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Abstract

This study explores methods for developing a large scale Quality Estimation framework for Ma-
chine Translation. We expand existing resources for Quality Estimation across related languages
by using different transfer learning methods. The transfer learning methods are: Transductive
SVM, Label Propagation and Self-taught Learning. We use transfer learning methods on the
available labelled datasets, e.g. en-es, to produce a range of Quality Estimation models for Ro-
mance languages, while also adapting for subtitling as a new domain. The Self-taught Learning
method shows the most promising results among the used techniques.

1 Introduction

A common problem with automatic metrics for Machine Translation (MT) evaluation, such as BLEU
(Papineni et al., 2002), is the need to have reference human translations. Also such metrics work best
on a corpus of sentences, while they are not informative for evaluation of individual sentences (Specia
et al., 2009). The aim of Quality Estimation (QE) is to predict a quality score for sentences output by
MT without reference translations, for example, to judge whether they provide a suitable basis for Post-
Editing by the human translator or it is better to ask the human to translate this sentence from scratch.
The QE task can be framed as a classification or a regression problem, where most of the methods for
QE rely on supervised Machine Learning (ML) algorithms.

The WMT evaluation campaigns (Bojar et al., 2014) goal is to create a framework to test the perfor-
mance of participating systems for the QE task. The WMT organizers provide the datasets for training
and testing new proposed automatic QE approaches. However, the existing training data is only available
for a limited number of languages. For example, in the WTM 2014 the available pairs were en-es and
en-de (throughout the paper we will be using the two-letter ISO codes to indicate the languages). Most
of the final MT users and projects need a wider variety of source and target languages for evaluation.

Turchi and Negri (2014) propose an automatic approach to produce training data for QE and tackle the
problem of scarce training resources. The approach is based on features across the MT output, the post
edited version and the human reference translation. The method produces a classifier for binary estima-
tion by exploiting the characteristics of good translations and their relation with the post-editing process.
The produced data is labelled with a binary quality score (i.e. god or bad translation) to overcome biases
on the annotation.

On the other hand, Birch et al. (2008) propose a large scale study on the performance of 110 European
language pairs over Europarl. The study is based on the measuring the contribution of different features
between language pairs that improve or are irrelevant to the performance of an MT system. The features
consist of complexity indicators of morphology, language relatedness given word similarity, number of
reordering between language pairs and number of reorderings over alignments. Overall, closely related
languages showed the best potential for SMT. However, this study is mainly based on standard automatic
evaluation metrics such as BLEU.
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In this ongoing work, we propose a way to produce a number of evaluation pairs for the QE task
by utilising relatedness between languages, for example, by producing a QE evaluation for the en-pt
pair from an existing en-es training set. More specifically we will study the use of different transfer
learning methods to transfer classifiers across related languages. Our intuition is that sentences with
similar quality scores are close or share a lower-dimensional space in terms of features across related
languages. In other words, good/bad quality sentences might show similar characteristics between the
available training data (e.g. en-es) and unknown data (e.g en-pt). This makes possible the training of a
classification algorithm to predict QE by sharing information from the available dataset into unknown
datasets.

We show preliminary results on transferring training data from en-es European Parliament (Europarl)
domain to en-es, en-it and en-pt in the subtitling domain. The transfer learning method that shows
promising results is the one based on dimensionality reduction of the input. However, this method is
sensible to the distribution of classes of the training dataset, where it tends to predict the majority of the
training class. In addition, we provide further directions into transfer training data based on the similarity
of related languages for source languages that are not present in the original WMT QE datasets, but also
to tackle the unbalanced training dataset. We use a simple heuristic for assigning possible labels for the
unlabelled data based on edit distance scores between available reference translations and MT outputs.
However, this simple heuristic hurts the performance of the methods, where a more appropriate way of
adding similarity information is as an indicator for domain shift.

2 Background

Methods for QE are commonly based on computing similarity scores and information supplied by the
MT decoding process between source and machine translations. These sources of information are used
as features to train a supervised ML algorithm to predict QE scores. Specia et al. (2013) develop
the standard baseline framework for QE based on features that attempt to quantify the complexity of
a segment to be translated. Other previous works extend the baseline framework by adding complex
features between the source and machine translations. For example, syntax information of tree labels
counts (Avramidis, 2014), information to quantify the acts of translation between any two datasets with
respect to a reference in the same domain (Bicici and Way, 2014) and word alignment, word posterior
probabilities and diversity scores features (Camargo de Souza et al., 2014).

Beck et al. (2014) use multi-task learning techniques to improve QE by sharing information among
different domains. However, the QE task is only applied to certain language pairs. On the other hand,
de Souza et al. (2015) integrate QE into a CAT tool with online learning to constantly train the quality
prediction model. This method can be used to extract QE training data or prediction models for several
domains and languages.

Transfer learning aims to transfer information learned in one or more source tasks (e.g. labelled
dataset) and use it to improve learning in a related target task (e.g. unlabelled dataset) (Pan and Yang,
2010). In our case the labelled dataset comes from a QE training set for an existing language pair, while
unlabelled datasets are either for the same pair, but in a completely different domain, or for another
language pair.

2.1 Transductive Support Vector Machine

Transductive Support Vector Machine (TSVM) takes into consideration a particular test dataset and tries
to minimise errors only on those particular instances (Vapnik, 1995). The particular test dataset is added
into the training dataset without labels. The TSVM learns a large margin hyperplane classifier using
labelled training data, but at the same time it forces that hyperplane to be far from the unlabelled data.
The TSVM considers f that maps inputs x to outputs y. However, TSVM does not construct a function
f where the output of the transduction algorithm is a vector of labels, and the method transfers the
information from labelled instances to the unlabelled.
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2.2 Label Propagation
Label propagation (Zhu and Ghahramani, 2002) is based on a graph that connects similar instances. The
nodes labels (i.e. instances) propagate to neighbouring nodes given proximity. This model resembles
the k-NN nearest neighbours where closer data points tend to have similar labels. The l labelled training
examples {(x1, y1), (x2, y2)..., (xl, yl)} and the u unlabelled training examples {x1, x2, ..., xu}, where
the Y classes are known. Label propagation estimates the Yu given the training examples. The method
creates a fully connected graph where the nodes are all the labelled and unlabelled instances. The edges
are weighted based on the euclidean distance between the nodes where the closer nodes have a larger
weight value. The nodes have soft labels that are propagated thorough all the edges modifying the
unlabelled instances, and the larger the weight the easier is to propagate the label across the graph.

2.3 Self-taught Learning
Raina et al. (2007) propose a semi-supervised transfer learning method based on using labelled and un-
labelled data. However, this method does not assume that the unlabelled dataset is drawn from the same
distribution as the labelled. The unlabelled data is used to learn a lower dimensional feature representa-
tion of the inputs. With this representation new instances can be classified in the lower dimensional space.
The unlabelled data is used for dimensionality reduction of the labelled dataset, which is commonly used
with sparse high dimensional data.

The transfer learning problem algorithm is defined as:

• l training examples {(x1, y1), (x2, y2)..., (xl, yl)}, y ∈ Y;
where Y is the output.

• u unlabelled examples {x1, x2, ..., xu}.

• Learn the higher-level representation by dimensionality reduction by using sparse-coding.

• Compute new labelled training dataset with new representation x̂l.

• Use standard classification methods with new training dataset.

3 Methodology

In this section, we describe the QE features and the transfer learning setup. We use the standard QE
baseline features and available implementations of transfer learning methods making the experiments
easy to reproduce. The QE task (Bojar et al., 2014) considers word-level, sentence-level and document-
level estimation. The types of annotation (i.e. labels) for the predicted output scores and ranks consist
in:

Post-editing effort The perceived effort of a translator to edit a sentence scored with quality labels such
as:
1 = perfect translation, no post-editing needed at all;
2 = near miss translation: translation contains maximum of 2-3 errors, and possibly additional errors
that can be easily fixed (capitalisation, punctuation);
3 = very low quality translation, cannot be easily fixed.

HTER The minimum edit distance score between the machine translation and its manually post-edited
version in [0,1].

Post-editing time The real valued estimate of the time (in milliseconds) it takes a translator to post-edit
the translation.

We focus our experiments on the sentence-level estimation with the labelling based on post-editing
effort. However, the transfer learning methods can be applied on every estimation subtask. We chose
the 3-way labelling in contrast to the binary classification given that post-editing is a common scenario
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present in our domain of interest (subtitling). We want to show to the translator sentences with good
quality but also sentences that can be saved by a small post-editing effort. In addition, we belied that
the 3-way labelling is a straight forward scheme for annotators. Our current experiments only cover the
testing of a small number language pairs with manual evaluation.

3.1 QE feature description
The baseline features for QE are defined for the source, target (i.e. MT output) and the translations
(i.e. relations between them). The QuEsT framework (Specia et al., 2013) implements different types of
features. The features can be divided on different families:

Complexity Indicators Features related to the source text of how complex to translate a sentence can
be, such as, number of tokens, language model and average number of translations.

Confidence Indicators Features related to the fluency of the MT output, such as, number of tokens,
language model, and number of occurrences of the target word within the target sentence.

Fluency Indicators Features related to the adequacy (meaning preservation) of the translation, such as,
ratios of tokens between the source and target, ratio of punctuation and syntactic similarity. The
framework also introduces features related to a specific decoding process when available, such as,
global score of the system and number of hypotheses in the n-best list.

We use the baseline setup of the framework that consists of 17 baseline features that are language
independent.

3.2 Transfer learning setup
We aim to apply transfer learning, when texts in related languages are treated as unlabelled out-of-domain
data. For example, the available en-es labelled dataset is used to transfer information into the unlabelled
en-pt to predict QE scores on that unknown language pair. The methods used in this study required as
input a small amount of labelled instances and large amounts of unlabelled instances for training. We
define three models for transfer information from labelled QE data into unlabelled data. The models are
as follows:

TSVM Model based on a Transductive Support Vector Machine.

LP Model based on Label Propagation.

STL Model based on Self-taught learning.

We use SVMlin1 for training the TSVM, given that is optimised to work with a large number of
instances. Our TSVM uses an RBF kernel with no hyper-parameter optimisation. Each instance in the
unlabelled dataset is added to the training dataset. This improved training data is used to perform testing.
For classification, we implement the one-against-one strategy, and the final decision is given by voting.

For the LP model, we use the implementation from the scikit-learn2 toolkit with the RBF kernel with
no hyper-parameter optimization.

We modify the STL MATALB implementation from the Stanford Deep learning course3. The STL
model first finds the weights b from the unlabelled xu dataset by training a sparse autoencoder. The b
weights come from the optimisation of the cost function on sparse coding, where one of the compo-
nents are the basis vectors. This is a technique for dimensionality representation of the input. Second,
the model produces a modified training dataset by using the unlabelled b weights on an second autoen-
coder. The modified training dataset is a lower-dimensional representation of the input features (i.e. QE
17 baseline features). We use the softmax regression as classifier with the default parameters and the
modified labelled training dataset.

1http://vikas.sindhwani.org/svmlin.html
2http://scikit-learn.org/dev/index.html
3https://github.com/amaas/stanford_dl_ex
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A new test dataset can be predicted by using the weights b to represent the data points into the same
lower-dimensional space. We normalize the features with the z-score. However, we do not have access
to any development datasets for tuning the xu autoencoder for our unlabelled language pairs. For the
parameter selection of the unlabelled autoenconder, as suggested in (Bergstra and Bengio, 2012), we run
a random search over a split of the modified training dataset (90% training, 10% validation) in order
to find: the size of the hidden dimension, the sparsity parameter, the weight decay parameter and the
sparsity penalty. We run the random search parameter optimisation for each unlabelled language pair,
thus learning parameters on each unlabelled language pair.

In addition, we define a model based on Logistic Regression without the aid of any transfer learning
as the baseline. The baseline is trained with an available dataset (e.g. en-es).

4 Experiments

In this section, we describe the data used to train and evaluate our transfer learning models for related
languages pairs. We show results on manual evaluation for different language pairs of the en to Romance
languages (es, pt and it). We also show cross validation results for the en-de pair.

4.1 Data description

The labelled data xl for the pair en-es come from the WMT 2014 QE shared task4, which consist of 3,816
source and target pairs. The en-es WMT data belong to the proceedings of the European Parliament
(Europarl) domain. The distribution of instances for each quality label is: 1-949, 2-2010 and 3-857. Our
objective is to score sentence-level QE for related languages for the en-target translation direction, where
we vary the target language.

The unlabelled data consist of subtitles from the Zoo corpus. Zoo is a proprietary corpus of subtitles
produced by professional translators. We split the Zoo corpus into unlabelled training xu and testing for
each one of the pairs: en-es, en-pt and en-it. We also test the pair en-de Europarl given that labelled
data is available with 600 sentences for testing, as well as, a correspondent out-of-domain data with 297
sentences. We use the Moses (Koehn et al., 2007) toolkit with a phrase-based baseline to extract the
QE features for the xl, xu, and testing. The Zoo dataset used for the SMT baseline is: 80K training
sentences, 1K sentences for tuning and 2K sentences for testing. We use the Zoo test 2K sentences for
testing our proposed methods. We use fast-align5, KenLM6 with a 3-gram language model and Moses
with the standard feature set. In addition, we run a small QE manual evaluation over a random sample
of 100 sentences from the Zoo test dataset (original 2K sentences) for the pairs: en-es, en-pt and en-it.
The annotation is performed by one professional translator for Post-editing effort at sentence level with
3-way labelling. The evaluation metric is the absolute classification accuracy for the 3-way labelling
between the QE system prediction and the test random sample.

4.2 Results

Table 1 shows the results on the validation dataset for the parameter optimisation of the STL model.

Table 1: Accuracy results for the validation dataset with the STL model.

Model
Pair

en-es en-pt en-it

STL 0.56 0.55 0.57

We run the random search for learning parameters on the modified training data x̂l for each unlabelled
dataset, where the number of iterations for each random search is 100. The labelled training set is en-es
EuroParl and the unlabelled are: es, it and pt (subtitling domain). Each unlabelled dataset consists of

4http://www.statmt.org/wmt14/quality-estimation-task.html
5https://github.com/clab/fast_align
6https://kheafield.com/code/kenlm/
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10K sentences from the Zoo training section. It is worth noticing that the learned hidden dimension for
each language pair is: en-es 15, en-pt 9, en-it 13, where the original input dimension is 17 features.

Table 2 shows the accuracy results for each transfer learning method on the test samples. The TSVM
shows a poor performance in comparison to the other techniques. A possible reason for this result is
the lack of parameter optimisation, in specific the parameter for setting the fraction of positive instances
for the unlabelled data. Our models are trained with a very unbalanced dataset. The LP results show
a similar behaviour, where we manually set a low gamma parameter in order to change the strong bias
of predicting all the instances into one class. However, we are able to optimize parameters for the STL
given that the model operates over a transformation of the labelled training dataset.

Table 2: Accuracy results for Transfer Learning models on Romance languages pairs.

Model
Pair

en-es en-pt en-it

TSVM 0.52 0.30 0.30
LP 0.49 0.26 0.31

STL 0.53 0.48 0.49
Baseline 0.50 0.38 0.33

The STL model outperforms both the baseline and other transfer techniques. The pair en-es achieves
the best results given that is an instance of domain adaptation between the same translation pairs. The
performance difference between the STL model and the baseline for en-es is narrow with the same
language pair but with different domains (i.e. WMT and subtitling). However, the other pairs achieve
lower results in comparison because they have different domains and labelled training language data.

We vary the number of training instances for the en-pt xu to test the effect over the labelled data. Table
3 shows the 10-fold cross validation and test results on the variation of unlabelled data for the en-pt pair.
The number of unlabelled data used for the variation test is as follows: 500, 1K, 10K and 20K. The
variation of unlabelled instances marginally affects the cross validation, but over the test dataset the 10K
dataset improves the results. However, the balance of labelled instances highly affects the space induced
by the autoencoder.

The labelled dataset tends to have the majority of instances into the classes 1,2, where the STL shows
a bias on the prediction for the majority of the classes 1 and 2 from the training dataset. In order to tackle
the unbalance labelled data, we use a simple heuristic of selecting the missing 3 class instances, where
the Levenshtein distance between the available reference translations and MT outputs is over a certain
threshold. The examples are tagged as 3 and added into the labelled training data. For the en-pt pair the
number of artificial examples is 161 with a threshold of 0.5. The accuracy result for the validation is
0.56 and the test accuracy is 0.37. The validation score shows a marginal improvement, but the heuristic
hurts the test accuracy. Yang and Eisenstein (2015) use features to characterise multi-domain shift by a
binary vector of which instances share a given domain. In our case the instances can share information by
computing similarity between the labelled and unlabelled datasets, as well as, the use of dimensionality
reduction.

Table 4 shows the accuracy results on en-de Europarl (1400 instances) as the labelled training and

Table 3: Accuracy results 10-fold cross validation and test dataset en-pt for unlabelled data size variation.
Unlabelled data
size (sentences)

10-fold cross validation
Training

Test

500 0.52 0.39
1K 0.54 0.37
10K 0.54 0.48
20K 0.53 0.41
50K 0.53 0.40
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en-de subtitling (10K instances) as the unlabelled dataset for the STL model. We use 10-fold cross
validation over the modified training dataset because there is no test data available for en-de subtitling.
Over the validation dataset the en-de achieves 0.61, with a hidden dimension of 15.

Table 4: Results 10-fold cross validation for STL on the en-de pair.

Model
Pair

en-de

STL 0.47
Baseline 0.48

Table 5 shows the results of the STL result for the available WMT Europarl data,WMT out-of-domain
data and the baseline.

Table 5: Accuracy results for en-de WMT data.

Model
Pair en-de

WMT Europarl
en-de

WMT out-of-domain
STL 0.51 0.49

Baseline 0.44 0.41

The distribution of classes on the labelled en-de dataset is: 1-317, 2-522 and 3-561. This labelled
dataset shows to be balanced in comparison with the en-es. The STL test results outperforms the baseline
for the Europarl and out of domain, but the results are lower for the cross validation. The STL model
assigns predictions to classes as follows: 1-14.14%, 2-43.10% and 3-42.76%.

5 Future work

We have presented work in progress for developing QE for a large number of language pairs. We use
different transfer learning mechanisms to tackle the lack of QE training data for related languages. We
show results on a small sample for the English to Romance languages directions, and we test the con-
tribution of related languages also on the en-de test dataset. The STL model shows to outperform the
other transfer methods. However, this model is sensible to the balance of the labelled training data, so
that a different balance in the unlabelled dataset affects the final performance. We tried to overcome the
unbalanced data by adding artificial instances for the under represented class, but this heuristic was not
successful.

For future work, we plan to extend the testing with various annotators in order to acquire reasonable
testing datasets for the language pairs under study. We will add extra features to the QuEst baseline based
on similarity scores as domain indicators to characterise differences and similarities between domains.
We will also expand the available labelled resources into other language families given that the STL
only requires as input a small amount of labelled data and larger amounts of unlabelled data, where
we can expand QE across related languages. Finally, we would like to try converting the QE models
for translation into related languages to a model for estimating the translation quality between these
languages, for example, using en-es and en-pt models to estimate the quality of es-pt translations.
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