
Proceedings of the First Workshop on Computing News Storylines, pages 1–10,
Beijing, China, July 31, 2015. c©2015 Association for Computational Linguistics and The Asian Federation of Natural Language Processing

Interactions between Narrative Schemas and Document Categories

Dan Simonson
Department of Linguistics

Georgetown University
Washington, DC, 20057, USA
des62@georgetown.edu

Anthony R. Davis
Enterra Solutions

Silver Spring, MD, 20910, USA
tonydavis0@gmail.com

Abstract

The unsupervised extraction of narrative
schemas—sets of events with associated
argument chains—has been explored and
evaluated from many angles (Chambers
and Jurafsky, 2009; Jans et al. 2012; Bal-
asubramanian et al., 2013; Pichotta and
Mooney 2014). While the extraction pro-
cess and evaluation of the products has
been well-researched and debated, little
insight has been garnered on properties of
narrative schemas themselves. We exam-
ine how well extracted narrative schemas
align with existing document categories
using a novel procedure for retrieving can-
didate category alignments. This was
tested against alternative baseline align-
ment procedures that disregard some of
the complex information the schemas con-
tain. We find that a classifier built with all
available information in a schema is more
precise than a classifier built with simpler
subcomponents. Coreference information
plays an crucial role in schematic knowl-
edge.

1 Introduction

In this work, we examine the properties of narra-
tive schemas—sets of events linked by common
participants. Though they’ve been widely investi-
gated, little work has been done to deploy schemas
as a component of a larger NLP task, aside from
tasks devised purely for validating schemas. To
understand what tasks are best suitable for narra-
tive schemas, we’ve begun to look closely at their
properties with the aim of applying them to other
NLP tasks.

Intuitively, narrative schemas are plausibly and
implicitly linked to the notion of a document
category—that is, a schema can represent the nar-
rative commonalities shared by a set of docu-
ments. In this work, we set out to try to substanti-
ate this claim in two different ways: we investigate
the relationship between schemas and topics and
we attempt to use these distributions to classify a
set of documents. In Section (2), we describe the
variety of techniques that have been attempted to
create schemas. In Section (3), we describe the
selection criteria for our source data. In Section
(4), we discuss our schema extraction procedure,
mostly derived from prior work with a few vari-
ations. In Section (5), we discuss how categories
are assigned to schemas. In Section (6), we outline
our different baseline and classifier experiments,
and in Sections (7) and (8), we present the results
of our experiments. In Sections (9) and (10), we
wrap up with implications of these results for fu-
ture work.

2 Background

What are referred to as schemas, templates, or
frames were first introduced in Schank and Abel-
son (1977) as a generalization of recurring event
knowledge. They present scripts as a theory of hu-
man memory—events that occur enough are gen-
eralized into a script by some aspect of the human
mind.

Chambers and Jurafsky (2008; 2009) developed
and implemented techniques for the automatic ex-
traction of schemas. A number of papers pre-
senting alternatives, innovations, and variants have
followed. Some use co-referent argument pairs—
a combination of coreference and syntactic parses
to obtain counts of verb-dependency pairs that
share a coreferent (Chambers and Jurafsky, 2008;

1



Chambers and Jurafsky, 2009; Chambers, 2013;
Jans et al. 2012; Pichotta and Mooney 2014). Oth-
ers focus on how the information is presented in a
given text, eschewing coreference information al-
together to build schemas based on its structure
alone (Cheung, Poon, and Vandervende 2013; Bal-
asubramanian et al., 2013). These schemas con-
tain knowledge not of which actors are likely to
participate in which actions but of which events
are like to occur before and after one another in
prose.

In addition to a choice between textual or coref-
erence information providing the basis for scor-
ing, the interactions between different role slots
across verbs are handled in roughly two differ-
ent ways. One approach is to train on individual
verb-dependency pairs, themselves associating ar-
guments to verbs (Chambers and Jurafsky, 2008;
Chambers and Jurafsky, 2009; Chambers, 2013;
Jans et al. 2012). On the other hand, all role fillers
can be handled together as one tuple that acts
as the argument to a verb (Pichotta and Mooney
2014; Balasubramanian et al., 2013). The key dif-
ference is that the verb-dependency approach ac-
cepts arguments to a particular verb without giving
those arguments any information about the others;
the tuple approach informs the arguments about
one another in some way. Verb-dependency ap-
proaches are more Davidsonian in the degree of
freedom given to verb arguments than their tuple-
bound counterparts (Davidson 1967).

Candidate insertions into a schema are ranked
in different ways. Pointwise mutual information
(pmi) is used in a number of approaches (Cham-
bers and Jurafsky, 2008; Chambers and Jurafsky,
2009; Jans et al. 2012) or maximization of proba-
bility given features under consideration, includ-
ing argument types and verb collocations them-
selves (Jans et al. 2012; Pichotta and Mooney
2014). Balasubramanian et al. (2013) use a graph-
ranking algorithm to generate schemas. Some
newer work takes a more theoretically sophisti-
cated approach, employing a formal probabilis-
tic model along with a Hidden Markov Model
to induce schematic knowledge (Chambers, 2013;
Cheung, Poon, and Vandervende 2013).

Most implementations have been evaluated us-
ing the narrative cloze task (Chambers and Juraf-
sky, 2008; Chambers and Jurafsky, 2009; Jans
et al. 2012; Pichotta and Mooney 2014). In
this procedure, a random verb is removed from a

document and the previously extracted schematic
knowledge is used to rank alternative verbs that
could fill the empty event slot. Balasubramanian
et al. (2013)—contrary to other approaches—use
human intuitions from Amazon Mechanical Turk
to evaluate their schemas.

3 Data Selection

Our data came entirely from the New York
Times Corpus (Sandhaus 2008), which consists
of around 1.8 million documents from the epony-
mous newspaper. Each document comes tagged
with associated metadata, including date, two
types of document categories, tags of people men-
tioned in each document, and other information.

From the original 1.8 million documents, 38832
were retained to generate schemas after our selec-
tion process, described next.

3.1 Keyword and Year Selection

All documents containing the keyword “police” in
any form were extracted from the New York Times
Corpus. Documents from late 1994 to mid 2008
were retained. This reduced the set to roughly 8%
of the original corpus size.

3.2 Categorical Selection

Documents in the NYT corpus are tagged with an
online producer property that provides cat-
egorical labels for documents. A subset of these
categories was then retained, with the intention
of providing not only a variety of narratives, but
also some more potentially complex distinctions
that could be difficult to disentangle. Collectively,
this represents a set of documents that are more
likely to refer to police as the focus—“noise” and
“demonstrations and riots”—than many of those
excluded—“international relations” and “United
States Armament and Defense.” No categories
outside of this set were explicitly excluded, how-
ever, and nothing prevents these categories from
overlapping, which they often do. Most extreme in
this regard is the category “Serial Murders”, where
every article is also contained in “Murders and At-
tempted Murders.”

In total, 38832 documents remain in the cor-
pus of source data. Table (1) lists the categories
and gives a breakdown of the distribution of docu-
ments across categories.

2



3.3 Coreference and Dependency
Preparation

Documents were parsed and their coreference
chains were extracted with Stanford CoreNLP
version 3.4.1 (Manning et al. 2014), particularly
the Stanford Parser (de Marneffe, MacCart-
ney, and Manning 2006) and the Stanford
Deterministic Coreference Resolution System
(Lee et al. 2013). From the parser, we used the
collapsed-ccprocessed-dependencies.
We only looked at dependencies related to the
verb, and each dependency was collapsed into
an appropriate super-category: agent, subj,
nsubj, csubj, xsubj are all mapped to SUBJ;
comp, obj, dobj, nsubjpass to OBJ; iobj
and prep .* to PREP.1

4 Extracting Schemas

In this section, we discuss in detail two compo-
nents of how we created schemas. The first is how
we scored candidate events for adding to a partic-
ular schema, with our score being largely derived
from Chambers and Jurafsky (2009). In the sec-
ond, we discuss how this score is used to generate
schemas.

4.1 Scoring Candidate Events
We largely followed Chambers and Jurafsky
(2009) in scoring candidate events with respect to
a particular schema.

Their score is based on pmi, defined in this con-
text as:

pmi(⟨w, d⟩, ⟨v, g⟩) = log
P (⟨w, d⟩, ⟨v, g⟩)

P (⟨w, d⟩)P (⟨v, g⟩)
(1)

where w and v are verbs, d and g are dependen-
cies. The probabilities P of pairs of narrative
events are defined as:

P (⟨w, d⟩, ⟨v, g⟩) =
C(⟨w, d⟩, ⟨v, g⟩)∑

w′,v′
∑

d′,f ′ C(⟨w′, d′⟩, ⟨v′, f ′⟩)
(2)

where C(⟨w, d⟩, ⟨v, g⟩) is the number of times a
co-reference chain contains some word that has
d dependency with verb w and some word that
has a g dependency with verb v. For example,
the pair of sentences “Johni danced poorly. The
crowd booed at himi” would contribute one count
to C(⟨dance, SUBJ⟩, ⟨boo, PREP⟩).

1Chambers and Jurafsky (2009) include prep as one of
their argument slots but do not include it in their diagrams:
“An event slot is a tuple of an event and a particular argument
slot (grammatical relation), represented as a pair ⟨v, d⟩ where
v is a verb and d ∈ {subject, object, prep}.”

To include the effect of typed arguments,
(Chambers and Jurafsky, 2009) defines sim as:

sim(⟨e, d⟩, ⟨e′, d′⟩, a) =
pmi(⟨e, d⟩, ⟨e′, d′⟩) + λ log freq(⟨e, d⟩, ⟨e′, d′⟩, a)

(3)

a represents a specific argument type.
freq(b, b′, a) returns the corpus count of a
filling both b and b′.

Chambers and Jurafsky (2009) used an open
set of noun phrase heads to generate their types.
Instead, we created an explicit list of preferred
types from the top 300 tokens contained in noun
phrases. We then removed cardinal numbers from
this candidate list, leaving 294 preferred argument
types. This was done for two reasons: to reduce
data sparsity and to improve performance since
chainsim′ maximizes over all possible types.

If none of the preferred types are available in-
side any of the noun phrases of a co-reference
chain, the results from the Stanford NER (Finkel,
Grenager, and Manning 2005) are checked. Af-
ter this, any pronouns are used to map a corefer-
ence chain to an appropriate fall-back type, either
SELF, PERSON, THING or PEOPLE as appropri-
ate. If there is no obtainable type, a final fall-back
called THINGY is used.

Chambers and Jurafsky (2009) point out that
sim biases the selection of verbs in favor of adding
a new verb that simply shares an argument type
with another verb already in the schema. How-
ever, this does not guarantee that the type works
for all events already in the schema. For this rea-
son, score is defined as follows, to sum over sim
values with all current elements of the schema:

score(C, a) =
n−1∑
i=1

n∑
j=i+1

sim(⟨ei, di⟩, ⟨ej , dj⟩, a)

(4)
With sim and score, chainsim′ is defined as:

chainsim′(C, ⟨f, g⟩) =

max
a

(
score(C, a) +

n∑
i=1

sim(⟨ei, di⟩, ⟨f, g⟩, a)

)
(5)

chainsim′ superpositions the influence of two
forces on introducing a new pair ⟨f, g⟩ to a chain:
how well ⟨f, g⟩ fits in the chain—which consti-
tutes

∑
sim(...)—and how well the argument a

fits within the context of the rest of the chain—the

3



effect of the score(C, a) component. chainsim′

finds the best argument for inducing this combina-
tion.

Differing from Chambers and Jurafsky, the can-
didate verb argument type a that maximized score
in Formula (5) is also retained to add to the list of
types associated with that chain in the schema. If
a role slot fails to score higher than a threshold for
any existing chains in the schema, a new, un-filled
singleton chain is started. If no evidence for a slot
was observed in the data with respect to a particu-
lar verb, that slot is never considered for addition
to any chains associated with that verb.

4.2 Schema Induction Procedure

In this section, we describe criteria for limiting
schema growth based on a competition model
among schemas for verbs. Chambers and Jurafsky
(2009) descend the list of verbs ranked by their
narsim score, adding each new verb incremen-
tally with narsim(N, vj) > β—creating a new
schema if narsim(N, vj) < β—or before a hard
limit of between six and twelve total events in
a schema, a number that varies for different ex-
perimental purposes. Given that this algorithm
is greedy, it is not entirely clear that it generates
schemas that are globally optimal and best repre-
sent the narratives exhibited in the corpus.

Our aim is to avoid the creation of “low qual-
ity” schemas resulting from the addition of verbs
that do not fit particularly well into one schema
as compared to others. Yangarber (2003) provides
a useful analogy in his description of counter-
training in the discovery of patterns for informa-
tion extraction. He notes that an “unsupervised al-
gorithm does not know when to stop learning”, so
that “in the absence of a good stopping criterion,
the resulting list of patterns must be manually re-
viewed”. Yangarber’s algorithm relies on compe-
tition among several different learners, each seek-
ing patterns for a different “scenario” (a topic or
domain). A pattern might have evidence favoring
a learner to select it, but if learners for other sce-
narios also find evidence to acquire it, that counts
against the first learners evidence.

The analogy that carries over to narrative
schemas is that they reflect topics or domains,
like Yangarber’s scenarios. Narrative schemas are
instantiated in individual documents, as sets of
clauses. Thus, a particular clause should “belong
to a single schema”. On this analogy, we can

formulate a version of counter-training by having
each schema compete for the elements that consti-
tute it. Those elements are verbs, which are thus
the analogs of patterns. Their individual instantia-
tions are clauses in documents – that is, a verb, its
dependencies and their fillers. Clauses are thus the
analogs to documents, because we wish to deter-
mine, for a given clause, which schema it instanti-
ates, if any.

Algorithm 1: Counter-training for narrative
event chain construction.
Data: Seed schemas, a scoring function

scoring, pruning conditions
Result: narrative schemas
while number of SchemasGrowing and
Candidates both > 1 do

initialize simtables S
for every schema ∈ SchemasGrowing do

initialize simtable s
for every candidate ∈ Candidates do

add
scoring(schema, candidate) to
s

add s to S
broadness[can] =

∑
s∈S

∑
c∈s 1

for simtable in simtables do
for can in broadness do

simtable[can] −=
broadness[can]

induct highest-ranked Candidates into
SchemasGrowing
prune SchemasGrowing and
Candidates

return GrownSchemas

Each schema ranks potential new additions in
competition with other schemas. The specific
process for this is detailed in Algorithm (1). In
short, every candidate event is scored with respect
to each schema and saved in simtable. Then
the broadness—how well each candidate event
scored with respect to all schemas—is computed.
Each score is penalized based on the broadness,
and the highest-ranked candidates are inducted
into their respective schemas. The list of schemas
and candidates are pruned according to the pro-
vided rules, and the process continues while there
are both still candidates and schemas available.

Using a broadness table allows for schemas to
compete with one another, and to do so irrespec-
tive of the order they are in. If many competing

4



schemas rank a candidate event highly, they may
only add it to themselves if the score outweighs the
allotted penalties. If too many instances of a verb
and its dependents seem to fit in different schemas,
we drop it from the list of candidate additions to
our narrative schemas. This does not preclude a
verb belonging to two or more narrative schemas,
since its individual occurrences might unmistak-
ably belong to one schema or another, even after
penalties have been deducted.

Figure 1: A grayscale confusion matrix showing
overlap of events in schemas. Each column and
row of pixels represents a schema, the schemas
themselves arranged orthographically. Increas-
ing brightness in a particular row and column
indicates that more events overlap between the
schemas represented by those respective rows and
columns. Our counter-training algorithm is in-
tended to produce schemas that are unique from
others—that is, that follow the diagonal strongly.

Empirical evaluation with the cloze task is
forthcoming. While we cannot enumerate all 800
of our schemas here,2 Figure (2) and (3) show ex-
amples that indicate that our schemas are at least
comparable with those others have extracted and
are sufficient for looking at the interaction be-
tween schemas and document categories.

Our algorithm allows for the generation of du-
plicate schemas. Two schemas can easily converge
if they were seeded with verbs that were closely
related; once they include the same events, they

2The full set can be found, in multiple formats, at:
http://schemas.thedansimonson.com

..shoot.

fire

.

wound

.

kill

.

take

.

identify

Figure 2: A schema extracted using our technique,
generated for and used in the classification task.
The red square and blue circle both indicate differ-
ent PERSONs. The downward pointing yellow tri-
angle indicates some THINGY; the upward point-
ing green triangle indicates either baghdad or a
THINGY.

are effectively identical. Figure (1) shows overlap
between all 800 schemas.

..lead.

give

.

arrest

.

charge

.

identify

.

take

Figure 3: Another schema extracted using our
technique, generated for and used in the classi-
fication task. Red squares are a police chain.
Both blue circles and green, upward pointing tri-
angles are independent PERSON chains. Down-
ward pointing triangles are a chain referring to a
killing.

5 Preparing Schemas for Classification
Experiments

To better understand the properties of schemas, we
will investigate how well schemas correlate with
the document categories assigned within the NYT
corpus. We will look at the schemas in two differ-
ent ways—first, by assigning document categories
to schemas, then by using these assignments to
complete a categorization task. We do not ex-
pect the system to perform better than proven cat-
egorization techniques—rather, the categorization

5



task acts as a proxy for investigating the distribu-
tional properties of schemas.

5.1 Retrieving Category Counts for Schemas

To employ schemas for classification, we will in-
terpret them as a set of features. Effectively, if
we think of the different event argument slots as
nodes of a graph, the chains can be thought of as
edges between nodes. These edges are pairs of
verb dependency pairs which we will refer to as
co-referring argument pairs (or CAPs, for short).
To a great extent, CAPs preserve the informa-
tion in the schema—the shared role fillers between
events—while allowing for partial matches.

For example, Figure (2) contains a number of
different chains. Some CAPs derived from this
schema are {⟨kill, SUBJ⟩, ⟨shoot, SUBJ⟩} from
the red square PERSON chain—derived, intu-
itively, from the fact that someone who shoots of-
ten kills—{⟨fire, PREP⟩, ⟨shoot, OBJ⟩} from the
blue circle PERSON chain—derived from the fact
that one may “shoot someone,” but also “fire
at someone”—among many, many others. This
schema alone contains 37 CAPs: 15 each from the
two chains that are shared in each and every role
slot, and 7 from the other two auxiliary slots.

For a given set of chains SC from schema S, we
disentangle the CAPs contained via the following:

CAPs(S) = {{vda, vdb} :
∧

x∈{a,b}
vdx ∈ C ∈ SC}

(6)
where C is a chain contained in the set of chains
SC , and vdx is any verb-dependency pair; a and b
are arbitrary indices. We then can assign weights
to a category c for a schema S by counting the cat-
egories of the documents that each CAP appears
in, or more specifically:

W (c, S) =
∑
d∈D

{
w(c) : d ∩ CAPs(S) ̸= ∅
0 : otherwise

(7)
where D is the set of sets of CAPs from each of
our training documents. w(c) is a weighting func-
tion for a category. If we are working with simple
document counts, w1(c) = 1 is sufficient; alter-
natively, a cf-idf—like tf-idf but with categories
instead of terms—could be used. This measure
uses widf (c) = N

nc
, where N is the total number

of documents in the corpus and nc is the number
of documents denoted as class c.

6 Classification Experiments

In order to understand the extent to which
schematic information interacts with document
categories, we considered individual, plausible
components of schemas as baselines to compare
against the performance of our full blown schema-
based classifier. We discuss these in this section,
as well as how the classification was performed,
and how the target data set was chosen.

Each experiment represents a different way of
extracting features from each schema. In other
words, we still begin with schemas, but we extract
the features between experiments. Each technique
is intended as a plausible candidate for explaining
how our schematic classifier works, working from
the simplest to more complex collocations.

6.1 Experimental Models
In this section, we will discuss each of our base-
line models, leading up to the features discussed
in Section (5.1).

6.1.1 Bag of Words Model
The bag of words model used here relies only on
the presence of events found in our schemas for
classification. Instead of thinking of each schema
as a set of chains that are decomposed into CAPs,
we look at each schema as a set of events SE :

W(S) = {vx : vx ∈ SE} (8)

where vx is a verb and x is an arbitrary in-
teger. The W of the schema in Figure (2) is
{shoot,fire,wound,kill,take,identify}.

6.1.2 Document Co-presence Model
In the document co-presence baseline model, if
two events both appear in a document—regardless
of their location or anything else—then that counts
as an instance of that feature.

D(S) = {{va, vb} :
∧

x∈{a,b}
vx ∈ SE} (9)

All permutations of pairs of events are con-
sidered. In a schema of size 6, this means
that there are 15 pairs of events as features:
{{shoot,fire}, {shoot,wound}, ... etc.}.

6.1.3 Coreference Co-presence Model
Our final baseline creates pairs any two events
which share co-referrent arguments. We do not

6



include the specific argument slot. Now using SC ,
the set of chains from schema S, instead of SE :

C(S) = {{va, vb} :
∧

x∈{a,b}
vx ∈ SC} (10)

This model’s features are nearly schematic in na-
ture, except that the features lack the specific slot
wherein co-presence was defined; at this point, we
effectively are using schemas without their role
slot labels. Features derived from the schema in
Figure (2) are no different from the last baseline
because all events are shared with at least one
chain. However, the interpretation of our hold-out
documents changes. Because we are now looking
at coreference, it is not the mere presence of a pair
of events in the text, but their linkage through their
arguments via coreference that counts.

6.1.4 Schematic Classifier

This is our schematic classifier, as discussed above
and illustrated with Equation (6). Note that Equa-
tion (10) is nearly identical to Equation (6); v has
been swapped with vd representing the set of verb-
dependency pairs. With verb-dependency pairs in-
stead of verbs alone, we have built-up to a set of
features that closely approximates our schemas.

6.2 Implementation

We used the scikit-learn class
sklearn.naive bayes.MultinomialNB
to classify our documents (Pedregosa et al.
2011). Because our document categories overlap,
we took a one-vs-all classification strategy for
each document class; each document category
represents a split into + or - classes. For the
classification task, to give as much information
as possible to the classifier, we generated 800
schemas seeded with the 800 most frequent verbs.
We held-out 1/10th of documents for evaluation.

In performing classification, we conducted a
“rank descent.” We started with the highest
weighted category for a given feature in our first
test, then used the two highest-weighted categories
in the second experiment, etc., until every category
that appeared with the feature is applied.

We completed the classification task in two sep-
arate sets of experiments using the raw counts
weighting (w1) in one and the cf-idf (widf ) weight-
ing scheme in the other.

7 Results

Table (1) contains a breakdown by category of
peak performance. Categories that were better
represented tend to have higher peak F1 scores.
More poorly represented categories tended to peak
in performance with the CAPs or at least corefer-
ence information provided by the coreference co-
presence model C, though this was not entirely the
case—the very frequent category “crime” peaked
with the C.

Table 1: Number of documents per category re-
tained from the “police” subset, along with the
rank n at which the rank descent reached the
peak F1 value, which of the weighting functions
wx—w1 or widf —was used from Section (5.1)
and which of the models was used from Section
(6.1) for which performance peaked with respect
to F1. W is the bag of words model, D is doc-
ument co-presence, C is coreference co-presence,
and CAPs represents a fully schematic classifier.
N is the number of documents in a respective cat-
egory. Some category names have been shortened
or abbreviated.

Category N F1 n wx Model
Terrorism 16,290 0.422 9 idf W

Crime 14,685 0.461 6 idf C
Murders 13,872 0.430 1 1 W

World Trade Ctr. 8,916 0.213 3 1 CAPs
Violence 6,450 0.183 5 idf C

Demonstr. and Riots 6,430 0.193 4 idf W
Accidents 5,719 0.166 4 1 W

Police Brutality 4,627 0.237 2 1 W
Blacks 3,522 0.166 6 idf D

Law and Legislation 3,319 0.321 2 1 W
Frauds 1,848 0.136 7 idf D

Attacks on Police 1,621 0.168 3 1 C
Organized Crime 871 0.098 4 idf C

Serial Murders 918 0.075 8 1 CAPs
Cocaine 464 0.061 5 idf CAPs
Suburbs 303 0.108 3 idf CAPs

Noise 206 0.037 14 1 D
Prison Escapes 137 0.100 2 idf CAPs

Figures (4) and (5) illustrate precision-recall
curves for both series of up to rank n experiments.
In all cases, n goes up as we move from left to
right; recall increases with each increase in n.

8 Discussion

Remarkably, we see some capability for schema-
specific features to classify documents despite be-
ing generated without any explicit knowledge of
the classifications they denote. Not in all cases is
this the best, but it tends to help bolster perfor-
mance in under-represented categories within the
corpus. The precision-recall curves in Figures (4)
and (5) illustrate our point—as we remove features

7



...
..

0

.

0.2

.

0.4

.

0.6

.

0.8

.

0.2

.

0.4

.

0.6

.

0.8

.

Recall

.

Pr
ec

is
io

n

.

up to rank n with w1

.

. ..CAPs

. ..C: Coref Co-pres

. ..D: Doc Co-pres

. ..W: Bag of Words

Figure 4: Precision/Recall curves for the up to
rank n classification experiment using w1 to assign
categories to schemas.

...
..

0

.

0.2

.

0.4

.

0.6

.

0.8

.

0.2

.

0.4

.

0.6

.

0.8

.

Recall

.

Pr
ec

is
io

n

.

up to rank n with widf

.

. ..CAPs

. ..C: Coref Co-pres

. ..D: Doc Co-pres

. ..W: Bag of Words

Figure 5: Precision/Recall curves for the up to
rank n classification experiment using widf to at-
tach category assignments to schemas.

that our schemas uniquely provide, the peak pre-
cision generally declines. This shows that the fea-
tures included in schemas do possess information
specific to their associated document categories.

Of course, the rather simplified classifiers we’ve
presented are by no means reflective of an industry
standard classifier.3 The number of features—only
6901 unique CAPs available, 1629 word types in
the W baseline—is less than what would be avail-
able to a typical bag of words analysis on the same
data set—193702 word types. This performance
produces precision-recall curves with a concave
shape. However, what we do see is a suitable il-
lustration that, with respect to the relationship be-
tween schemas and categories, the whole is greater
than the sum of its parts.

Also worth noting is the fact that the precision-
recall curve of the schematic classifier and the
coreference co-presence classifier C nearly adhere
to one another. Figure (2) gives a great example
of why slot information may not be helpful in all
circumstances. In this schema, there are two very
clear individuals in most of the events: a shooter
of some sort, and someone who was shot. What
about with identify and take? These are a bit more
ambiguous; the precise utility of each exact argu-
ment slot is not as clear. The connections cre-
ated through coreference, however, remain quite
relevant and, alone, less error prone. This puts
into question approaches that leave out corefer-
ence (Cheung, Poon, and Vandervende 2013; Bal-
asubramanian et al., 2013)—with respect to this
task, something was lost without it.

It is also necessary to critically question the effi-
cacy of our source data, especially the largely un-
known criteria used by the NYT Indexing Service
to determine document categories. With respect to
the schema in Figure (2), most individuals indu-
bitably would say that such a schema is associated
with murder. However, there are plenty of exam-
ples where shooting, wounding, and killing are not
classified by the NYT Indexing Service as “Mur-
ders and Attempted Murders:”

“A Brooklyn grand jury has cleared two
police officers in the killing of an un-
armed man whom they shot 18 times...”

3While our F1 scores across categories averaged 0.199, a
non-schematic, bag-of-words Naı̈ve Bayes classifier using all
available word types averaged 0.458. Most categories outper-
formed the non-schematic classifier, except for Suburbs and
Prison Escapes, which scored 0.000 with the non-schematic
classifier.

8



“The United States Marshal who shot
and wounded a Queens high school stu-
dent Thursday after mistaking the candy
bar he was holding for a revolver...”

“...the Police Department is being scru-
tinized over the shooting of several civil-
ians by officers... a Hispanic teen-ager
was shot in the back last month in Wash-
ington Heights.”

In the words of Joe Strummer, “murder is a
crime, unless it is done by a policeman.” While we
did not apply the types of role fillers explicitly to
the classification task, these sorts of “errors” mo-
tivate the use of role fillers in future work.

9 Conclusions

We have shown techniques for deriving features
from narrative schemas, and shown that features
derived from narrative schemas are more than the
sum of their parts. In particular, coreference in-
formation is a crucial component of them and
seems—of the set of interpretations of schemas
used—to produce the most substantial boost in
precision.

10 Future Work

The long term goal of this work is to apply the
information contained in narrative schemas to a
real-world application. Knowing that schemas can
act as precise identifiers of document categories
improves our confidence in their usefulness. We
hope to experiment with the use of additional fea-
tures so that narrative schemas can serve as the ba-
sis for richer unsupervised knowledge extraction.
We have discussed preliminary ideas for new ways
to generate schemas as well, which we soon hope
to evaluate.

Acknowledgments

We’d like to thank the Georgetown Department
of Linguistics for continued support, Amir Zeldes
and Nate Chambers for feedback and discussions
on components of this work, and the peer review-
ers for insightful critiques.

References
Balasubramanian, N., Soderland, S., Mausam, & Et-

zioni, O. 2013. Generating Coherent Event
Schemas at Scale. In EMNLP (pp. 1721-1731).

Chambers, N., & Jurafsky, D. 2008. Unsupervised
Learning of Narrative Event Chains. In ACL (pp.
789-797).

Chambers, N., & Jurafsky, D. 2009. Unsupervised
learning of narrative schemas and their participants.
In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP: Volume 2-Volume 2 (pp. 602-610).
Association for Computational Linguistics. Chicago

Chambers, N., & Jurafsky, D. 2011. Template-
based information extraction without the templates.
In ACL-HLT 2011 (pp. 976-986). Association for
Computational Linguistics.

Chambers, N. 2013. Event Schema Induction with a
Probabilistic Entity-Driven Model. In EMNLP (pp.
1797-1807).

Cheung, J. C. K., Poon, H., & Vanderwende, L. 2013.
Probabilistic frame induction. In NAACL-HLT 2013
Association for Computational Linguistics.

Davidson, D. 1967. In Nicholas Rescher (ed.), The
Logic of Decision and Action. University of Pitts-
burgh Press.

de Marneffe, M., MacCartney, B., and Manning, C.D.
2006. Generating Typed Dependency Parses from
Phrase Structure Parses. In LREC 2006.

Finkel, J.R., Grenager, T., and Manning, C. 2005. In-
corporating Non-local Information into Information
Extraction Systems by Gibbs Sampling. In ACL
2005 (pp. 363-370).

Jans, B., Bethard, S., Vuli, I., & Moens, M. F. 2012.
Skip n-grams and ranking functions for predicting
script events. In EACL (pp. 336-344). Association
for Computational Linguistics.

Lee, H., Chang, A., Peirsman, Y., Chambers, N.,
Surdeanu, M., and Jurafsky, D. 2013. Determin-
istic coreference resolution based on entity-centric,
precision-ranked rules. Computational Linguistics
39(4).

Manning, C. D., Surdeanu, M., Bauer, J., Finkel,
J., Bethard, S. J., and McClosky, D. 2014. The
Stanford CoreNLP Natural Language Processing
Toolkit. In ACL (System Demonstrations, pp. 55-
60).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., ... & Duchesnay, E. 2011.
Scikit-learn: Machine learning in Python. The Jour-
nal of Machine Learning Research, 12, (pp. 2825-
2830).

Pichotta, K., & Mooney, R. J. 2014. Statistical Script
Learning with Multi-Argument Events. In EACL
(pp. 220-229).

Sandhaus, E. 2008. The New York Times Annotated
Corpus. Linguistic Data Consortium, Philadelphia.

9



Schank, R.C. & Abelson, R.P. 1977. Scripts, plans,
goals and understanding. Lawrence Erlbaum.

Yangarber, R. 2003. Counter-training in discovery of
semantic patterns. In ACL (pp. 343-350). Associa-
tion for Computational Linguistics.

10


