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Abstract

In this paper a social network is extracted from a literary text. The social network shows, how
frequent the characters interact and how similar their social behavior is. Two types of similarity
measures are used: the first applies co-occurrence statistics, while the second exploits cosine
similarity on different types of word embedding vectors. The results are evaluated by a paid
micro-task crowdsourcing survey. The experiments suggest that specific types of word embed-
dings like word2vec are well-suited for the task at hand and the specific circumstances of literary
fiction text.

1 Introduction

Word embeddings are language modeling techniques that transform the vocabulary of an input corpus
into a continuous and low-dimensional vector representation. Word embeddings have shown state-of-
the-art performance as language technology (LT) tools esp. for word similarity estimations, but also for
more sophisticated operations like word analogies and as input component to various natural language
processing (NLP) tasks (Mikolov et al., 2013; Ghannay et al., 2016). Word embeddings use artificial
neural networks for generating the vector representations. Neural networks have become very popular
and successful tools in NLP in the last couple of years, esp. with recent improvements in the deep learning
field.

The performance of word embeddings in various task when using huge corpora of unstructured text
has already been demonstrated in previous work. Here, we study the suitability of different types of word
embeddings as a LT tool to extract social networks from literary fiction, ie. to a specific task and domain,
and a comparably small corpus size. More precisely, we apply word embeddings to the text from the “A
Song of Ice and Fire” book series by George R. R. Martin. The goal is to find book characters with the
strongest relations to a given input character, and to compare the results from word embeddings to a very
intuitive system, which uses term co-occurrence to determine the relatedness of characters. Furthermore,
we evaluate the results from different word embedding tools and from a method based on co-occurrence
statistics with human judgements generated with crowdsourcing. In this study, we did not focus on the
detection and merging of character names, which is an interesting topic by itself, discussed for example
in (Vala et al., 2015).

In this publication, we want to address the following research questions:
(i) How well does a traditional method based on co-occurrence statistics, such as the one presented in

(Rodin et al., 2016), perform against state-of-the-art LT tools such as word embeddings for the task of
social networks extraction in literary fiction?

(ii) Are there any differences between various types of word embeddings in the particular task of social
networks extraction in literary fiction?

(iii) Furthermore, how well is paid micro-task crowdsourcing suited to evaluate facts in a domain with
a lot of background necessary, such as a book series in the fantasy novel domain.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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2 Related Work

A first step when extracting social networks from literary text, is the detection of characters. A state-
of-the-art approach is presented by (Vala et al., 2015). Character detection often includes the usage of
named entity recognition (NER) tools and methods for co-reference resolution. The authors present their
own 8-step approach to character detection, and evaluate its usefulness.

An obvious next step is the actual extraction of social networks from novels. In the method by (Elson
et al., 2010) the networks are derived from dialog interactions. Therefore their method includes finding
instances of quoted speech, attributing each quote to a character, and identifying when certain characters
are in conversation. They construct a weighted graph, where nodes correspond to actors, and the weights
on the edges represents the frequency and amount of exchanges. In contrast to our work, (Elson et
al., 2010) are solely focus on length and number of dialogues between persons to measure relatedness,
whereas our approach looks at general co-occurrence or similarity as measured by LT tools which use
word embeddings. Similarly, (Celikyilmaz et al., 2010) address a the problem related to the extraction
of relations between characters. They attribute utterances in literary dialogues to actors, and apply the
similarities in the language used to predict similarity and hidden relations between those actors. In
contrast to our work, the approach also is restricted to dialogues between authors, and the evaluation of
the method is of limited scope.

Another approach is presented by (Agarwal et al., 2013), who detect “social events” between persons
(or groups of persons), where those persons interact. By using the connections from the social events,
which help to form links between characters, the authors evaluate the extraction of social networks from
literary text (Alice in Wonderland).

Our method of social network construction is more straightforward, and applies and evaluates existing
word embedding tools. (Ghannay et al., 2016) did extensive evaluations to compare different kinds of
word embeddings, such as word2vec CBOW and skip-gram, GloVe, CSLM and word2vec-f (see 3 for
details on various algorithms). The different methods and tools perform very differently depending on the
task. For NLP tasks, word2vec-f provided the best results, GloVe had the best performance in analogical
reasoning, and CBOW/skip-gram were best at word similarity tasks. The authors also experiment with
combinations of the methods in order to raise accuracy.

As already mentioned, we use crowdsourcing to evaluate the results produced by the various LT tools
applied to the task of social network extraction. We selected paid micro-task crowdsourcing as scalable
and in-expensive evaluation method, which has become popular in research only in recent years. There
already exists a plethora of work on crowdsourcing in various fields, for example natural language pro-
cessing (Bontcheva et al., 2014; Sabou et al., 2012), knowledge modeling (Wohlgenannt et al., 2016) or
Bioinformatics (Mortensen et al., 2013). But, to our knowledge, it has not been applied in the digital
humanities field on a similar task as social network extraction. In paid micro-task crowdsourcing the
workload is usually split into small units, which are then presented to anonymous mass of crowd work-
ers. A major issue is ensuring high quality results, typically measures in this direction are: (i) clear and
extensive task description, (ii) careful worker selection, (iii) using test questions which workers need to
pass before doing the real work, (iv) adequate worker remuneration, (v) assign work units to multiple
workers and using aggregate results, etc.

3 Methods and Tools

In this section we briefly introduce and describe the methods used to find (the strongest) relations be-
tween the book characters. These include the co-occurrence based methods in Section 3.1 and the word
embeddings tools in sections 3.2 to 3.4. Based on the results in (Ghannay et al., 2016) we picked three
types of word embeddings to be applied: word2vec, GloVe, and word2vec-f. The configurations of the
various methods used are found in Section 4.1 (Experiment Setup).

3.1 Co-occurrence based method
Our method is based on straightforward calculation of the so-called confidence coefficient. Given a text
and two names, say A and B, we denote the frequency of name A by F (A). The co-occurrence frequency
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of A and B is then F (A∩B). There are several ways how we detect the co-occurrence of A and B: first,
we can check whether A and B occur in the same book chapter. Secondly, we can check whether A and
B occur in the same paragraph, which can be problematic, if the book is ill-formatted and the paragraph
splits are not present. Finally, we can check whether A and B occur in the same sentence. The resulting
confidence formula is the following:

conf(A, B) =
F (A ∩B)

F (A)
. (1)

This formula can be interpreted this way: given A, how probable it is that B occurs, so that the
coefficient is normalized into an interval between 0 and 1.

Figure 1: An example network, constructed using the co-occurrence-based method (on the paragraph
level). Here, for the top 10 characters the top-3 connections are selected.

3.2 Word2vec
Word2vec (Mikolov et al., 2013) is a tool created by a team at Google led by Tomas Mikolov. Word2vec
applies two-layer neural networks trained to reconstruct the linguistic contexts of words (or phrases).
The input to word2vec is typically a large corpus (plain text), the output are word embeddings – which
are continuous vector space representations of the words in the corpus. word2vec uses a dimensionality-
reduced representation, usually with a vector length of 50 to 300. Proximity in vector space corresponds
to similar contexts in which words appear. There are two model architectures to create the continuous
vector representations: continuous bag-of-words (CBOW) or continuous skip-gram. With CBOW, the
model predicts the current word by using a window of surrounding words. With skip-gram, the model
predicts the surrounding window of context words by using the current word.

3.3 GloVe
Similar to word2vec, GloVe (Pennington et al., 2014) learns continuous vector representations of words.
But it is not a predictive model, but rather a count-based model, using dimensionality-reduction on
word-word co-occurrence statistics. The training objective of GloVe is to learn word vectors such that
their dot product equals the logarithm of the words’ probability of co-occurrence. We used the GloVe
implementation from Stanford university1.

3.4 Word2vec-f – Dependency-based Word Embeddings
Dependency-based word embeddings (Levy and Goldberg, 2014) are a modification of word2vec in order
to generalize the skip-gram model with negative sampling to arbitrary contexts. Therefore, it is referred
as the word2vec-f implementation2. In contrast to linear word contexts, dependency-based contexts are
generated by a dependency-parser and produce markedly different embeddings. (Levy and Goldberg,
2014) expect “the syntactic contexts to yield more focused embeddings, capturing more functional and

1http://nlp.stanford.edu/projects/glove,GloVeversion1.2
2https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings
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less topical similarity”. In the evaluations by (Ghannay et al., 2016), word2vec-f was very effective in
NLP tasks such as POS-tagging or Named Entity Recognition, but did not perform as well as word2vec
on word similarity tasks.

4 Evaluation

In this section, we evaluate and compare the six methods to extract relations from text for a given set of
input terms: (i) co-occurrence statistics on a chapter level, (ii) co-occurrence statistics on a paragraph
level, (iii) co-occurrence statistics on a sentence level, (iv) word2vec, (v) GloVe, and (vi) word2vec-f –
see Section 3 for details about the methods.

4.1 Evaluation Setup
Text corpus: For the evaluation we used the plain text versions of the first four books of the “A Song
of Ice and Fire” (ASOIF) book series by George R. R. Martin. ASOIF is a series of fantasy novels. The
action takes place in an fictional medieval-like universe. Although the number of character is immense,
the are up to 40 main characters which communicate throughout the series. While narration is almost
linear with minor flashbacks, the story is told in the first person. However there are different narrators
telling the story from different viewpoints, i.e. different POVs. The raw books amounts to 6.9M of plain
text, and contain 204 chapters with a mostly chronological storyline. There are 121098 sentences in total.
Each chapter features a point of view character, which may live in any part of the ASOIF world. There
are a few reasons behind our motivation to use ASOIF as the main source of data:

(i) it is popular nowadays, which gives the hope that the crowd will cope with the questions;
(ii) there is relatively large group of main characters, which interact intensively with each other in

different circumstances, so that the social network might quite dense;
(iii) the book gives us more or less enough data to train selected word embedding models and conduct

the powerful comparison.

Character detection: The problem of character detection was not a focus of our work, it has already
been tackled for example by (Vala et al., 2015). We applied a very simple heuristic, which selects the
30 most frequent names of characters from the total list of characters – most frequent in the sense of
counting the number of appearances per character in different chapters. If a character appears in various
different chapters of the book series, this strongly hints at importance of the character to the story.

Relation selection: In order to make the results comparable for any of the three methods, we did the
following: For any character in the list of 30 characters: get the two strongest connections to other
characters on the list.

As described in Section 3, for method (i), (ii) and (iii) we selected the two characters with the strongest
relation by co-occurrence between characters on a chapter, paragraph and sentence level, and for methods
(iv)-(vi) we applied the different word embedding methods and tools.

For word embedding LT we used the gensim-word2vec toolkit. With Gensim, for any given character
we compute the similarity to any other character – and then pick the two characters with the highest
(cosine) similarity as strongest relations. Gensim3 is a Python library (Řehůřek and Sojka, 2010), which
provides tools for unsupervised semantic modeling from plain text, and also includes an implementation
and extension of the original word2vec tool, which was written in C.

Method setup:

Co-occurrence: The computation of co-occurrence statistics conf does not require any specific efforts.
We introduced a threshold values: if B is among, say, top-3 candidates according to conf , we
consider A and B similar and draw the corresponding vertex in the social network.

Word2vec: The corpus size of 6.9MB is a very small for word2vec standards, so it was interesting to
see if word2vec will nevertheless produce good results. After a cleanup of the corpus (eg. removing

3http://radimrehurek.com/gensim

21



numbers and punctuation), we trained a CBOW model with 200 dimensions and a word-window
size of 12. Those models are then used with gensim-word2vec, both for loading the pre-trained
binary word2vec models, and for computing the similarity between terms (book characters).

GloVe: We applied the same basic settings as with word2vec – most importantly setting word vector
length to 200 dimensions. For any other settings we kept the GloVe defaults. The resulting GloVe
word embeddings were also used with Gensim, for this we adapted the following script4.

Word2vec-f: Again, we trained vectors with 200 dimensions, but this time on the results of the Stanford
Dependency Parser on the ASOIF books in CONLL-X format. After some tweaking, the trained
model could be loaded with Gensim.

Crowdsourcing setup: The task of the user was the same as for the tool-based methods: Select the
two characters with the strongest relation to the input ASOIF character. As options, we gave the users
the whole set of candidates generated by the six methods to be evaluated, and also added a few random
other characters to the list. Figure 2 shows a screenshot of a sample evaluation question posed to crowd

Figure 2: Screenshot of a CrowdFlower unit.

workers. We decided not to use all 30 available character options to be presented to the users, as this
would be too many options to choose from, and be overwhelming and prohibitive for many users.

We used the following CrowdFlower settings: for all 30 units of work, we had 15 judgements each.
We only allowed the highest quality workers (level 3), and we carefully designed test question to filter
workers who lack knowledge about the ASOIF world. Workers had to answer at least 80% of test
questions (gold units) correctly in order to be accepted to the job. The test questions were carefully
created manually and test for general knowledge about the ASOIF universe.

4.2 Evaluation Results
We used the results of crowdsourcing as a gold standard, and compared them to the results for the
automated methods (LT methods). We are aware that using results from crowd workers as gold standard
is not without risk – so we also manually inspected the results retrieved to ensure high quality.

The crowdsourcing platform we used, CrowdFlower (CF), yields two types of results, the aggregated
results, and the detailed results. In the aggregated results, CF gives exactly one ASOIF character which

4https://github.com/manasRK/glove-gensim/blob/master/glove-gensim.py
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LT-Method Top 1 Top 2
15 votes: Method i (Chapter Co-occ) 16.7% 50.0%

15 votes: Method ii (Paragraph Co-occ) 33.3% 63.3%
15 votes: Method iii (Sentence Co-occ) 33.3% 53.3%

15 votes: Method iv (word2vec) 36.7% 70.0%
15 votes: Method v (GloVe) 26.7% 53.3%

15 votes: Method vi (word2vec-f) 16.7% 20.0%

Table 1: Percentage where the suggested character of CF is also the No. 1 selection by the LT-method
(Top 1), and where it is among the top 2 of automatically generated relations (Top 2).

has, according to the crowd workers, the strongest connection to the input character. And in the detailed
results, CF gives all the single votes which where done by the individual crowd workers, which we then
used to select the characters with the strongest connections. We used both aggregated and detailed results
for evaluation, in Sections 4.2.1 and 4.2.2, respectively.

4.2.1 Aggregated CrowdFlower Results
As mentioned, in the aggregated results, the algorithms of CF select one character with the strongest
connection to the input. As a first evaluation of the LT-generated relations we applied two scores:

1. The ratio of results where the character suggested by crowdsourcing is also the number one choice
by the LT tool-based method (Top 1).

2. The ratio where the one character suggested by CF is among the top 2 of persons suggested by the
LT method (Top 2).

Table 2 shows that paragraph-level and sentence-level co-occurrence, and also word2vec clearly out-
perform methods (i) chapter-level co-occurrence and (vi) word2vec-f. Agreement on the single most
strongly related character (Top 1) is generally rather low, with values below 40%. But this is not unex-
pected, as it is a highly subjective choice if a book character has a stronger relation to his wife, his kids,
or his best friend, for example. The Top 2 score is much higher, up to 70%, which means that in 70%
of cases the most related character selected by the crowd workers, is also in the top 2 picks of the LT
methods. The best score here is provided by method (iv) word2vec, indicating that word embeddings
can be very well suited for this task.

4.2.2 Detailed CrowdFlower Results
CF also provides all the individual votes of the crowd workers. As stated, we had 15 workers voting on
each question. From the individual results, we selected the two characters that had the highest number
of votes by the workers. Then we calculated the agreement between CF workers (the gold standard) and
the tool-based methods with following formula:

score = Avg(
A ∩B

B
) (2)

In this equation, A refers to the set of ASOIF characters suggested by the LT method, and B is the set
of characters suggested by crowd workers. So, basically, we compute the average number of characters
which are among the top two in the set of CF characters (our gold standard), and which are also in the
top two characters suggested by the LT methods.

For example, if CF says that the set of (Renly, Davos) has the strongest connection to input character
Stannis, and one of the LT tool-based methods suggests (Renly, Robert), then we have a 0.50 score on
this single character. The final score then gives the average over all 30 input characters.

Similar to the results in Section 4.2.1, also with this score, methods (ii) to (v) are clearly more success-
ful than chapter-based co-occurrence of characters and Word2vec-f. Again, word2vec had the highest
score with a 58.3% match according to our metric. The GloVe word embeddings, and paragraph- and
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LT-Method Agreement
15 votes: Method i (Chapter Co-occ) 33.3%

15 votes: Method ii (Paragraph Co-occ) 53.3%
15 votes: Method iii (Sentence Co-occ) 51.3%

15 votes: Method iv (Word2vec) 58.3%
15 votes: Method v (GloVe) 53.3%

15 votes: Method vi (Word2vec-f) 26.7%

Table 2: Agreement between the sets of suggested character relations from CF workers and the LT
methods, according to the score in Eq. 2.

sentence-level co-occurrence performed well, Word2vec-f and chapter-level co-occurrence are not suited
for the job.

4.3 Discussion
The results are well in line with intuition and also with results from previous research. Confirming the
results by (Ghannay et al., 2016), word2vec outperforms GloVe on word similarity tasks, while GloVe is
superior on word analogy. For social network extraction, the word similarity feature is more important.
Furthermore, as intuition suggests, chapter-level co-occurrence is not an optimal measure for relatedness
between book characters.

Many interesting observations can be made about the method (vi) word2vec-f. As (Levy and Goldberg,
2014) argue, this method detects functional, not topical similarity, it gives words of same semantic type.
For example for an input word like go it might suggest run, and walk as similar. In our task setup, this
method is not well suited, as all input words are of same semantic type (book character) already. So
word2vec returns words that associate with another, while word2vec-f suggests words that behave like
one another. For extraction relations we seek primarily for associations between words.

Finally, with regards to research question (iii) and crowdsourcing itself, it is rather surprising how
well crowdsourcing platforms like CrowdFlower seem to be suited even to address such specialized
evaluation tasks such as relations between characters in the ASOIF book series. The high quality of
results by crowdsourcing was confirmed by human inspection.

5 Conclusions

We considered the task of extracting a social network for literary texts and addressed a few main ques-
tions: do word embeddings outperform simple statistical similarity coefficients for our task? Which
types of word embeddings are the most efficient? Is paid micro-task crowdsourcing suited to evaluate
social networks extracted from literary texts? We came to the following results:

(i) To evaluate the quality of extracted social networks, we used the results of a crowdsourcing survey
and the level of agreement between the crowd workers and the social networks extracted with language
technology tools as the main quality measure. Although the social network of the highest quality is
achieved by using the word2vec word embeddings toolkit, we can’t say, that the co-occurrence statistics
results are significantly worse, especially, when applied on paragraph level. Using GloVe embeddings we
get a similar level of agreement, followed by the co-occurrence statistics applied to sentences. There are
not drastic differences on the level of agreement, hence, we cannot say clearly, that one type of measures
is significantly better than another;

(ii) There is a clear evidence, that word2vec-f embeddings are not suitable for the task.
(iii) Our results suggest that paid micro-task crowdsourcing is well suited to provide evaluation data

even in such a specialized domain.
We have faced the following issues. First of all, there are some issues concerning the character names.

Some character names have two or more forms (Dany and Daenerys, for example). Thus straightforward
extraction of names will result in poor frequencies, and a tool for matching name forms should be applied.
Some character names coincide (Jon Arryn and Jon Snow, for example). This fact can also spoil the
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frequencies for the co-occurrence coefficients and for word embedding similarity. In future work we will
train the model based on improved entity extraction and character name disambiguation. Secondly, since
there is no clear algorithm for setting up the thresholds for any type for similarity measure, we struggle
with the problem of choosing the number of possible edges for the given node of the network.

Our main future direction is to introduce the time axis in our experiments. Since there is a clear
timeline in the SOIAF books, we can extract a dynamic social network, which will show how intensive
the characters interact during different time spans. This will require from us the improvement of word
embeddings similarity measures to a dynamic case and also a more complex design of the crowdsourcing
validation.
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