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Abstract

Earlier work on labeling Hiero grammars
with monolingual syntax reports improved
performance, suggesting that such label-
ing may impact phrase reordering as well
as lexical selection. In this paper we ex-
plore the idea of inducing bilingual labels
for Hiero grammars without using any
additional resources other than original
Hiero itself does. Our bilingual labels
aim at capturing salient patterns of phrase
reordering in the training parallel corpus.
These bilingual labels originate from hier-
archical factorizations of the word align-
ments in Hiero’s own training data. In this
paper we take a Markovian view on syn-
chronous top-down derivations over these
factorizations which allows us to extract
0th- and 1st-order bilingual reordering la-
bels. Using exactly the same training
data as Hiero we show that the Marko-
vian interpretation of word alignment fac-
torization offers major benefits over the
unlabeled version. We report extensive
experiments with strict and soft bilingual
labeled Hiero showing improved perfor-
mance up to 1 BLEU points for Chinese-
English and about 0.1 BLEU points for
German-English.

Phrase reordering in Hiero (Chiang, 2007) is mod-
elled with synchronous rules consisting of phrase
pairs with at most two nonterminal gaps, thereby
embedding ITG permutations (Wu, 1997) in lexi-
cal context. It is by now recognized that Hiero’s
reordering can be strengthened either by labeling
(e.g., (Zollmann and Venugopal, 2006)) or by sup-
plementing the grammar with extra-grammatical
reordering models, e.g., (Xiao et al., 2011; Huck
et al., 2013; Nguyen and Vogel, 2013). In this
paper we concentrate on labeling approaches.

Conceptually, labeling Hiero rules aims at in-
troducing preference in the SCFG derivations for
frequently occurring lexicalized ordering constel-
lations over rare ones which also affects lexical se-
lection. In this paper, we present an approach for
distilling phrase reordering labels directly from
alignments (hence bilingual labels).

To extract bilingual labels from word
alignments we must first interpret the alignments
as a hierarchy of phrases. Luckily, every
word alignment factorizes into Normalized
Decomposition Trees (NDTs) (Zhang et al.,
2008), showing explicitly how the word alignment
recursively decomposes into phrase pairs. Zhang
et al. (2008) employ NDTs for extracting Hiero
grammars. In this work, we extend NDTs
with explicit phrase permutation operators also
extracted from the original word alignment
(Sima’an and Maillette de Buy Wenniger, 2013);
Every node in the NDT is equipped with a
node operator that specifies how the order of
the target phrases (children of this node) is
produced from the corresponding source phrases.
Subsequently, we cluster the node operators
in these enriched NDTs according to their
complexity, e.g., monotone (straight), inverted,
non-binary but one-to-one, and the more complex
case of discontinuous (Maillette de Buy Wenniger
and Sima’an, 2013).

Inspired by work on parsing (Klein and Man-
ning, 2003), we explore a vertical Markovian
labeling approach: intuitively, 0th-order labels
signify the reordering of the sub-phrases inside the
phrase pair (Zhang et al., 2008), 1st-order labels
signify reordering aspects of the direct context
(an embedding, parent phrase pair) of the phrase
pair, and so on. Like the phrase orientation
models this labeling approach does not employ
external resources (e.g., taggers, parsers) beyond
the training data used by Hiero.

We empirically explore this bucketing for 0th-
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and 1st-order labels both as hard and soft labels.
In experiments on German-English and Chinese-
English we show that this extension of Hiero of-
ten significantly outperforms the unlabeled model
while using no external data or monolingual la-
beling mechanisms. This suggests the viability
of automatically inducing bilingual labels follow-
ing the Markov labeling approach on operator-
labelled NDTs as proposed in this paper.

1 Hierarchical models and related work

Hiero SCFGs (Chiang, 2005; Chiang, 2007) allow
only up to two (pairs of) nonterminals on the right-
hand-side (RHS) of synchronous rules. The types
of permissible Hiero rules are:

X → 〈α, γ〉 (1)

X → 〈α X1 β, δ X1 ζ〉 (2)

X → 〈α X1 β X2 γ , δ X1 ζ X2 η 〉 (3)

X → 〈α X1 β X2 γ , δ X2 ζ X1 η 〉 (4)

Here α, β, γ, δ, ζ, η are terminal sequences, possi-
bly empty. Equation 1 corresponds to a normal
phrase pair, 2 to a rule with one gap and 3 and 4
to the monotone- and inverting rules respectively.

Given an Hiero SCFG G, a source sentence s is
translated into a target sentence t by synchronous
derivations d, each is a finite sequence of well-
formed substitutions of synchronous productions
from G, see (Chiang, 2006). Existing phrase-
based models score a derivation der with linear
interpolation of a finite set of feature functions
(Φ(d)) of the derivation d, mostly working with
local feature functions φi of individual produc-
tions, the target side yield string t of d (target
language model features) and other features (see
experimental section): arg maxd∈G P(t,d | s) ≈
arg maxd∈G

∑|Φ(d)|
i=1 λi × φi. The parameters {λi} are

optimized on a held-out parallel corpus by direct
error-minimization (Och, 2003).

A range of (distantly) related work exploits
syntax for Hiero models, e.g. (Liu et al., 2006;
Huang et al., 2006; Mi et al., 2008; Mi and
Huang, 2008; Zollmann and Venugopal, 2006;
Wu and Hkust, 1998). In terms of labeling
Hiero rules, SAMT (Zollmann and Venugopal,
2006; Mylonakis and Sima’an, 2011) exploits a
“softer notion” of syntax by fitting the CCG-like
syntactic labels to non-constituent phrases. The
work of (Xiao et al., 2011) adds a lexicalized
orientation model to Hiero, akin to (Tillmann,

2004) and achieves significant gains. The work
of (Huck et al., 2013; Nguyen and Vogel, 2013)
overcomes technical limitations of (Xiao et al.,
2011), making necessary changes to the decoder,
which involves delayed (re-)scoring at hypernodes
up in the derivation of nodes lower in the chart
whose orientations are affected by them. This
goes to show that phrase-orientation models are
not mere labelings of Hiero.

Soft syntactic constraints has been around for
some time now (Zhou et al., 2008; Venugopal et
al., 2009; Chiang, 2010). In (Zhou et al., 2008)
Hiero is reinforced with a linguistically motivated
prior. This prior is based on the level of syntactic
homogeneity between pairs of non-terminals
and the associated syntactic forests rooted at
these nonterminals, whereby tree-kernels are
applied to efficiently measure the amount of
overlap between all pairs of sub-trees induced
by the pairs of syntactic forests. Crucially, the
syntactic prior encourages derivations that are
more syntactically coherent but does not block
derivations when they are not. In (Venugopal
et al., 2009) the authors associate distributions
over compatible syntactic labelings with grammar
rules, and combine these preference distributions
during decoding, thus achieving a summation
rather than competition between compatible label
configurations. The latter approach requires
significant changes to the decoder and comes at a
considerable computational cost. An alternative
approach (Chiang, 2010) uses labels similar to
(Zollmann and Venugopal, 2006) together with
boolean features for rule-label and substituted-
label combinations; using discriminative training
(MIRA) it is learned what combinations are
associated with better translations.

The labeling approach presented next differs
from existing approaches. It is inspired by soft
labeling but employs novel, non-linguistic bilin-
gual labels. And it shares the bilingual intuition
with phrase orientation models but it is based on
a Markov approach for SCFG labeling, thereby
remaining within the confines of Hiero SCFG,
avoiding the need to make changes inside the
decoder.1

1Soft constraint decoding can easily be implemented
without adapting the decoder, through a smart application of
“label bridging” unary rules. In practice however, adapting
the decoder turns out to be computationally more efficient,
therefore we used this solution in our experiments.
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Figure 1: Example alignment from Europarl

([1, 6], [1, 6], 1 )

([1, 2], [2, 3], 2 )

([1, 1], [3, 3], 4 ) ([2, 2], [2, 2], 5 )

([4, 5], [4, 5], 3 )

([4, 4], [4, 4], 6 ) ([5, 5], [5, 5], 7 )

Figure 2: Normalized Decomposition Tree (Zhang
et al., 2008) extended with pointers to original
alignment structure from Figure 1

2 Bilingual reordering labels for Hiero

Figure 1 shows an alignment from Europarl
German-English (Koehn, 2005) along with a tree
showing corresponding maximally decomposed
phrase pairs. Phrase pairs can be grouped into a
maximally decomposed tree (called Normalized
Decomposition Tree – NDT) (Zhang et al., 2008).
Figure 2 shows the NDT for Figure 1, extended
with pointers to the original alignment structure
in Figure 2. The numbered boxes indicate how
the phrases in the two representations correspond.
In an NDT every phrase pair is recursively split
up at every level into a minimum number (two
or greater) of contiguous parts. In this example
the root node splits into three phrase pairs, but
these phrase pairs together do not cover the entire
parent phrase pair because of the discontinuity:
“tailor ... accordingly/ darauf ... ausrichten”.

Following (Zhang et al., 2008), we use the
NDT factorizations of word alignments in the
training data for extracting phrases. Every NDT
shows the hierarchical structuring into phrases
embedded in larger phrases, which together with
the context of the original alignment exposes the
reordering complexity of every phrase (Sima’an
and Maillette de Buy Wenniger, 2013). We will
exploit these elaborate distinctions based on the
complexity of reordering for Hiero rule labels as
explained next.

Phrase-centric (0th-order) labels are based on
the view of looking inside a phrase pair to see
how it decomposes into sub-phrase pairs. The op-
erator signifying how the sub-phrase pairs are re-
ordered (target relative to source) is bucketted into
a number of “permutation complexity” categories.
Straightforwardly, we can start out by using the

two well known cases of Inversion Transduction
Grammars (ITG) {Monotone, Inverted} and label
everything2 that falls outside these two category
with a default label “X” (leaving some Hiero
nodes unlabeled). This leads to the following
coarse phrase-centric labeling scheme, which we
name 0th

ITG+: (1) Monotonic(Mono): binarizable,
fully monotone plus non-decomposable phrases
(2) Inverted(Inv): binarizable, fully inverted (3) X:
decomposable phrases that are not binarizable.

A clear limitation of the above ITG-like label-
ing approach is that all phrase pairs that decom-
pose into complex non-binarizable reordering pat-
terns are not further distinguished. Furthermore,
non-decomposable phrases are lumped together
with decomposable monotone phrases, although
they are in fact quite different. To overcome these
problems we extend ITG in a way that further
distinguishes the non-binarizable phrases and also
distinguishes non-decomposable phrases from the
rest. This gives a labeling scheme we will call
simply 0th-order labeling, abbreviated 0th, con-
sisting of a more fine-grained set of five cases,
ordered by increasing complexity (see examples
in Figure 4): (1) Atomic: non-decomposable
phrases, (2) Monotonic(Mono): binarizable, fully
monotone, (3) Inverted(Inv): binarizable, fully
inverted (4) Permutation(Perm): factorizes into a
permutation of four or more sub-phrases (5) Com-
plex(Comp): does not factorize into a permutation
and contains at least one embedded phrase.

In Figure 3, we show a phrase-complexity la-
beled derivation for the example of Figure 1.
Observe how the phrase-centric labels reflect the
relative reordering at the node. For example, the

2Non-decomposable phrases will still be grouped
together with Monotone, since they are more similar to this
category than to the catchall “X” category.
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Figure 3: Synchronous trees (implicit derivations end results) based on differently labelled Hiero
grammars. The figure shows alternative labeling for every node: Phrase-Centric (0th-order) (light gray)
and Parent-Relative (1st-order) (dark gray).

this is an important matter

das ist ein wichtige angelegenheit

1

1

2

2

Monotone

we all agree on this

das sehen wir alle

1

1

2

2

Inversion

i want to stress two points

auf zwei punkte möchte ich hinweisen
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Figure 4: Different types of Phrase-Centric Alignment Labels

Inverted label of node-pair 2 corresponds to the
inversion in the alignment of 〈we should, müsen
wir〉; in contrast, node-pair 1 is complex and
discontinuous and the label is Complex.

Parent-relative (1st-order) labels capture the re-
ordering that a phrase undergoes relative to an
embedding parent phrase.

1. For a binarizable mother phrase with orien-
tation Xo ∈ {Mono, Inv}, the phrase itself can
either group to the left only Left-Binding-
Xo, right only Right-Binding-Xo, or with both
sides (Fully-Xo).

2. Fully-Discontinuous: Any phrase within
a non-binarizable permutation or complex

alignment containing discontinuity.

3. Top: phrases that span the entire aligned
sentence pair.

In cases were multiple labels are applicable, the
simplest applicable label is chosen according to
the following preference order:
{Fully-Monotone, Left/Right-Binding-Monotone,
Fully-Inverted, Left/Right-Binding-Inverted,
Fully-Discontinuous, TOP}.

In Figure 3 the parent-relative labels in the
derivation reflect the reordering taking place at the
phrases with respect to their parent node. Node 4
has a parent node that inverts the order and the
sibling node it binds is on the right, therefore it
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is labeled “right-binding inverted” (R.B.I.); E.F.D.
and L.B.M. are similar abbreviations for “embed-
ded fully discontinuous” and “left-binding mono-
tone” respectively. As yet another example node
7 in Figure 3 is labeled “left-binding monotone”
(L.B.M.) since it is monotone, but the alignment
allows it only to bind to the left at the parent node,
as opposed to only to the right or to both sides
which cases would have yielded “right-binding
monotone” R.B.M. and “(embedded) fully mono-
tone” (E.F.M.) parent-relative reordering labels
respectively.

Note that for parent-relative labels the binding
direction of monotone and inverted may not be
informative. We therefore also form a set of
coarse parent-relative labels (“1st

Coarse”) by col-
lapsing the label pairs Left/Right-Binding-Mono
and Left/Right-Binding-Inverted into single labels
One-Side-Binding-Mono and One-Side-Binding-
Inv3.

3 Features for soft bilingual labeling

Labels used in hierarchical Statistical Machine
Translation (SMT) are typically adapted from ex-
ternal resources such as taggers and parsers. Like
in our case, these labels are typically not fitted to
the training data – with very few exceptions e.g.,
(Mylonakis and Sima’an, 2011; Mylonakis, 2012;
Hanneman and Lavie, 2013). Unfortunately this
means that the labels will either overfit or underfit,
and when they are used as strict constraints on
SCFG derivations they are likely to underperform.
Experience with mismatch between syntactic la-
bels and the data is abundant (Venugopal et al.,
2009; Marton et al., 2012; Chiang, 2010), and
using soft constraint decoding with suitable label
substitution features has been shown to be an
effective workaround solution. The intuition be-
hind soft constraint decoding is that even though
heuristic labels are not perfectly tailored to the
data, they do provide useful information provided
the model is “allowed to learn” to use them only
in as far as they can improve the final evaluation
metric (usually BLEU).

3We could also further coarsen the 1stlabels by
removing entirely all sub-distinctions of binding-type for
the binarizable cases, but that would make the labeling
essentially equal to the earlier mentioned 0th

ITG+ except for
looking at the reordering occurring at the parent rather than
inside the phrase itself. We did not explore this variant in this
work, as the high similarity to the already explored 0th

ITG+

variant made it not seem to add much extra information.

γβα

LHS
10

N1
11

N2
12

GAP1
11

GAP2
12

Substituting rule

Decoder chart

Label Substitution Features

Figure 5: Label substitution features, schematic
view. Labels/Gaps with same filling in the figures
correspond to the situation of a nonterminal/gap
whose labels correspond (for N1/GAP1). Fillings
of different shades (as for N2/GAP2 on the right
in the two figures) indicates the situation were the
label of the nonterminal and the gap is different.

Next we introduce the set of label substitution
features used in our experiments.

Label substitution features consist of a unique
feature for every pair of labels 〈Lα, Lβ〉 in the
grammar, signifying a rule with left-hand-side
label Lβ substituting on a gap labeled Lα. These
features are combined with two more coarse
features, “Match” and “Nomatch”, indicating if
the substitution involves labels that match or not.

Figure 5 illustrates the concept of label substi-
tution features schematically. In this figure the
substituting rule is substituted onto two gaps in
the chart, which induces two label substitution
features indicated by the two ellipses. The sit-
uation is analogous for rules with just one gap.
To make things concrete, lets assume that both
the first nonterminal of the rule N1 as well as
the first gap it is substituted onto GAP1 have
label MONO. Furthermore lets assume the second
nonterminal N2 has label COMPLEX while the
label of the gap GAP2 it substitutes onto is INV .
This situation results in the following two specific
label substitution features:
• subst(MONO,MONO)
• subst(INV ,COMPLEX)

Canonical labeled rules. Typically when la-
beling Hiero rules there can be many different
labeled variants of every original Hiero rule. With
soft constraint decoding this leads to prohibitive
computational cost. This also has the effect of
making tuning the features more difficult. In
practice, soft constraint decoding usually exploits

15



Systen Name Matching Type Label Order Label Granularity
Hiero-0th

ITG+ Strict 0th order Coarse
Hiero-0th Strict 0th order Fine
Hiero-1st

Coarse Strict 1th order Coarse
Hiero-1st Strict 1th order Fine
Hiero-0th

ITG+-Sft Soft 0th order Coarse
Hiero-0th-Sft Soft 0th order Fine
Hiero-1st

Coarse-Sft Soft 1th order Coarse
Hiero-1st-Sft Soft 1th order Fine

Table 1: Experiment names legend

System Name
DEV TEST

BLEU ↑ METEOR ↑ TER ↓ KRS ↑ BLEU ↑ METEOR ↑ TER ↓ KRS ↑
German-English

Hiero 27.90 32.69 58.22 66.37 28.39 32.94 58.01 67.44
SAMT 27.76 32.67 58.05 66.84N 28.32 32.88 57.70NN 67.63
Hiero-0th

ITG+ 27.85 32.70 58.04NN 66.27 28.36 32.90H 57.83NN 67.30
Hiero-0th 27.82 32.75 57.92NN 66.66 28.39 33.03NN 57.75NN 67.55
Hiero-1st

Coarse 27.86 32.66 58.23 66.37 28.22H 32.90 57.93 67.47
Hiero-1st 27.74H 32.60HH 58.11 66.44 28.27 32.80HH 57.95 67.39

Chinese-English
Hiero 31.70 30.72 61.21 58.28 31.63 30.56 59.28 58.03
Hiero-0th

ITG+ 31.54 30.97NN 62.79HH 59.54NN 31.94NN 30.84NN 60.76HH 59.45NN

Hiero-0th 31.66 30.95NN 62.20HH 60.00NN 31.90NN 30.79NN 60.11HH 59.68NN

Hiero-1st
Coarse 31.64 30.75 61.37 59.48NN 31.57 30.57 59.58HH 59.13NN

Hiero-1st 31.74 30.79 61.94HH 60.22NN 31.77 30.62 60.13HH 59.89NN

Table 2: Mean results bilingual labels with strict matching.4

a single labeled version per Hiero rule, which
we call the “canonical labeled rule”. Following
(Chiang, 2010), this canonical form is the most
frequent labeled variant.

4 Experiments

We evaluate our method on two language pairs:
using German/Chinese as source and English as
target. In all experiments we decode with a
4-gram language model smoothed with modified
Knesser-Ney discounting (Chen and Goodman,
1998). The data used for training the language
models differs per language pair, details are given
in the next paragraphs. All data is lowercased as
a last pre-processing step. In all experiments we
use our own grammar extractor for the generation
of all grammars, including the baseline Hiero
grammars. This enables us to use the same
features (as far as applicable given the grammar
formalism) and assure true comparability of the
grammars under comparison.

German-English
4Statistical significance is dependent on variance of

resampled scores, and hence sometimes different for same
mean scores across different systems.

The data for our German-English experiments
is derived from parliament proceedings sourced
from the Europarl corpus (Koehn, 2005), with
WMT-07 development and test data. We used a
maximum sentence length of 40 for filtering the
training data. We employ 1M sentence pairs for
training, 1K for development and 2K for test-
ing (single reference per source sentence). Both
source and target of all datasets are tokenized
using the Moses(Hoang et al., 2007) tokenization
script. For these experiments both the baseline
and our method use a language model trained
on the target side of the full original training set
(approximately 1M sentences).

Chinese-English
The data for our Chinese-English experiments is
derived from a combination of MultiUn(Eisele
and Chen, 2010; Tiedemann, 2012)5 data and
Hong Kong Parallel Text data from the Linguistic
Data Consortium6. The Hong Kong Parallel Text
data is in traditional Chinese and is thus first
converted to simplified Chinese to be compatible

5Freely available and downloaded from
http://opus.lingfil.uu.se/

6The LDC catalog number of this dataset is LDC2004T08
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System Name
DEV TEST

BLEU ↑ METEOR ↑ TER ↓ KRS ↑ BLEU ↑ METEOR ↑ TER ↓ KRS ↑
German-English

Hiero 27.90 32.69 58.22 66.37 28.39 32.94 58.01 67.44
SAMT 27.76 32.67 58.05 66.84N 28.32 32.88 57.70NN 67.63
Hiero-0th

ITG+-Sft 28.00N 32.76NN 57.90NN 66.17 28.48 32.98 57.79NN 67.32
Hiero-0th-Sft 28.01N 32.71 57.95NN 66.24 28.45 32.98 57.73NN 67.51
Hiero-1st

Coarse-Sft 27.94 32.69 57.91NN 66.26 28.45N 32.94 57.75NN 67.36
Hiero-1st-Sft 28.13NN 32.80NN 57.92NN 66.32 28.45 33.00N 57.79NN 67.45

Chinese-English
Hiero 31.70 30.72 61.21 58.28 31.63 30.56 59.28 58.03
Hiero-0th

ITG+-Sft 31.88N 30.46HH 60.64NN 57.82H 31.93NN 30.37HH 58.86NN 57.60H

Hiero-0th-Sft 32.04NN 30.90NN 61.47HH 59.36NN 32.20NN 30.74NN 59.45H 58.92NN

Hiero-1st
Coarse-Sft 32.39NN 31.02NN 61.56HH 59.51NN 32.55NN 30.86NN 59.57HH 59.03NN

Hiero-1st-Sft 32.63NN 31.22NN 62.00HH 60.43NN 32.61NN 30.98NN 60.19HH 59.84NN

Table 3: Mean results bilingual labels with soft matching.4

with the rest of the data 7. We used a maximum
sentence length of 40 for filtering the training
data. The combined dataset has 7.34M sentence
pairs. The MulitUN dataset contains translated
documents from the United Nations, similar in
genre to the parliament domain. The Hong Kong
Parallel Text in contrast contains a richer mix
of domains, namely Hansards, Laws and News.
For the dev and test set we use the Multiple-
Translation Chinese datasets from LDC, part 1-48,
which contain sentences from the News domain.
We combined part 2 and 3 to form the dev set
(1813 sentence pairs) and part 1 and 4 to form the
test set (1912 sentence pairs). For both develop-
ment and testing we use 4 references. The Chinese
source side of all datasets is segmented using the
Stanford Segmenter(Chang et al., 2008)9. The
English target side of all datasets is tokenized
using the Moses tokenization script.

For these experiments both the baseline and
our method use a language model trained on
5.4M sentences of domain specific10 news data
taken from the “Xinhua” subcorpus of the English
Gigaword corpus of LDC. 11

7Using a simple conversion script downloaded from
http://www.mandarintools.com/zhcode.html

8LDC catalog numbers: LDC2002T01, DC2003T17,
LDC2004T07 and LDC2004T07

9Downloaded from
http://nlp.stanford.edu/software/segmenter.shtml

10For Chinese-English translation the different domain of
the train data (mainly parliament) and dev/test data (news)
requires usage of a domain specific language model to get
optimal results. For German-English, all data is from the
the parliament domain, so a language model trained on the
(translation model) training data is already domain-specific.

11The LDC catalog number of this dataset is LDC2003T05

4.1 Experimental Structure
In our experiments we explore the influence of
three dimensions of bilingual reordering labels on
translation accuracy. These dimensions are:

• label granularity : granularity of the labeling
{Coarse,Fine}
• label order : the type/order of the labeling
{0th, 1st}
• matching type : the type of label matching

performed during decoding {Strict,Soft}
Combining these dimensions gives 8 different

reordering labeled systems per language pair.
On top of that we use two baseline systems,
namely Hiero and Syntax Augmented Machine
Translation (SAMT) to measure these systems
against. An overview of the naming of our
reordering labeled systems is given in Table 1.

Training and decoding details Our experiments
use Joshua (Ganitkevitch et al., 2012) with Viterbi
best derivation. Baseline experiments use nor-
mal decoding whereas soft labeling experiments
use soft constraint decoding. For training we
use standard Hiero grammar extraction constraints
(Chiang, 2007) (phrase pairs with source spans
up to 10 words; abstract rules are forbidden).
During decoding maximum span 10 on the source
side is maintained. Following common practice,
we use relative frequency estimates for phrase
probabilities, lexical probabilities and generative
rule probability.

We train our systems using (batch-kbest) Mira
as borrowed by Joshua from the Moses codebase,
allowing up to 30 tuning iterations. Following
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standard practice, we tune on BLEU, and after
tuning we use the configuration with the highest
scores on the dev set with actual (corpus level)
BLEU evaluation. We report lowercase BLEU
(Papineni et al., 2002), METEOR (Denkowski
and Lavie, 2011) and TER (Snover et al., 2006)
scores for the tuned test set and also for the tuned
dev set, the latter mainly to observe any possible
overfitting. We use Multeval version 0.5.1.12 for
computing these metrics. We also use MultEval’s
implementation of statistical significance testing
between systems, which is based on multiple
optimizer runs and approximate randomization.
Multeval (Clark et al., 2011) randomly swaps
outputs between systems and estimates the prob-
ability that the observed score difference arose by
chance. Differences that are statistically signif-
icant and correspond to improvement/worsening
with respect to the baseline are marked with N/Hat
the p ≤ .05 level and NN/HHat the p ≤ .01 level. We
also report the Kendall Reordering Score (KRS),
which is the reordering-only variant of the LR-
score (Birch and Osborne, 2010) (without the
optional interpolation with BLEU) and which is
a sentence-level score. For the computation of
statistical significance of this metric we use our
own implementation of the sign test 13 (Dixon and
Mood, 1946), as also described in (Koehn, 2010).

In our experiments we repeated each experi-
ment three times to counter unreliable conclusions
due to optimizer variance. Scores are averages
over three runs of tuning plus testing. Scores
marked with N are significantly better than the
baseline, those marked with H are significantly
worse; according to the resampling test of Mul-
teval (Clark et al., 2011).

Preliminary experiment with strict matching
Initial experiments concerned 0th-order reorder-
ing labels in a strict matching approach (no soft
constraints). The results are shown in Table 2 for
both language pairs. The results for the Hiero and
SAMT14 baselines (Hiero and SAMT) are shown
in the first rows. Below it results for the 0th-order
(phrase-centric) bilingual labeled systems with
either the Coarse (Hiero-0th

ITG+) or Fine label
12https://github.com/jhclark/multeval
13To make optimal usage of the 3 runs we computed

equally weighted improvement/worsening counts for all
possible 3 × 3 baseline output / system output pairs and use
those weighted counts in the sign test.

14SAMT could only be ran for German-English and not
for Chinese-English, due to memory constraints.

variant (Hiero-0th) are shown, followed by the
results for Coarse and Fine variant of the 1th-order
(parent-relative) bilingual labeled systems (Hiero-
1st

Coarse and Hiero-1st). All these systems use the
default decoding with strict label matching.

For German-English the effect of strict bilin-
gual labels is mostly positive: although we have
no improvement for BLEU we do achieve sig-
nificant improvements for METEOR and TER
on the test set. For Chinese-English, overall
Hiero-0th

ITG+ shows the biggest improvements,
namely significant improvements of +0.31 BLEU,
+0.28 METEOR and +1.42 KRS. TER is the
only metric that worsens, and considerably so
with +1.48 point. Hiero-1stachieves the highest
improvement of KRS, namely 1.86 point higher
than the Hiero baseline. Overall, this preliminary
experiment shows that strict labeling sometimes
gives improvements over Hiero, but sometimes it
leads to worsening in terms of some of the metrics.

Results with soft bilingual constraints Our ini-
tial experiments with strict bilingual labels in
combination with strict matching by the decoder
gave some hope such constraints could be useful.
At the same time the results showed no stable
improvements across language pairs, and thus
does not allow us to draw definite conclusions
about the merit of bilingual labels.

Results for experiments with soft bilingual la-
beling are shown in Table 3. Here Hiero corre-
sponds to the Hiero baseline. Below it are shown
the systems that use soft constraint decoding (
SCD). Hiero-0th

ITG+-Sft and Hiero-0th-Sft using
phrase-centric labels (0th-order) in Coarse or Fine
form. Similarly, Hiero-1st

Coarse-Sft and Hiero-
1st-Sft correspond to the analog systems with
1st-order, parent-relative labels. For German-
English there are only minor improvements for
BLEU and METEOR, with somewhat bigger im-
provements for TER. For Chinese-English how-
ever the improvements are considerable, +0.98
BLEU improvement over the Hiero baseline for
Hiero-1st-Sft as well as +0.42 METEOR and
+1.81 KRS. TER is worsening with +0.85 for this
system. For Chinese-English the Fine version of
the labels gives overall superior results for both
0th-order and 1st-order labels.

Discussion Our best soft bilingual labeling system
for German-English shows small but significant
improvements of METEOR and TER while im-
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proving BLEU and KRS as well, but not signifi-
cantly. The results with soft-constraint matching
are better than those for strict-matching in general,
while there is no clear winner between the Coarse
and Fine variant of labels.

For Chinese-English we see considerable
improvements and overall the best results for
the combination of soft-constraint matching,
with the Fine 1st-order variant of the labeled
systems (Hiero-1st-Sft). For Chinese-English the
improvement of the word-order is also particularly
clear as indicated by the +1.81 KRS improvement
for this best system. Furthermore the negative
effects in terms of worsening of TER are also
reduced in the soft-matching setting, dropping
from +1.48 TER to +0.85 TER. The results for
Hiero-0th-Sft are also competitive, since though
it gives somewhat lower improvements of BLEU
and METEOR, it gives an improvement of +1.89
KRS, while TER only worsens by +0.17 for this
system.

We conclude that bilingual Markov labels can
make a big difference in improvement of hier-
archical SMT. We observe that going beyond
the basic reordering labels of ITG, refining the
cases not captured by ITG and even more ef-
fective: taking a 1st-order rather than oth-order
perspective on reordering are major factors for
the success of including reordering information to
hierarchical SMT through labeling. Crucial to the
success of this undertaking is also the usage of
a soft-constraint approach to label matching, as
opposed to strict-matching. Finally, comparison
of the German-English results with results for
Syntax-Augmented Machine Translation (SAMT)
reveals that SAMT loses performance compared
to the Hiero baseline for BLEU, the metric upon
which tuning is done, as well as METEOR, while
only TER and KRS show improvement. Since
the best bilingual labeled system for German-
English (Hiero-1st-Sft) improves METEOR and
TER significantly, while also improving BLEU
and KRS, though not significant, we believe our
labeling is highly competitive with syntax-based
labeling approaches, without the need for any
additional resources in the form of parsers or
taggers, as syntax-based systems require. Likely
complementarity of reordering information, and
(target) syntax, which improves fluency, makes
combining both a promising possibility we would
like to explore in future work.

5 Conclusion

We presented a novel method to enrich Hierarchi-
cal Statistical Machine Translation with bilingual
labels that help to improve the translation quality.
Considerable and significant improvements of the
BLEU, METEOR and KRS are achieved simul-
taneously for Chinese-English translation while
tuning on BLEU, where the Kendall Reordering
Score is specifically designed to measure im-
provement of reordering in isolation. For German-
English more modest, statistically significant im-
provements of METEOR and TER (simultane-
ously) or BLEU (separately) are achieved. Our
work differs from related approaches that use
syntactic or part-of-speech information in the for-
mation of reordering constraints in that it needs no
such additional information. It also differs from
related work on reordering constraints based on
lexicalization in that it uses no such lexicaliza-
tion but instead strives to achieve more globally
coherent translations, afforded by global, holistic
constraints that take the local reordering history
of the derivation directly into account. Our exper-
iments also once again reinforce the established
wisdom that soft, rather than strict constraints,
are a necessity when aiming to include new in-
formation to an already strong system without the
risk of effectively worsening performance through
constraints that have not been directly tailored
to the data through a proper learning approach.
While lexicalized constraints on reordering have
proven to have great potential, un-lexicalized soft
bilingual constraints, which are more general and
transcend the rule level have their own place in
providing another agenda of improving transla-
tion which focusses more on the global coher-
ence direction by directly putting soft alignment-
informed constraints on the combination of rules.
Finally, while more research is necessary in this
direction, there are strong reasons to believe that
in the right setup these different approaches can be
made to further reinforce each other.
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