
Proceedings of the SIGDIAL 2015 Conference, pages 159–161,
Prague, Czech Republic, 2-4 September 2015. c©2015 Association for Computational Linguistics

Fast and easy language understanding for dialog systems with
Microsoft Language Understanding Intelligent Service (LUIS)

Jason D. Williams, Eslam Kamal, Mokhtar Ashour, Hani Amr, Jessica Miller, Geoff Zweig
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
jason.williams@microsoft.com

Abstract

With Language Understanding Intelligent
Service (LUIS), developers without ma-
chine learning expertise can quickly build
and use language understanding models
specific to their task. LUIS is entirely
cloud-based: developers log into a web-
site, enter a few example utterances and
their labels, and then deploy a model to
an HTTP endpoint. Utterances sent to the
endpoint are logged and can be efficiently
labeled using active learning. Visualiza-
tions help identify issues, which can be re-
solved by either adding more labels or by
giving hints to the machine learner in the
form of features. Altogether, a developer
can create and deploy an initial language
understanding model in minutes, and eas-
ily maintain it as usage of their application
grows.

1 Introduction and Background

In a spoken dialog system, language understand-
ing (LU) converts from the words in an utter-
ance into a machine-readable meaning represen-
tation, typically indicating the intent of the ut-
terance and any entities present in the utter-
ance (Wang et al., 2005; Tur and Mori, 2011).
For example, consider a physical fitness do-
main, with a dialog system embedded in a wear-
able device like a watch. This dialog system
could recognize intents like StartActivity
and StopActivity, and could recognize enti-
ties like ActivityType. In the user utterance
“begin a jog”, the goal of LU is to identify the ut-
terance intent as StartActivity, and identify
the entity ActivityType=’’jog’’.

Historically, there have been two options for
implementing language understanding: machine-
learning (ML) models and handcrafted rules.

Handcrafted rules are accessible for general soft-
ware developers, but they are difficult to scale up,
and do not benefit from data. ML-based models
are trained on real usage data, generalize well to
new situations, and are superior in terms of robust-
ness. However, they require rare and expensive ex-
pertise, and are therefore generally employed only
by organizations with substantial resources.

Microsoft’s Language Understanding Intelli-
gent Service (LUIS) aims to enable software de-
velopers to create cloud-based machine-learning
language understanding models specific to their
application domain, without ML expertise. LUIS
is built on prior work in Microsoft Research on in-
teractive learning (Simard et al, 2014), and rapid
development of language understanding models
(Williams et al., 2015).

2 LUIS overview

Developers begin by creating a new LUIS “ap-
plication”, and specifying the intents and entities
needed in their domain. They then enter a few ut-
terances they would like their application to han-
dle. For each, they choose the intent label by
choosing from a drop-down, and specify any en-
tities in the utterance by highlighting a contiguous
subset of words in the utterance. As the developer
enters labels, the model is automatically and asyn-
chronously re-built (requring 1-2 seconds), and
the current model is used to propose labels when
new utterances are entered. These proposed labels
serve two purposes: first, they act as a rotating test
set and illustrate the performance of the current
model on unseen data; second, when the proposed
labels are correct, they act as an accelerator.

As labeling progresses, LUIS shows several
visualizations which show performance, includ-
ing overall accuracy and any confusions – for
example, if an utterance is labeled with the in-
tent StartActivity but is being classified
as StopActivity, or if an utterance was la-

159



beled as containing an instance of the entity
ActivityType, but that entity is not being de-
tected. These visualizations are shown on all the
data labeled so far; i.e., the visualizations show
performance on the training set, which is impor-
tant because developers want to ensure that their
model will reproduce the labels they’ve entered.

When a classification error surfaces in a visual-
ization, developers have a few options for fixing
it: they can add more labels; they can change a la-
bel (for example, if an utterance was mis-labeled);
or they can add a feature. A feature is a dic-
tionary of words or phrases which will be used
by the machine learning algorithm. Features are
particularly useful for helping the models to gen-
eralize from very few examples – for example,
to help a model generalize to many types of de-
vices, the developer could add a feature called
ActivityWords that contains 100 words like
“run”, “walk”, “jog”, “hike”, and so on. This
would help the learner generalize from a few ex-
amples like “begin a walk” and “start tracking a
run”, without needing to label utterances with ev-
ery type of activity.

In addition to creating custom entities, devel-
opers can also add “pre-built” ready-to-use enti-
ties, including numbers, temperatures, locations,
monetary amounts, ages, encyclopaedic concepts,
dates, and times.

At any point, the developer can “publish” their
models to an HTTP endpoint. This HTTP end-
point takes the utterance text as input, and returns
an object in JavaScript Object Notation (JSON)
form. An example of the return format is shown
in Figure 1. This URL can then be called from
within the developer’s application. The endpoint
is accessible by any internet-connected device, in-
cluding mobile phones, tablets, wearables, robots,
and embedded devices; and is optimized for real-
time operation.

As utterances are received on the HTTP end-
point, they are logged, and are available for la-
beling in LUIS. However, successful applications
will receive substantial usage, so labeling every ut-
terance would be inefficient. LUIS provides two
ways of managing large scale traffic efficiently.
First, a conventional (text) search index is created
which allows a developer to search for utterances
that contain a word or phrase, like “switch on” or
“air conditioning”. This lets a developer explore
the data to look for new intents or entirely new

{
"query": "start tracking a run",
"entities": [

{
"entity": "run",
"type": "ActivityType"

}
],
"intents": [

{
"intent": "StartActivity",
"score": 0.993625045

},
{

"intent": "None",
"score": 0.03260582

},
{

"intent": "StopActivity",
"score": 0.0249939673

},
{

"intent": "SetHRTarget",
"score": 0.003474009

}
]

}

Figure 1: Example JSON response for the utter-
ance “start tracking a run”.

phrasings. Second, LUIS can suggest the most
useful utterances to label by using active learning.
Here, all logged utterances are scored with the cur-
rent model, and utterances closest to the decision
boundary are presented first. This ensures that the
developer’s labeling effort has maximal impact.

3 Demonstration

This demonstration will largely follow the presen-
tation of LUIS at the Microsoft //build developer
event. A video of this presentation is available at
www.luis.ai/home/video.

The demonstration begins by logging into
www.luis.ai and inputting the intents and enti-
ties in the domain, including new domain-specific
entities and pre-built entities. The developer then
starts entering utterances in the domain and label-
ing them. After a label is entered, the model is
re-built, and the visualizations are updated. When
errors are observed, a feature is added to address
them. The demonstration continues by publish-
ing the model to an HTTP endpoint, and a few
requests are made to the endpoint by using a sec-
ond web browser window, or by running a Python
script to simulate more usage. The demonstration
then shows how these utterances are now available
for labeling in LUIS, either through searching, or

160



Figure 2: Microsoft Language Understanding Intelligent Service (LUIS). In the left pane, the developer
can add or remove intents, entities, and features. By clicking on a feature, the developer can edit the
words and phrases in that feature. The center pane provides different ways of labeling utterances: in the
“New utterances” tab, the developer can type in new utterances; in the “Search” tab, the developer can
run text searches for unlabeled utterances received on the HTTP endpoint; in the “Suggest” tab, LUIS
scans utterances received on the HTTP endpoint and automatically suggests utterances to label using
active learning; and in the “Review labels” tab, the developer can see utterances they’ve already labeled.
The right pane, shows application performance – the drop-down box lets the developer drill down to see
performance of individual intents or entities.

by using active learning. After labeling a few ut-
terances using these methods, the demonstration
concludes by showing how the updated applica-
tion can be instantly re-published.

4 Access

LUIS is currently in use by hundreds of develop-
ers in an invitation-only beta – an invitation may
be requested at www.luis.ai. We have begun
in an invitation-only mode so that we can work
closely with a group of developers of a manage-
able size, to understand their needs and refine the
user interface. We expect to migrate to an open
public beta in the coming months.

References
P Simard et al. 2014. ICE: Enabling non-experts to

build models interactively for large-scale lopsided

problems. http://arxiv.org/ftp/arxiv/
papers/1409/1409.4814.pdf.

G Tur and R De Mori. 2011. Spoken Language Un-
derstanding — Systems for Extracting Semantic In-
formation from Speech. John Wiley and Sons.

Y Wang, L Deng, and A Acero. 2005. Spoken lan-
guage understanding. Signal Processing Magazine,
IEEE, 22(5):16–31, Sept.

JD Williams, NB Niraula, P Dasigi, A Lakshmiratan,
CGJ Suarez, M Reddy, and G Zweig. 2015. Rapidly
scaling dialog systems with interactive learning. In
International Workshop on Spoken Dialog Systems,
Busan, Korea.

161


