
Proceedings of the 15th Workshop on Biomedical Natural Language Processing, pages 119–127,
Berlin, Germany, August 12, 2016. c©2016 Association for Computational Linguistics

Measuring the State of the Art of Automated Pathway Curation Using
Graph Algorithms - A Case Study of the mTOR Pathway

Michael Spranger
Sony Computer Science

Laboratories Inc.
Tokyo, Japan

michael.spranger
@gmail.com

Sucheendra K. Palaniappan
INRIA,

Campus de Beaulieu,
Rennes, France

sucheendra.palaniappan
@inria.fr

Samik Ghosh
The Systems Biology Institute,

Minato-ku,
Tokyo, Japan

ghosh@sbi.jp

Abstract

This paper evaluates the difference be-
tween human pathway curation and cur-
rent NLP systems. We propose graph anal-
ysis methods for quantifying the gap be-
tween human curated pathway maps and
the output of state-of-the-art automatic
NLP systems. Evaluation is performed on
the popular mTOR pathway. Based on
analyzing where current systems perform
well and where they fail, we identify pos-
sible avenues for progress.

1 Introduction

Biological pathways encode sequences of biologi-
cal reactions, such as phosphorylation, activations
etc, involving various biological species, such as
genes, proteins etc., in response to certain stim-
uli or spontaneous at times (Aldridge et al., 2006;
Kitano, 2002). Studying and analyzing pathways
is crucial to understanding biological systems and
for the development of effective disease treatments
and drugs (Creixell et al., 2015; Khatri et al.,
2012). There have been numerous efforts to re-
construct detailed process-based and disease level
pathway maps such as Parkinson disease map (Fu-
jita et al., 2014), Alzheimers disease Map (Mizuno
et al., 2012), mTOR pathway Map (Caron et al.,
2010), and the TLR pathway map (Oda and Ki-
tano, 2006)). Traditionally, these maps are con-
structed and curated by expert pathway curators
who manually read numerous biomedical docu-
ments, comprehend and assimilate the knowledge
in them and construct the pathway.

Manual curation of pathways is rather challeng-
ing given the ever increasing barrage of scientific
publications. It is basically common place in this
community that manual curation is not sufficient
(Baumgartner et al., 2007). Consequently, Auto-
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Figure 1: Comparing human pathway curation to
NLP extraction.

mated Pathway Curation has been an active area
of research - particularly in the BioNLP commu-
nity (Miwa et al., 2012; Valenzuela-Escárcega et
al., 2015). It is also the goal of large scale research
efforts such as DARPA’s Big Mechanism Project
(Cohen, 2015).

NLP systems have shown to perform well in
BioNLP competitions (Nédellec et al., 2013; Ohta
et al., 2013; Ananiadou et al., 2010), but so far we
do not have systems that automatically assemble
and curate pathways of the scope and complexity
of, for example, the mTOR pathway. This paper
investigates why this is the case. We measure the
state of the art by closing the gap between NLP
representations and biological networks, then we
apply graph theory and in particular graph match-
ing to quantify how much overlap there is between
the NLP output and the information that humans
assemble (see also Figure 1). The evaluation is
performed on the popular mTOR pathway.

This paper starts by introducing our approach,
followed by a description of data sets and evalua-
tion results. We conclude by discussing where cur-
rent system seem to fail and how to make progress.

119



Figure 2: Example sentence with NLP event rep-
resentations extracted.

Figure 3: Phosphorylation reaction.

2 Bridging the Gap

In this paper, we close the representational
gaps between current NLP systems and human-
generated pathways, measure the overlap and an-
alyze possible shortcomings of current systems.
Evaluation is performed on the popular, hand-
curated mTOR pathway map (Caron et al., 2010).
Experts have curated and assembled the informa-
tion from 522 papers into one large map using
CellDesigner (Funahashi et al., 2008) - a soft-
ware for modeling but also executing mechanistic
models of pathways. CellDesigner represents in-
formation using a heavily customized XML-based
SBML format (Hucka et al., 2003).

mTOR has been published along with a list of
the 522 papers used to build the map. This al-
lows us to treat the same papers with state-of-the-
art NLP extraction systems. Here we used one
of the most successful NLP systems around - the
TURKU event extractions system (Björne, 2014,
TEES). TEES has won 1st place in BioNLP 2009
ST, 2011 ST and DDI 2011 (Björne et al., 2012).
The system integrates various NLP techniques to
extract events from text. Processing roughly pro-
ceeds as follows 1) A number of external tools de-
tect protein names and parse the sentences. 2) The
event detector detects trigger words such as verbs,
which is followed by detection of interactions. 3)
Complex events are constructed. 4) The system
detects modifiers such as negation and specula-
tion.

NLP systems typically operate on something
called the standoff format. From a sentence such
as in Figure 2, standoff containing entities and
events will be extracted. These in principle cor-
respond to biological species and reactions. We
translate the NLP representation into SBML path-

ways and perform additional annotation (Spranger
et al., 2015) of species and reactions. For the sen-
tence in Figure 2, the extracted SBML is visual-
ized in Figure 2.

Datasets
We compared 3 different sets of data all related to
mTOR pathway.

MTOR-HMN is a mTOR pathway map manu-
ally constructed by human expert pathway cura-
tors. (Caron et al., 2010). The pathway is encoded
in a dialect of SBML used by CellDesigner (Fu-
nahashi et al., 2008). We convert the CellDesigner
format into pure SBML and annotate reactions and
species further by automatically assigning reaction
types and gene/protein identifers (see description
below).

MTOR-ANN consists of 57 abstracts of scien-
tific papers from Pubmed related to the mTOR-
pathway map. The data set was human-annotated
for NLP system training (Ohta et al., 2011, Cor-
pus annotations (c) GENIA Project1). This cor-
pus gives an idea of the potential performance of
a machine with human-level NLP extraction capa-
bilities. Annotated NLP entities and events were
used to create SBML representations and further
annotated using various tools (discussed below).

MTOR-NLP consists of 522 full text papers
mentioned in the mTOR pathway map. Paper
pdfs were downloaded automatically and trans-
lated into raw txt files using CERMINE (Tkaczyk
et al., 2015). We managed to extract text from 501
papers. The 501 papers were processed using the
Turku Event Extraction System mentioned earlier.
From the extracted NLP events we created SBML
representations of pathway maps for each text us-
ing (Spranger et al., 2015). The SBML was further
annotated using various tools (discussed below)
and, finally, loaded into a single pathway map.

Notice that MTOR-ANN and MTOR-NLP are
different in how they are constructed and conse-
quently what kind of conclusion we can draw from
them. MTOR-ANN is a human-annotated dataset
which contains much less data than MTOR-NLP.
However, because it is human-annotated it allows
us to evaluate a human-level performance extrac-
tion systems. So we cannot expect that MTOR-
ANN is able to reconstruct everything in MTOR-

1http://nactem.ac.uk/GENIA/current/Other-
corpora/mTOR-Pathway-Events/
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HMN (recall). However, as we will argue in this
paper, we might expect that what is extracted in
MTOR-ANN does occur in MTOR-HMN (high
precision).

The following table shows number of species,
reactions and edges between them for the different
datasets.

Dataset # species # reactions # edges
MTOR-HMN 2242 777 2457
MTOR-ANN 2457 857 2343
MTOR-NLP 292049 100130 203042

Annotation
Annotation SBO Reactions in datasets MTOR-
HMN, MTOR-ANN and MTOR-NLP were auto-
matically annotated using Systems Biology On-
tology (SBO) (Le Novère, 2006) and Gene Ontol-
ogy (GO) terms. SBO provides a class hierarchy
of reactions. Reactions can be of a certain type.
For instance, NLP systems often identify regula-
tion events. Regulation reactions form a hierar-
chy. For instance, positive regulation is a subclass
of regulation reactions. Phosphorylation reactions
are a subclass of conversion reactions.

All reactions in MTOR-HMN, MTOR-ANN,
and MTOR-NLP are annotated using SBO/GO
(coverage 100%). SBO/GO annotations are com-
puted using different approaches. For MTOR-
ANN and MTOR-NLP we used an automated an-
notation system that is also used to convert NLP
event representations to SBML (Spranger et al.,
2015). For MTOR-HMN, we used annotations
provided by humans extended by automatic an-
notations. Automatic annotations were deduced
by examining the reactants and products of reac-
tions. For example, if a phosphoryl group is added
the reaction is annotated using the SBO term for
phosphorylation. Notice, in MTOR-HMN each
reaction can be annotated with multiple SBO/GO
terms. For instance, a single reaction can be an-
notated as phosphorylation and activation. This
is not the case for MTOR-ANN and MTOR-NLP
where each reaction corresponds to exactly one
SBO/GO term.

Annotation Entrez Gene Species in all three
datasets were annotated using the gene/protein
named entity recognition and normalization soft-
ware GNAT (Hakenberg et al., 2011) - a publicly
available gene/protein normalization tool. GNAT
returns a set of Entrez Gene identifiers (Maglott et
al., 2005) for each input string. Species were an-
notated using all returned Entrez Gene identifiers
for a particular species (organism human). We

MTOR-
HMN

MTOR-
ANN

MTOR-
NLP

activation 72 104 16485
association 210 204 21055
conversion 171 0 0
deacetylation 1 0 0
dephosphorylation 28 14 0
deubiquitination 13 0 0
dissociation 43 55 0
gene expression 4 40 18810
localization 0 16 474
negative regulation 33 99 10723
phosphorylation 85 241 25406
protein catabolism 24 18 1080
regulation 0 0 4832
transcription 78 8 1265
translation 23 1 0
transport 87 53 0
ubiquitination 13 4 0

Table 1: Reaction types extracted and annotated
for various data sets. All reactions are annotated
with their most specific type. Numbers are non-
cumulative. For instance, the 171 conversion op-
erations in MTOR-HMN are only annotated with
the general conversion (SBO:182) and not more
specific reaction types.

call the set of Entrez Gene identifiers returned by
GNAT for each species Entrez Gene signature.

# species coverage # Entrez ids
MTOR-HMN 2242 90% 538
MTOR-ANN 2457 87% 317
MTOR-NLP 292049 83% 4194

3 Species

Pathways contain many references to the same
protein or gene. We measured the number of
unique genes and proteins in each dataset using
various ways of identifying (normalizing) genes
and proteins in a particular dataset.

MTOR-
HMN

MTOR-
ANN

MTOR-
NLP

# species 2242 2457 291218
# names 582 359 27928
# appr names 568 316 4517
# Entrez signatures 443 201 6220

The first row repeats the number of species per
data set. The second row condenses the species
names by removing prefixes such as “phospho-
rylated” and other adjectives irrelevant for deter-
mining the actual biological entity. The third row
shows what happens when we reduce the names
further by using a Levenshtein-based string dis-
tance with a cutoff point of 90. The last row mea-
sures how many different unique Entrez Gene id
signatures there are. Each species is annotated
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with a set of Entrez Gene ids. The set of the En-
trez Gene identifiers for each species is taken as a
signature.

The numbers show the degree of redundancy or
reuse of species within each pathway. They also
suggest that there are far more species implicated
in MTOR-NLP than there are in MTOR-HMN. In
other words, human annotators of mTOR have se-
lected 568 species and not the 4517 found by the
NLP systems (approx names).

Unique Species Overlap To better understand
species identification we can measure the overlap
of MTOR-ANN and MTOR-NLP with MTOR-
HMN based on the unique species. Here we con-
sider names equal (nmeq), names approximately
equal (appeq), Entrez Gene id signature equal (en-
teq) and Entrez Gene id signature overlap (entov).
The focus is on unique items.

precision recall f-score
MTOR-HMN/MTOR-ANN
nmeq 20.89 12.89 15.94
appeq 27.30 15.64 19.88
enteq 45.27 20.54 28.26
entov 83.08 55.53 66.57
MTOR-HMN/MTOR-NLP
nmeq 0.96 45.88 1.87
appeq 1.59 51.20 3.08
enteq 4.60 64.56 8.58
entov 58.04 99.55 73.33

The rows nmeq show precision and recall for
unique species names in MTOR-NLP with respect
to MTOR-HMN. Precision is low - meaning that
only a small percentage of unique species names
in MTOR-NLP actually appear in MTOR-HMN.
On the other hand, recall is higher. This shows
that the few correctly identified species in MTOR-
NLP overlap with large parts of MTOR-HMN
species. Less than a percent of unique species
names in MTOR-NLP cover 46% of species in
MTOR-HMN. What is interesting is that MTOR-
ANN does not fair too great on precision either.
79% of the unique annotated names do not ap-
pear in MTOR-HMN. Especially the annotated
version dataset MTOR-ANN, lets us conclude that
many species mentioned in papers actually do
NOT make it into the pathway or at least not as
mentioned in the papers. These analyses point to
the fact that researchers building pathways select
species. In other words, pathway curation is not
just extraction, but active selection and, in fact,
identification of species with proteins and genes
known to the scientist.

Complex Species MTOR-HMN pathway con-
tains a lot of complex species - i.e. species that
contain other species. There are 351 complex
species with a total of 1192 total constituents. 16
complexes are part of other complexes. Together
this accounts for more than 70% of the species in
MTOR-HMN. In other words, this is important in-
formation. Both MTOR-NLP and MTOR-ANN
do not provide information about complexes ex-
plicitly. However, for this paper complexes are es-
sentially treated like any other species.

4 Reactions

We first measured how many unique reaction types
there are for each of the datasets.

# reactions # SBO/GO
terms

# SBO/GO
signatures

MTOR-HMN 777 15 29
MTOR-ANN 857 13 13
MTOR-NLP 100130 9 9

MTOR-HMN contains 777 reactions with 12
SBO/GO terms, i.e. reaction types. MTOR-ANN
contains 12 and MTOR-NLP slightly less. Each
reaction can have multiple SBO/GO terms associ-
ated with it. We call this the SBO/GO signature
of a reaction. For instance, a particular reaction
can be typed as phosphorylation and activation. Its
signature are then the SBO/GO terms for these 2
reactions. The table shows that this actually only
happens in MTOR-HMN. Human annotators are
free to combine various reactions into a single re-
action if they see fit. There is no replication of this
in the automated data.

Unique Reaction Signature Overlap We then
measured how much unique signatures overlap
across the different datasets. We checked three
different measures: 1) sboeq requires that both sig-
natures are the same, 2) sboov requires that the in-
tersection of the signatures overlaps - i.e. is not
empty - and 3) sboisa requires that there is at least
one SBO/GO term in each signature that relate in
a is a relationship in the SBO reaction type hierar-
chy. For instance, if there is a phosphorylation re-
action and a conversion reaction, then sboisa will
match because phosphorylation is a subclass of
conversion according to the SBO type hierarchy.
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precision recall f-score
MTOR-HMN/MTOR-ANN
sboeq 69.23 31.03 42.86
sboov 45.51 50.19 47.74
sboisa 92.31 93.10 92.70
MTOR-HMN/MTOR-NLP
sboeq 55.56 17.24 26.32
sboov 77.78 68.97 73.11
sboisa 88.89 79.31 83.83

MTOR-ANN catches 1/3 of the reaction
SBO/GO signatures directly and up to 93%
when we allow for overlap sbo is a relationship.
MTOR-NLP only directly includes 1 out of 5 re-
action signatures. However, the overlap is higher
when allowing for reaction SBO/GO signatures to
overlap and individual SBO terms to be in a is a
relationship.

These results also show that there are reactions
in MTOR-NLP and MTOR-ANN that are not part
of MTOR-HMN (see also Table 2)

From this preliminary data, we can immediately
identify an important difference between human
annotation and automated NLP event extraction.
Human annotators combine multiple reactions into
a single reaction representation to condense infor-
mation.

5 Networks - Connectedness

Ultimately we are interested in networks of reac-
tions and species. Studying the output of NLP sys-
tems it becomes immediately clear that the result
of these systems differs from hand-curated data in
an important aspect: connectedness. To show this
we measured isolation of species and networks
(reactions cannot be isolated for structural reasons
in SBML).

# isolated networks # isolated species
MTOR-HMN 4 6
MTOR-ANN 475 632
MTOR-NLP 83,093 110,490

In MTOR-HMN there are 4 separate subgraphs
(no connection between them). 3 of them are
modeling mistakes by human curators. Basically
MTOR-HMN is one connected network. On the
other hand, MTOR-ANN and MTOR-NLP consist
of numerous unconnected networks. Each of them
is quite small as the following data shows.

We measured min, max, mean and median num-
ber of species and reactions in each connected
component subgraph.

dataset min mean median max
MTOR-ANN 1 3.00 1.0 24
MTOR-NLP 1 2.02 1.0 215

Results show that subgraphs in MTOR-ANN
and MTOR-NLP on average contain between 2
and 3 species and reactions. So very often there
will be a single reaction in a subgraph plus some
reactant and maybe a product. On the other hand
MTOR-HMN consists of essentially one large
connected graph. So here is another fundamen-
tal difference: human modelers compose a single
large graph, as opposed to just extracting single
reactions.

6 Networks - Overlap

Arguably the most important question is how
much overlap there is between disconnected reac-
tions extracted by MTOR-ANN/MTOR-NLP with
MTOR-HMN. For this, we measure subgraph iso-
morphisms of MTOR-ANN and MTOR-NLP sub-
graphs with the MTOR-HMN graph. We mea-
sured max overlap and allow multiple hits for
each subgraph from MTOR-ANN and MTOR-
NLP with parts of MTOR-HMN. We compare dif-
ferent strategies for node (species and reactions)
and edge matching.

Species matching We investigated name
matches (nmeq), approximate name matches
(appeq), Entrez Gene signature equal (enteq)
and Entrez Gene signature overlaps (entov) and
combinations thereof. For example, appeq/enteq
matches two species if either their names match
approximately OR their Entrez Gene signatures
are equal. appeq/entov matches two species
if their names match approximately OR their
Entrez Gene signatures overlap. Since there
is no information on complexes in MTOR-
ANN/MTOR-NLP, we also allowed matches not
only on the complex itself but also on its con-
stituents (wc). So a link present in MTOR-NLP
between some protein and its phosphorylated ver-
sion, will match if a link is present in a complex
that contains that protein in MTOR-HMN.

Reaction matching Reaction matching relies on
SBO/GO signatures. We checked with signa-
tures equal (sboeq), signatures overlapping over-
lap (sboov) and signatures overlapping with indi-
vidual SBO terms in is a relationship (sboisa).

Edge matching We only allowed strict edge
matching. So if an edge marks a reactant, then it
has to be a reactant in MTOR-HMN. Same holds
for product and modifier.

123



MTOR-HMN MTOR-NLP

mTORC2

mTOR
Rictor
Sin1.1
mLST8

activation

mTOR

mTORC2

activated mTOR
Rictor

mLST8
Sin1.1

positively regulated mTOR

activation

Insulin/IGF

Figure 4: Example of a successful match (nmeq,
sboeq). Black - matched nodes and edges, grey
not mached context. Insulin/IGF is a modifier of
this reaction. It is not captured by MTOR-NLP.
Modifiers are less frequently detected than reac-
tants and products.

MTOR-HMN MTOR-NLP

activation, phosphorylation

activated phosphorylated phosphorylated SGK1

phosphorylation

phosphorylated SGK1

phosphorylated SGK1 SGK1activated PDK1

Figure 5: Example of a successful match (appeq,
sbois) with a reaction that has multiple reaction
types.

MTOR-HMN MTOR-NLP

5'cap-eIF4F-eIF4B-eIF3-PABP

PABP
eIF3

m7GTP
mRNA
eIF4G

activated eIF4A
eIF4E
eIF4B

bound eIF4E

association

association

5'cap-eIF4F-eIF4B-eIF3

eIF3
m7GTP
mRNA
eIF4G

activated eIF4A
eIF4E
eIF4B

eIF4E

PABP

Figure 6: Example of a successful match
(appeq/wc, sboeq) but ultimately incorrect map-
ping. It is not eIF4E that gets bound but the whole
complex of 5’cap-eIF4F-eIF4B-eIF3 that includes
eIF4E.

The final point to note for the results of match-
ing is that we removed isolated nodes (which are
always species) from MTOR-ANN and MTOR-
NLP, because here we are really interested in
graph structure.

Network overlap results Table 2 shows preci-
sion and recall for max overlap of different match-
ing strategies (see also Figures 4 to 6). The ta-
ble shows results for MTOR-ANN and MTOR-
NLP successively. In general the first rows (nmeq,
sboeq) represent very strict matching strategies.
The last row (appeq/entov/wc, sbois) shows results
for the most “relaxed” strategy.

Let us first analyze the performance of MTOR-
NLP. The automated NLP system is able to re-
trieve roughly 9% of all edges given the strictest
matching strategy. This means that 1 in 10 edges
in the NLP extracted dataset actually appears as is
in the human curated data (MTOR-HMN). Also,
if we look at the most relaxed matching strategy
appeq/entov/wc, sbois, we find that roughly 2 of
3 edges and 3 of 4 nodes (species and reactions)
in the human curated MTOR have something to
do with the NLP extracted data. In particular,
the conversion and regulation reactions play a part
in the 20 percentage points jump from 45.59 to
65.04 for edges from appeq/entov/wc, sboov to
appeq/entov/wc, sboisa matching. Conversion and
regulation are super classes for a whole range of
reactions (conversion: phosphorylation etc; regu-
lation: activation, inactivation etc).

Matching strategies that allow for matching
complex constituents always have a higher re-
call and precision performance than their non
constituent matching counterparts. For instance,
nmeq, sboeq matches almost 20 percentage
points less edges than nmeq/wc, sboeq (MTOR-
HMN/MTOR-NLP). This increase in performance
of constituent matching points to the fact that
human modelers often attribute reactions to the
whole complex. For instance, a phosphorylation
may be acting on a constituent of a complex but
the human modeler chooses to connect the reac-
tion with the whole complex. These matching
strategies do account for that and therefore are able
to improve the numbers (in some cases) consider-
ably.

Reactions in MTOR-HMN are sometimes in-
corporating various reaction types. In MTOR-
ANN and MTOR-NLP, on the other hand, each
reaction only has a single type. Reaction match-
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ing strategies sboov and sboisa account for that
by looking at overlaps. This means that reac-
tions in MTOR-ANN and MTOR-NLP will match
with a reaction MTOR-HMN if the reaction type
signatures intersection is not empty. In reality
this means that the reaction in MTOR-ANN or
MTOR-NLP has to be an element of the reaction
in MTOR-HMN.

Lastly, let us take a look at MTOR-
HMN/MTOR-ANN. MTOR-ANN contains
much less data than MTOR-NLP but the reason
we include it here is because MTOR-ANN
consists of human annotated data. It therefore
gives an idea about the limits of the annotation
data and the limits of human annotation. If all
of the problems discussed so far are purely a
problem of the NLP system, then MTOR-ANN
should do better than MTOR-NLP in terms of
precision but not in terms of recall. Recall will
be low because the MTOR-ANN consists of less
data. However, we would expect high precision
numbers. Interestingly, data shows that even
for NLP-ANN precision is low. With relaxed
matching strategies appeq/enteq/wc, sboisa and
appeq/entov/wc, sboisa, we see some substantial
recall 20% (remember NLP-ANN is only ab-
stracts). Nevertheless precision for edges is only
1 in 10 and for nodes about the same.

Caveats There are number of issues that need
to be taken into account when analyzing these
results. For instance, SBO/GO term annotation
for MTOR-HMN is not perfect, as can be seen
from the large number of conversion operations.
Similarly, Entrez Gene id normalization has its
problems, especially when dealing with complex
species. Lastly, reaction signature overlap does
not count reactions with multiple reaction types
as separate. We are currently working on dealing
with each of these issues. Some will arguably im-
prove performance, others decrease precision and
recall numbers. We are confident though that the
general trends in the results will uphold.

7 Discussion

The last section quantitatively demonstrated dif-
ferences between extraction and curation. Cura-
tion involves processes such as annotation, selec-
tion and, in particular, composition (of subgraphs
into a large graph). The next paragraphs summa-
rize the most important problems.

MTOR-HMN/MTOR-ANN
nodes edges

prec rec prec rec
nmeq, sboeq 1.22 1.93 0.94 1.30
nmeq, sboov 1.52 2.72 1.15 1.91
nmeq, sboisa 3.15 4.00 2.43 2.65
nmeq/wc, sboeq 3.48 8.60 2.77 6.76
nmeq/wc, sboov 3.78 9.34 2.99 7.45
nmeq/wc, sboisa 5.59 12.21 4.44 9.73
appeq, sboeq 1.44 2.22 1.11 1.47
appeq, sboov 1.81 3.11 1.37 2.12
appeq, sboisa 3.93 4.50 2.99 2.89
appeq/wc, sboeq 3.85 8.90 3.07 7.04
appeq/wc, sboov 4.22 9.74 3.33 7.77
appeq/wc, sboisa 6.67 12.85 5.25 10.22
appeq/enteq, sboeq 2.74 3.02 2.13 1.95
appeq/enteq, sboov 3.19 3.86 2.43 2.65
appeq/enteq, sboisa 5.81 5.78 4.48 3.74
appeq/enteq/wc, sboeq 9.78 13.69 8.15 10.99
appeq/enteq/wc, sboov 10.48 15.37 8.66 12.54
appeq/enteq/wc, sboisa 14.67 23.88 11.95 19.90
appeq/entov, sboeq 8.85 10.33 7.34 7.41
appeq/entov, sboov 9.41 12.01 7.73 8.79
appeq/entov, sboisa 13.59 19.53 11.01 14.73
appeq/entov/wc, sboeq 9.78 13.69 8.15 10.99
appeq/entov/wc, sboov 10.48 15.37 8.66 12.54
appeq/entov/wc, sboisa 14.67 23.88 11.95 19.90

MTOR-HMN/MTOR-NLP
nodes edges

prec rec prec rec
nmeq, sboeq 6.31 13.25 5.84 8.67
nmeq, sboov 7.26 17.40 6.67 11.48
nmeq, sboisa 9.85 27.73 8.88 17.50
nmeq/wc, sboeq 9.83 40.19 9.21 31.14
nmeq/wc, sboov 10.82 44.34 10.08 34.43
nmeq/wc, sboisa 14.48 58.58 13.30 46.68
appeq, sboeq 6.56 14.04 6.07 9.24
appeq, sboov 7.53 18.69 6.92 12.37
appeq, sboisa 10.39 30.35 9.35 19.41
appeq/wc, sboeq 10.27 40.83 9.63 31.62
appeq/wc, sboov 11.28 45.53 10.52 35.33
appeq/wc, sboisa 15.24 60.85 13.98 48.43
appeq/enteq, sboeq 9.33 18.44 8.64 12.21
appeq/enteq, sboov 11.06 23.63 10.16 15.71
appeq/enteq, sboisa 15.94 37.22 14.28 24.50
appeq/enteq/wc, sboeq 21.40 49.73 20.11 40.58
appeq/enteq/wc, sboov 23.59 55.66 22.06 45.95
appeq/enteq/wc, sboisa 32.88 75.33 30.18 65.04
appeq/entov, sboeq 20.18 44.44 18.90 34.88
appeq/entov, sboov 22.35 50.32 20.83 39.97
appeq/entov, sboisa 31.34 69.85 28.65 57.51
appeq/entov/wc, sboeq 21.40 49.73 20.11 40.58
appeq/entov/wc, sboov 23.59 55.66 22.06 45.95
appeq/entov/wc, sboisa 32.88 75.33 30.18 65.04

Table 2: Results of matching MTOR-ANN and
MTOR-NLP with MTOR-HMN. Results are al-
ways precision/recall.
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Species Normalization There has been a lot of
work on this topic (Van Landeghem et al., 2013;
Wei et al., 2015b; Sohn et al., 2008; Doğan et
al., 2014; Hakenberg et al., 2011) provide impres-
sive performance. But there is the problem of how
to use the information provided by tools such as
GNAT. GNAT, for instance, returns hypotheses of
possible identifiers. It is then up to subsequent sys-
tems to use this information and reject certain hy-
potheses based on other information in the text.

Complex formation Identification of com-
plexes is missing from NLP extraction systems.
To the best of our knowledge, there is very little
work on extraction of complexes and their par-
ticipants from text (except generally in terms of
Named Entity Recognition). However, complexes
are extremely important for the mTOR pathway.
For a large part the pathway consists of complexes
that form and subsequently modify other reac-
tions. Not being able to extract such information is
a significant disadvantage for automated systems.

Composition of pathways The NLP system
produces pathway maps that consist of scattered
reactions without integrating them into one. The
human map on the other hand is all about a single
network of reactions. Composition is a combina-
torial problem constrained by cues in the Natural
Language as well as biology. This paper proposed
a number of matching strategies. These strategies
are not only useful for measuring the state-of-the-
art. For instance, matching of species based on En-
trez Gene normalization could be useful in path-
way composition.

Understanding levels of detail of representation
A fundamental problem in pathway curation is that
information can be represented on different levels
of specificity. For instance, it might be sufficient to
capture phosphorylation instead of capturing the
exact sites or the number of phosphoryl groups
added. Often human modelers make various ab-
stractions and conceptualizations of the same un-
derlying biological process. Final pathway maps
are affected by prior knowledge of the curator and
this shapes the pathway that a human produces.
The problem then becomes how to build machines
that can extract knowledge on various levels of ab-
straction.

It is important to realize that these issues are not
just a problem of more data or more precise an-
notation. Current NLP systems are good at clas-

sifying strings and their relations but they have no
notion of the underlying processes (in this case the
biological processes involved). The learning sig-
nal of NLP systems is annotated text and it is not
the human-curated biological model. The human
as an expert in Systems Biology reading the text
will pick out relevant detail and try to build a con-
sistent overall model based on the information in
the various texts. The NLP system relies on in-
formation detected in the text without any actual
notion of what the text actually means, i.e. with-
out building an internal model and integrating it
with prior information.

8 Conclusion

To the best of our knowledge, this paper is the first
to evaluate automated pathway extraction systems
by measuring the difference between automated
systems and human curation. We believe this kind
of analysis is crucial to make progress towards the
ultimate goal of complete automation of pathway
curation. The contribution of this paper is twofold:
1) we propose a number of measures that can be
used to quantify the state-of-the-art; 2) we identify
a number of areas where progress can improve the
state-of-the-art measurably.

This paper is part of a larger trend in NLP to
move from event extraction to knowledge base
creation (Kim et al., 2015) and construction of bi-
ologically relevant networks (Rinaldi et al., 2016).
It is therefore perfectly aligned with people trying
to automatically build mechanistic dynamic path-
way models (Cohen, 2015) that could ultimately
have a big scientific impact (Kitano, 2016).
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