNet has been designed and developed to provide a comprehensive picture of
words and their meanings. Therefore, the proportion of polysemous words in a reference corpus (as defined in Sinclair (1996))
can be less than %17. Still, we maintain polysemy is far more frequent in reference corpora than in special corpora.
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Figure 2: Shown a context-window of size 3 tokens that extend around terms: the occurrences of the
candidate term information extraction in different sentences of a corpus. For each occurrence of the
candidate term in each line, the context-window consists of words that are placed in rectangles. To
construct a model, these co-occurrences are collected, counted, and represented by a vector.

acterizes an associative relationship between terms and the communicative context that verbalizes their
meaning (in this scenario, the corpus). The major difference between the proposed term classification
technique and a general ATR system is, therefore, the way they define termhood.

To actualize the proposed term classification task, a termhood measure that can identify co-hyponym
terms must be devised. To achieve this goal, we take a distributional approach. We assume that the
association of a term to a concept category is a kind of relation that can be modelled using the syntagmatic
relation of the term and its co-occurred words in context-windows extended in the vicinity of the term’s
mentions in the corpus (Figure 2). We, therefore, hypothesise that co-hyponym terms tend to have similar
distributional properties in these context-windows. Note that a similar hypothesis has been employed in
many other distributional techniques for terminology extraction. In order to quantify these distributional
similarities, vector space models are employed (Turney and Pantel, 2010).

Words that appear in context-windows are represented by the elements of the standard basis of a vector
space (i.e., informally each dimension of a vector space) and each candidate term is represented by a vec-
tor. In this vector space, the co-occurrence frequency of words and candidate term in context-windows
determines the coordinates of the vector that represent the candidate term. Hence, the values assigned to
the the vector’s coordinates represent the correlation between the candidate term that the vector repre-
sents and the words in context-windows. Consequently, we can use the proximity of candidate terms to
compare their distributional similarities in this term-space model.

In this term-space model, we model a category of terms using a set of reference terms (shown by Rs),
i.e., a small number of terms that are manually annotated with their corresponding concept category.
The averaged distance between vectors that represent candidate terms and the vectors that represent
Rs is assumed to determine the association of candidate terms to the concept categories represented
by Rs. This association is computed using a k-nearest neighbours (k-nn) method. As explained by
Daelemans and Van Den Bosch (2010), the memory-based k-nn technique provides us with a similarity-
based reasoning framework that can be used to identify term categories without the need for formulating
these associations using a meta-language such as rules.

Like other distributional methods, finding a configuration of context-windows (i.e., the way co-
occurrence frequencies are collected) that best characterizes co-hyponym terms is a major research con-
cern that must be investigated empirically. Context-windows can be configured differently regarding
the position of the candidate terms in them and the direction in which they are stretched. They can be
expanded (a) only to the left side of a candidate term to collect the co-occurrences of the candidate term
with preceding words in each sentence of the corpus, (b) to the right side to collect co-occurrences with
the succeeding words, or (c) around the candidate term, i.e., in both left and right directions. The size of
context-windows must also be decided, i.e., the extent of the region on either side of a term for collecting
and counting its co-occurrences with neighbouring words. In addition, information about the order of
words in context-windows can be ignored or encoded in the constructed distributional model.

Independent of the configuration of context-windows in the proposed method, due to the Zipfian dis-
tribution of terms and words in context-windows, vectors that represent candidate terms are inevitably
high-dimensional and sparse (i.e., most of the elements of vectors are zero). The high-dimensionality of
vectors hinders the computation of similarities, and their sparseness is likely to diminish the discrimina-
tory power of the constructed model (i.e., the curse of dimensionality problem). To avoid these problems,
a dimensionality reduction technique is employed to reduce the dimension of vectors to a certain size.
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Figure 3: Method of measuring the candidate terms’ association to a concept category.

Now that the vectors’ dimension is set to a constant size, it is hypothesised that enlarging the size
of the corpus reduces the number of zero elements in the vectors, and thus, the performance of the
distributional model improves (e.g., as proposed for general language in Bullinaria and Levy (2007),
Pantel et al. (2009)and Gorman and Curran (2006)). In this paper, we investigate the interplay between
the size of the corpus and choosing the most discriminating configuration for context-windows in the
proposed term classification task. We are interested to know (a) whether increasing the size of the corpus
that is used for collecting co-occurrence frequencies enhances the performance of the classification task
and (b) how doing so influences the choices that are made for configuring context-windows. Section 2
delineates the employed method. Section 3 describes the evaluation materials and framework. Results
are reported in Section 4, followed by a conclusion in Section 5.

2 Method

Figure 3 illustrates the method. It is assumed that an ATR system extracts a list of candidate terms and,
perhaps, ranks them by its own weighting mechanism. The extracted list of candidate terms is then
processed for the construction of a vector space by scanning an input corpus. We assume that a small
number of these candidate terms, e.g., 100, are annotated with their concept categories. Vectors that
represent these annotated terms form a set of reference vectors Rs. In the constructed vector space, using
a k-nn regression algorithm, Rs is employed to assign a concept-association weight cw to the remaining
candidate terms.

Accordingly, for a given candidate term that is represented by the vector ~v, cw is computed using

cw(~v) =
k∑

i=1

s(~v, ~ri)δ(~ri), (1)

where s(~v, ~r) denotes similarity between ~v and ~r ∈ Rs, in which Rs is sorted by s(~v, ~r) in descending
order. If ~r represents a term from the targeted category of concepts, then δ(~r) = 1, otherwise δ(~r) = 0.
While s can be defined in a number of ways, we employ three widely used definitions:

• s(~v, ~r) = cos(~v, ~r), i.e., the cosine of the angles between ~v and ~r;

• s(~v, ~r) = 1
1+`2

, where `2 is the Euclidean distance between ~v and ~r; and

• s(~v, ~r) = 1
1+`1

, where `1 is the City block distance between ~v and ~r.

Vector space construction is performed using sparse stable random projections (Li, 2007), which is
implemented in the form of a sequential algorithm. Each candidate term is assigned to anm-dimensional
term vector ~t. Term vectors are initially empty, i.e., all the elements of ~t are set to zero. The input corpus
is then scanned for the occurrences of candidate terms and finding their co-occurring words in context-
windows (e.g., see Figure 2). Each of these words is assigned exactly to one word vector ~w. Similar to
term vectors, word vectors are also m-dimensional. However, the elements wj of each ~w are instantiated
with random values with the following distributions:

wj =


b−1
U1
c with probability 1

2α

0 with probability 1− 1
α

b 1
U2
c with probability 1

2α

. (2)

Once a ~w is generated and assigned to a word, it is stored and kept for later usages.
If the similarity between ~v and ~r is measured using the cosine or Euclidean distance (i.e., in an `2-

normed space), then U1 and U2 are set to 1 and α = O(
√|~w|), where |~w| is the number of word vectors.
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TMention PMention TDistinct PDistinct TPolysemy PPolysemy
92,722 34,264 34,077 8,900 1,373 403

Table 1: Statistics of the terminological resource: terms and ‘protein terms’ are respectively abbreviated
by T and P (note P ⊂ T).

In this case, ~w vectors resemble a random projection matrix with asymptotic Gaussian distribution. How-
ever, if the similarities are measured using the city block distance (i.e., in an `1-normed space), then U1

and U2 are two independent uniform random variables in (0, 1) and α = O(
√|~w|/100), where |~w| is the

number of word vectors and the constant factor 0.01 is an approximation of the sparsity of term-word co-
occurrences in the corpus. In this case, ~w vectors resemble a random projection matrix with a asymptotic
Cauchy distribution. Since |~w| is very large, α is also relatively large; thus, the generated word vectors
are highly sparse, i.e., most elements of ~w are set to zero and only a few have a non-zero value. To
capture the co-occurrence of a candidate term and a word, the term vector ~v that represents the candidate
term is accumulated by the word vector ~w that represents the word—i.e., ~v = ~v + ~w. This procedure is
repeated to capture all the co-occurrences of candidate terms and words that appear in context-windows
in the input corpus. The result is a vector space that reflects the observed co-occurrences of terms and
words at the reduced dimension m.

Subsequent to the construction of a vector space using the method described above, the dis-
tances/similarities between vectors are computed. In the `2-normed constructed vector spaces, for the
given two m-dimensional vectors ~v and ~u, the cosine between them is calculated using: cos(~v, ~u) =∑m

i=1 vi×ui∑m
i=1 v2

i×
∑m
i=1 u2

i
. Similarly, the Euclidean distance is given by d2(~v, ~u) =

√∑m
i=1 (vi − ui)2. In the `2-

normed spaces, therefore, the proposed method is equivalent to the random indexing technique (Sahlgren,
2005; QasemiZadeh and Handschuh, 2015). In the `1-normed spaces, the city block distance, however,
is computed using the non-linear estimator

d1(~v, ~u) =
m∑

i=1,vi 6=ui

ln(|vi − ui|).

In this case, the method is equivalent to the one proposed by Zadeh and Handschuh (2014). Once
computed, these similarity measures are used to weight candidate terms according to Equation 1.

3 Evaluation Materials and Parameters

The proposed method is evaluated using the GENIA terminological resource. Manually annotated term
mentions from the GENIA corpus (Version 3.02) are collected to build a terminological resource. This
resource’s entries are distinct pairs of lexical units and their annotations. The annotations are employed
to organize terms in a taxonomy similar to the one proposed by Kim et al. (2004) for evaluating bio-entity
taggers. To keep the reports to a manageable size, we limit the evaluation task to the identification of
terms belonging to the category of proteins (see Table 1).

Using the the obtained frequencies in the GENIA corps and c-value measure (i.e., a widely used
method for ranking terms in ATR systems (Frantzi et al., 1998)) terms are ranked in a list. From this
sorted list, the top 100 terms and their annotations are used to form a set of reference vectors (Rs).
Consequently, in our evaluations,Rs contains 36 protein terms: terms that are annotated as co-hyponyms
under the concept category of ‘protein’ from the GENIA Ontology. Figure 4 shows the distribution of
protein terms in the obtained sorted list of terms using the c-value measure with respect to a random
baseline. Except for a small number of terms at the top of the list, the proportion of protein terms in the
c-value sorted list is similar to the random baseline. We use the c-value ranking as one baseline in our
evaluations.

To show that Rs is not sufficient for developing an entity tagger, we verify the performance of a bio-
entity tagger when the employed Rs is used for its training. Namely, we employ the ABNER system,
an entity tagger designed for analysing biology text (Settles, 2005). It uses conditional random fields
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Figure 5: The frequency of terms in Ge.

and a variety of orthographic and contextual features to perform its task. If ABNER is trained using
all the provided annotations for protein term mentions in the GENIA corpus, it achieves a reasonable
performance (recall of 77.8 and precision of 68.1). However, if it is trained using the mentions of terms
in Rs, the resulting model can only identify an additional 16 protein terms out of the remaining 8,864
terms. Put simply, the 1,321 mentions of the 36 protein terms in Rs are not sufficient to train ABNER.

Initially, we will construct vector spaces using the raw text from the GENIA corpus. Besides normal-
ising text to lower-case letters and a simple Penn Treebank tokenisation, no other text pre-processing
is performed. This pre-processing results in 490,941 tokens and a vocabulary size of 19,576. We then
enlarge the corpus by fetching 223,316 abstracts from the PubMed repository, of which each abstract
contains at least three of the terms in the terminological resource. The enlarged corpus has more than
55 million tokens and a vocabulary of size 881,040. Hereafter, we denote these two corpora by Go (for
the original GENIA corpus) and Ge (for the enlarged corpus). In this corpus, the terms employed in our
experiments are mentioned more than 9 million times. As expected, only a small number of terms are
frequent and the majority of terms are mentioned a few times. A large number of terms (i.e., about 40%)
never appear in Ge (see Figure 5).

Using the method explained in Section 2, we use these two corpora to collect the co-occurrences and
build vector space models. We perform our experiments with vector spaces that are constructed at the
reduced dimension m = 2000. Considering the number of term vectors in the model (i.e., 34077),
m = 2000 is a conservative choice that guarantees a small distortion in pair-wise distances between
vectors. Similarly, because the vocabulary size |~w| ≥ 19576, we use word vectors of 6 non-zero elements
and 30 non-zero elements, respectively, for the construction `2 and `1-normed spaces. These values for
the numbers of non-zero elements in word vectors are conservative choices that meet the criteria specified
in Section 2 for the value of α in Equation 2.

The construction of vector spaces is carried out by collecting co-occurrence frequencies in context-
windows that are configured differently regarding the direction and size in which they are stretched.
Moreover, we investigate the influence of the inclusion of word order information in the model using
the permutation technique described in Sahlgren et al. (2008). As suggested in research reports (see,
e.g., Baroni et al. (2014) and Agirre et al. (2009)), narrow context-windows are more suitable to capture
paradigmatic relations such as the one intended in this paper. Accordingly, we report the performance
of the method for context-windows of 1 ≤ size ≤ 8 tokens, for three directions of around (hereafter,
denoted by A), only to the left (denoted by L), or to the right (denoted by R) of candidate terms. In
addition, we construct vector spaces that encode information about the order of words in these context-
windows. Hence, for each input corpus, 48 vector spaces are constructed to reflect each of the possible
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Figure 6: The y-axis shows the observed NAP i for i = 8,900 (i.e., recall 100%). For each of the
employed similarity measures, the x-axis shows the size of context windows. The letters A, L, and R
denote the direction in which context-windows are stretched (i.e., respectively, Around, Left, or Right
side of the candidate terms). Models that encode word order information are denoted using the ~� on top.
The size of letters, however, shows the value of k. The smallest size denotes k = 1 (black colour), while
the largest size denotes k = 25 (grey colour); the medium size represents k = 7 (blue colour). In these
experiments, the computed NAP over c-value ranked terms (i.e., the baseline) is 0.27. For the sake of
readability, for each configuration of context-windows size and the employed similarity metric, we plot
only the best observed results (complete plots are provided as supplementary materials).

configurations of context-windows, listed above.
The performance of the proposed k-nn technique is affected by the value of k. In the absence of a

large training dataset, in the employed memory-based learning framework, a small value for k may lead
to over-fitting and sensitivity to noise, while a large neighborhood estimation may reduce the discrimi-
natory power of the classifier. Therefore, we report the performance of the method for three values of
neighborhood size, i.e., k ∈ {1, 7, 25}. As stated earlier, term weighting in Equation 1 is performed by
the help of three different measures: the cosine similarity, the Euclidean, and the city block distance.

4 Results

Following Schone and Jurafsky (2001), performance is measured and reported using the non-interpolated
average precision at i:

NAP i =
1
i

i∑
n=1

Pn,

where Pn is the observed precision for extracting n protein terms. Figure 6 plots the performances that
are measured by computing NAP at i = 8900 (i.e., 100% recall) in the obtained sets of terms that are
ranked by the computed wa (one for each of the constructed models). Independently of the size of the
input corpus, the cosine similarity outperforms the Euclidean and city block distance. When the co-
occurrence frequencies are collected from Go, the best performance is obtained by using k = 25, in
models that are built by collecting co-occurrence frequencies in context-windows of size 4 or 5 words
that extend around terms. However, in experiments performed over Ge, using context-windows that
expand to the left side of the candidate terms slightly outperform models that are built using context-
windows that expand around the terms. As shown in Figure 6, encoding the word order information in
context-windows often does not improve the performance.

Figure 7 plots the changes that are observed by enlarging the size of the input corpus. As shown,
when the corpus size increases, the type of employed similarity measure plays an important role in
determining the changes in the performances. Whenwa weight are calculated using the cosine similarity,
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Figure 7: Changes in the performance of models caused by increasing the size of the input corps: the
absolute value of the difference between the performance of a model constructed inGe andGo are shown.
Squares denote negative impacts, while circles show improvements. The size/colour of shapes represents
the amount of changes. The x-axis shows various configurations of context-windows (i.e., size, direction,
and encoding word order information). The y-axis, however, represents classification parameters (i.e., the
values of k and the employed measures for calculating similarities). For instance, when using the cosine
similarity for classification in models constructed using context-windows that extend to the Left side of
terms, size = 6 and k = 25, the performance in Ge is 0.448; the same parameters and configuration in
Go gives the performance of 0.40. This increase in the performance is shown by a wide circle in the plot.

enlarging the size of the corpus enhances the performance. Similarly, the city block distance shows a
relatively better performance with larger input corpus. However, when similarities are measured using
the Euclidean distance, an increase in the size of the corpus can drastically decline the performance.
Using additional text, therefore, does not guarantee an improvement in the performance.
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Figure 8: The observed performances when using NAP i at i = 200 (i.e., approximately 2% recall). A
notation similar to Figure 6 represents the results. In this plot, the minimum value of y-axis, i.e., 0.36, is
the computed NAP i=200 from the set of c-value ranked candidate terms (i.e., the baseline).

Figures 6 and 7 examine the method’s performance for a large recall value. However, in a number
of applications, we may be interested only in a small number of terms at the top of these ranked set
of terms. Figures 8 and 9, similar to Figures 6 and 7, show the method’s performance, however, when
it is measured using NAP at i = 200 (i.e., for a small recall). In this case, increasing the size of the
corpus can enhance or diminish the performance by 20%. Again, compared to the cosine and the city
block distance, the Euclidean distance is more susceptible to changes in the corpus size. Specifically, for
k = 1, the performance frequently drops when the corpus is enlarged.
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Figure 9: Differences in the performance based on the computed NAP at i = 200. The notation is
similar to Figure 7.

5 Discussion

We investigated the use of a distributional method for finding co-hyponym terms using a memory-based
classification technique. The method is useful when sufficient training data for developing an entity
tagger is not available, e.g., when building a terminological resource with a taxonomic structure from
scratch. Stable sparse random projections are employed to construct vector spaces directly at a reduced
dimensionality. The models are then evaluated for term classification using a k-nn regression framework.
We investigated the interplay between the size of the corpus that is used for the construction of the
models, the configuration of context-windows (i.e., the way co-occurrence frequencies are collected),
and metrics that are employed to measure similarity between vectors.

Our experiments showed that increasing the size of the input corpus for collecting co-occurrence
frequencies can improve the performance of the proposed method if suitable configurations of context-
windows and similarity metrics are used. We witnessed that the top performer parameters in the original
corpus of a small size were not necessarily the top performers when the corpus size increases. In ad-
dition, we noticed that choosing the best performing parameters largely depends on the criteria set for
the performance assessment. For instance, the city block distance showed a poor performance when
the method is assessed at the 100% recall. However, at a small recall point, the city block showed a
better performance than other metrics. These observations can perhaps justify a number of contradictory
reports in the literature on the effect of the corpus size in the performance of distributional models.

On average, compared to the Euclidean and city block distance, cosine showed a better performance
and a more positive and stable response to the increases in the size of the input corpus. This result can be
expected intuitively, since cosine shows the degree of commonality between the elements of two vectors.
Accordingly, we expect that the reported results can be improved further if, instead of normed-based
metrics, a correlation coefficient measure is employed for computing similarities between vectors. Last
but not least, a number of influential factors in the obtained results (e.g., the role of Rs and its size, the
effect of using linguistic information or indirect co-occurrences) remained unexplored. The entries in
specialized vocabularies are rare and less frequent than general vocabularies. For example, a handful of
terms in the GENIA corpus (e.g., the term physiologic cell lineage) are so rare that they have appeared
only once in the abstracts that are pulled out from the PubMed. It is interesting to design an experiment
to study the reciprocal between the size of the corpus and the method’s performance for the extraction
of rare terms. The use of random projection matrix with standard distributions limits the use of common
smoothing techniques such as the pointwise mutual information. These can be examined in future work.
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