
Proceedings of the Seventeenth Conference on Computational Natural Language Learning: Shared Task, pages 68–73,
Sofia, Bulgaria, August 8-9 2013. c©2013 Association for Computational Linguistics

Toward More Precision in Correction of Grammatical Errors

Dan Flickinger
Center for the Study of

Language and Information
Stanford University

danf@stanford.edu

Jiye Yu
Center for the Study of

Language and Information
Stanford University

jyu2009@stanford.edu

Abstract

We describe a system for detecting and
correcting instances of a small class of fre-
quently occurring grammatical error types
in a corpus of essays which have been
manually annotated for these errors. Our
system employs a precise broad-coverage
grammar of English which has been aug-
mented with a set of mal-rules and mal-
entries to explicitly license certain types of
erroneous expressions. The derivation tree
produced by a parser using this grammar
identifies the location and type of an error
in an ill-formed sentence, enabling a post-
processing script to use the tree and the in-
ventory of error types to delete and/or in-
sert tokens in order to produce a corrected
version of the original sentence.

1 Overview

As a participating group in the 2013 CoNLL
Shared Task on Grammatical Error Correction,
we adapted an existing system for error detec-
tion in a simpler closed-vocabulary domain to
meet the additional demands of accommodating
an open vocabulary and producing corrections for
the errors identified. The training and test data
for this shared task are from the NUCLE cor-
pus (Dahlmeier et al., 2013), which consists of
about one million words of short essays written
by relatively competent English language learn-
ers. Each sentence has been manually annotated
to identify and correct a wide range of grammat-
ical and stylistic error types, though the shared
task focused only on correcting instances of five
of these types. Following standard procedure for
such shared tasks, the organizers supplied most of
the annotated data as a development corpus, and
held out a 1381-sentence test corpus which was
used for the evaluation of system output.

2 Resources and Method

The system developed for this task is an extension
of an existing language-processing engine used to
identify grammatical errors in short sentences and
paragraphs written by elementary school students
as part of the automated Language Arts and Writ-
ing course included in the EPGY (Education Pro-
gram for Gifted Youth) course offerings (Suppes et
al., 2012). This error detection engine consists of
a grammar, a parser, and a post-processing script
that interprets the error codes in the derivation
tree for each parsed sentence. Both the grammar
and the parser are open-source resources devel-
oped and distributed as part of the DELPH-IN con-
sortium (www.delph-in.net). We use the English
Resource Grammar, described below, which we
have augmented with both rules and lexical entries
that license instances of certain error types, using
the mal-rule approach of (Schneider and McCoy,
1998), adapted and extended for the ERG as de-
scribed in (Bender et al., 2004). For parsing each
sentence with this grammar, we use the relatively
efficient PET parser (Callmeier, 2002), along with
a parse-ranking method based on a model trained
on a manually disambiguated treebank, so far con-
sisting only of parses of well-formed sentences. In
addition to using the manually constructed 37,000-
word lexicon included in the ERG, we accommo-
date unknown words by mapping POS tags pro-
duced by TnT (Brants, 2000) to generic lexical en-
try types on the fly. The bottom-up chart parser
then exhaustively applies the rules of the grammar
to the lexical entries introduced by the tokens in
the input sentence, producing a packed forest of
analyses (derivations) ranked by likelihood, and
then presents the most likely derivation for post-
processing. The post-processor is a script which
uses the derivation tree to identify the type and lo-
cation of each error, and then takes appropriate ac-
tion, which in the course is an instructional mes-

68

sage to the student, and in this shared task is a cor-
rected version of the original sentence.

2.1 English Resource Grammar

The English Resource Grammar used for this task
(ERG: (Flickinger, 2000), (Flickinger, 2011)) is
a broad-coverage grammar implementation which
has been under continuous development since the
mid-1990s at Stanford. As an implementation
within the theoretical framework of Head-driven
Phrase Structure Grammar (HPSG: (Pollard and
Sag, 1994)), the ERG has since its inception en-
coded both morphosyntactic and semantic prop-
erties of English, in a declarative representation
that enables both parsing and generation. While
development has always taken place in the con-
text of specific applications, primary emphasis in
the ERG has consistently been on the linguistic
accuracy of the resulting analyses, at some ex-
pense to robustness. Its initial use was for gener-
ation within the German-English machine transla-
tion prototype developed in the Verbmobil project
(Wahlster, 2000), so constraining the grammar
to avoid overgeneration was a necessary design
requirement that fit well with the broader aims
of its developers. Applications using the gram-
mar since then have included automatic processing
of e-commerce customer support email messages,
a second machine translation system (LOGON:
(Lnning et al., 2004)), and information extraction
over the full English Wikipedia (Flickinger et al.,
2010).

At present, the ERG consists of a rich hier-
archy of types encoding regularities both in the
lexicon and in the syntactic constructions of En-
glish. The lexicon contains 40,000 manually con-
structed lexeme entries, each assigned to one of
975 lexical types at the leaves of this hierarchy,
where the types encode idiosyncracies of subcat-
egorization, modification targets, exceptional be-
havior with respect to lexical rules, etc. The gram-
mar also includes 70 derivational and inflectional
rules which apply to these lexemes (or to each
other’s outputs) to produce the words as they ap-
pear in text. The grammar provides 225 syntactic
rules which admit either unary or binary phrases;
these include a relatively small number of highly
schematic rules which license ordinary combina-
tions of heads with their arguments and their mod-
ifiers, and a rather larger number of construction-
specific rules both for frequently occurring phrase

types such as coordinate structures or appositives,
and for phrase types that occur with markedly
differing frequencies in verious corpus domains,
such as questions or vocatives. Statistical models
trained on manually annotated treebanks are used
both in parsing (Toutanova et al., 2005) and in gen-
eration (Velldal, 2008) to rank the relative likeli-
hoods of the outputs, in order to address the issue
of disambiguation which is central to the use of
any broad-coverage grammar for almost any task.

2.2 Mal-rule example
Each of the hand-coded mal-rules added to the
standard ERG is a variant of a rule needed to anal-
yse well-formed English input. A simple exam-
ple of a mal-rule is given below, expressed in the
attribute-value representation for an HPSG rule;
this unary rule licenses a noun phrase headed by a
singular count noun but lacking its normally oblig-
atory article, as for the NP black cet in That dog
chased black cat. Here the single daughter in this
noun phrase (the HD-DTR) is a nominal phrase still
seeking an obligatory specifier (the article or de-
terminer in a well formed noun phrase), where the
head noun is a singular count noun (non-divisible).
The SYNSEM value in the rule discharges that
obligatory specifier requirement just as the normal
unary rule for bare plural noun phrases does, and
supplies the necessary implicit quantifier in the se-
mantics of the phrase.

SYNSEM

LOCAL

CAT

HEAD
1

noun

VAL

[
SPR < >

COMPS < >

]
CONT

[
RELS < quant rel >

]

HD-DTR

SYNSEM

LOCAL

CAT

HEAD
1

VAL

[
SPR <

[
OPT –
]
>

COMPS < >

]
AGR

[
PN 3sing
DIV –

]

Mal-rule for bare singular NP

2.3 Error types in the task
Of the five error types used in the shared task,
four were already included in the grammar as used
in the EPGY course, involving errors with arti-
cles/determiners, number on nouns, subject-verb
agreement, and verb form. For the task, we added
mal-rules and mal-entries to analyze a subset of er-
rors of the fifth type, which involve incorrect use
of prepositions. Within the ERG, each of the five
error types is associated with multiple mal-rules or

69

mal-entries, each licensing one specific error con-
figuration, such as a mal-rule to accommodate the
omission of an obligatory determiner for a noun
phrase headed by a singular count noun, or a mal-
entry for the unwanted use of the with a proper
name.

Most of these grammar-internal error identifiers
correspond to a simple adjustment for correction
in the original sentence, such as the insertion or
deletion of a particular token, or a change to the in-
flection of a particular noun or verb. However, for
some errors, several candidate corrections are trig-
gered by the error identifier, so the post-processing
script must select the most suitable of these correc-
tion candidates. The most frequent correction il-
lustrating this ambiguity is for singular count noun
phrases missing the determiner, such as black cat
in we admired black cat., where the correction
might be the black cat, a black cat, or black cats.
Lacking a rich discourse representation of the con-
text surrounding the error, we employ an N-gram
based ranking approach to choose among the three
alternatives, where the post-processor currently
calls the Microsoft N-gram online resource (Wang
et al., 2011).

Since the development and test data is presented
as pre-tokenized input with one token per line in
familiar CoNLL format, we also employ an offline
script which converts a file of this format into one
which has a single sentence per line, preserving
the tokenization of the CoNLL file, and it is this
one-sentence-per-line file which is processed by
the correction script, which in turn calls the parser
and applies the post-processing steps to its output.

3 An example

We illustrate our method with a simple example
sentence, to show each step of the process. Con-
sider the analysis in Figure 1 of the following sen-
tence taken from the test corpus:

In supermarkets monitors is needed because we
have to track thieves .
The parser is called with this sentence as in-
put, constructs a packed forest of all candidate
analyses licensed by the grammar, and identifies
the most likely analysis as determined by a
general-purpose statistical model trained only
on analyses of well-formed sentences. A more
detailed view of the parse tree in Figure 1 is the
bracketed derivation tree given in (2). Each line of
the derivation identifies the syntactic construction,

lexical rule, or lexical entry used to build each
constituent, and shows its token span, and for the
leaf nodes, the lexical entry, its type (after the
slash), and the surface form of that word in the
input sentence. The boldface identifier on the first
line of the derivation tree shows that this analysis
contains at least one erroneous constituent, which
a perusal of the tree locates as the other boldface
identifier, be c is rbst, for the mal-entry for is that
licenses a mismatch in subject-verb agreement.

(2) Derivation tree view of Fig. 1:

hd-aj scp c 0 11 [root robust s]
flr-hd nwh-nc-pp c 0 5
hd-cmp u c 0 2
in/p np i-reg 0 1 "in"
hdn bnp c 1 2
n pl olr 1 2
supermarket n1/n - c 1 2
"supermarkets"

sb-hd nmc c 2 5
hdn bnp c 2 3
n pl olr 2 3
monitor n1/n - c 2 3 "monitors"

hd-cmp u c 3 5
be c is rbst 3 4 "is"
hd xaj-int-vp c 4 5
hd optcmp c 4 5
v pas odlr 4 5
need v1/v np 4 5 "needed"

hd-cmp u c 5 11
because/p cp s 5 6 "because"
sb-hd nmc c 6 11
hdn bnp-qnt c 6 7
we/n - pr-we 6 7 "we"

hd-cmp u c 7 11
v n3s-bse ilr 7 8
have to1/v vp ssr 7 8 "have"

hd-cmp u c 8 11
to c prop/cm vp to 8 9 "to"
hd-cmp u c 9 11
v n3s-bse ilr 9 10
track v1/v np* 9 10 "track"
hdn bnp c 10 11
period plr 10 11
n pl olr 10 11
thief n1/n - c 10 11 "thieves."

The correction script finds this mal-entry identi-
fier in the derivation tree, notes its token position,
and determines from the identifier that the required
correction consists of a simple token substitution,
replacing the surface token is with are. Since no
other errors are present in the derivation tree, the
script then records in the corpus output file the cor-
rected sentence with only the one alteration from
its original form.

Of course, a derivation tree will often identify
multiple errors, and for some error types may re-
quire that multiple tokens be modified for a sin-

70

S

��
��

�
��
�

HH
HH

H
HH

H

PP

�� HH
P
in

NP

N

N
supermarkets

S/PP

�
��

�
��

H
HH

H
HH

S/PP

�
��

H
HH

NP

N

N
monitors

VP/PP
�� HH

V/PP
is

VP/PP

VP

V

V
needed

PP

�
��
�

H
HH

H

P
because

S

��
�

HH
H

NP

NP
we

VP

��
�

HH
H

V

V
have

VP

��
�

HH
H

COMP
to

VP
�� HH

V

V
track

NP

N

N

N
thieves.

Figure 1: Sample parse tree produced with ERG

gle error, such as in the correction of the equip-
ments have arrived to the equipment has arrived.
Each mal-rule or mal-entry identifier is associated
with a specific correction procedure defined in the
correction script, and the script carries out these
changes in a pre-determined order, for the rela-
tively infrequent instances where the order of ap-
plication matters. For simple alterations such as
a change of number on nouns or verbs, we could
have used the grammar-internal inflectional rule
machinery, but found it more convenient to use ex-
isting Perl and Python modules for English word
inflection.

4 Results and Discussion

During the development phase of the shared task,
we adapted and refined our method using the first
5000 NUCLE sentences from the roughly 50,000-
sentence development corpus. Since our focus in
this task is on precision more than on recall, we
carried out repeated detailed examinations of the
correction procedure’s outputs on the first 500
sentences. In comparing our system’s proposed
corrections with the ‘gold’ human annotations
of errors for these 500, we found the following
frequencies of mismatches between system and
gold:

(3) Comparison of System and Gold on Dev-500

Alteration # of Sentences
Both match 34
Missing gold 26
Differing correction 25
Wrong alteration 28

Examples of the missing gold annotations include
(a) “ArtOrDet” errors such as the missing article
for habitable environment in sentence 829-4-0 and
for password in sentence 830-1-1; (b) “SVA” er-
rors such as for the verb increase in sentence 831-
3-8, and the verb are in sentence 840-4-2; and (c)
“Nn” errors such as for the noun equipments ap-
pearing in sentence 836-1-0, or evidences in sen-
tence 837-2-11.

These varying sources of mismatches made the
automated scoring script used in the evaluation
phase of the shared task (Dahlmeier and Ng, 2012)
not so helpful during development, since it re-
ported our system’s precision as 28%, whereas the
system is actually correct in more than 50% of the
alterations it makes for these first 500 sentences of
the development corpus.

This inconsistency in the gold annotations was
less of an issue, but still present, in our system’s

71

precision measure in the evaluation phase of the
shared task, as we found in studying the gold
annotations distributed for the test data after the
evaluation phase ended. The official scored results
for the system output that we submitted are given
in the table in (4).

(4) Official scoring of system output on test data

Precision 29.93%
Recall 5.86 %
F1 9.81 %

In examining the gold annotations for the 1381
sentences comprising the test corpus, we found
47 instances of genuine errors that were miss-
ing gold annotation, but that our system correctly
identified and repaired. While this led to a some-
what lower precision measure, we acknowledge
that compared with the total number of more than
1600 annotated corrections, this level of imperfec-
tion in the annotations was not seriously problem-
atic for evaluation, and we view the official results
in (4) as a reasonable measure of the system output
we submitted for scoring.

While comparing our system results with the
gold test annotations after the evaluation phase
ended, we have found and repaired several sources
of undesirable behavior in the grammar and in our
correction script, with the most significant being
the revision of lexical entries for two compound
nouns appearing with high frequency in the test
corpus: life expectancy (91 occurrences) and pop-
ulation aging/ageing (40 occurrences). Our lexi-
con had erroneously identified life expectancy as
countable, and the parser had wrongly analyzed
population aging as a noun modified by a partici-
ple, analogous to the person speaking. A third
frequently occurring error in the corpus was not
so simple to correct in our grammar, namely the
word society (95 occurrences), which is used con-
sistently in the test corpus as an abstract noun of-
ten wrongly appearing with the. Since this noun
can be used in a different sense (as an organiza-
tion) where the article is appropriate, as in the so-
ciety of wealthy patrons, we would need to find
some other knowledge source to determine that
in the domain of the test corpus, this sense is not
used. Hence our system still fails to identify and
correct the frequent and spurious the in the society.

With the small number of corrections made to
our system’s lexicon, and some minor improve-
ments to the post-processing script, our system

now produces output on the test corpus with an
improved precision measure of 47.5%, and a more
modest improvement in recall to 13.2%, for an F1
of 20.7%. Given the inconsistency of annotation
in the development corpus, it is as yet difficult to
evaluate whether these changes to our correction
script will result in corresponding improvements
in precision on unseen data.

5 Next steps

We see prospects for significant improvement us-
ing the method we are developing for the kind of
automatic correction studied in this shared task.
Many of the missteps that our correction proce-
dure makes can be traced to imperfect parse selec-
tion from among the candidate analyses produced
by the parser, and this could well be improved by
creating a Redwoods-style treebank that includes
both well-formed and ill-formed sentences for an-
notation, so the mal-rules and mal-entries get in-
cluded in the ranking model trained on such a tree-
bank. While our primary focus will continue to be
on increased precision in the corrections the sys-
tem proposes, we welcome the attention to recall
that this task brings, and expect to work with hy-
brid systems that do more with large-scale corpora
such as the English Wikipedia.

References
Emily M. Bender, Dan Flickinger, Stephan Oepen, An-

nemarie Walsh, and Timothy Baldwin. 2004. Ar-
boretum. Using a precision grammar for grammar
checking in CALL. In Proceedings of the InSTIL
Symposium on NLP and Speech Technologies in Ad-
vanced Language Learning Systems, Venice, Italy,
June.

Thorsten Brants. 2000. TnT - A statistical part-of-
speech tagger. In Proceedings of the 6th ACL Con-
ference on Applied Natural Language Processing,
Seattle, WA.

Ulrich Callmeier. 2002. Preprocessing and encod-
ing techniques in PET. In Stephan Oepen, Daniel
Flickinger, J. Tsujii, and Hans Uszkoreit, editors,
Collaborative Language Engineering. A Case Study
in Efficient Grammar-based Processing. CSLI Pub-
lications, Stanford, CA.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568 – 572, Montreal, Canada.

72

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
english: The NUS Corpus of Learner English. In To
appear in Proceedings of the 8th Workshop on Inno-
vative Use of NLP for Building Educational Appli-
cations, Atlanta, Georgia.

Dan Flickinger, Stephan Oepen, and Gisle Ytrestøl.
2010. WikiWoods. Syntacto-semantic annotation
for English Wikipedia. In Proceedings of the 6th In-
ternational Conference on Language Resources and
Evaluation, Valletta, Malta.

Dan Flickinger. 2000. On building a more efficient
grammar by exploiting types. Natural Language
Engineering, 6 (1) (Special Issue on Efficient Pro-
cessing with HPSG):15 – 28.

Dan Flickinger. 2011. Accuracy vs. robustness in
grammar engineering. In Emily M. Bender and Jen-
nifer E. Arnold, editors, Language from a Cogni-
tive Perspective: Grammar, Usage, and Processing,
pages 31–50. Stanford: CSLI Publications.

Jan Tore Lnning, Stephan Oepen, Dorothee Beer-
mann, Lars Hellan, John Carroll, Helge Dyvik, Dan
Flickinger, Janne Bondi Johannessen, Paul Meurer,
Torbjrn Nordgrd, Victoria Rosn, and Erik Velldal.
2004. LOGON. A Norwegian MT effort. In Pro-
ceedings of the Workshop in Recent Advances in
Scandinavian Machine Translation, Uppsala, Swe-
den.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. Studies in Contempo-
rary Linguistics. The University of Chicago Press
and CSLI Publications, Chicago, IL, and Stanford,
CA.

David Schneider and Kathleen McCoy. 1998. Recog-
nizing syntactic errors in the writing of second lan-
guage learners. In Proceedings of Coling-ACL 1998,
pages 1198 – 1204, Montreal.

Patrick Suppes, Dan Flickinger, Elizabeth Macken,
Jeanette Cook, and L. Liang. 2012. Description
of the EPGY Stanford University online courses for
Mathematics and the Language Arts. In Proceed-
ings of the International Society for Technology in
Education, San Diego, California.

Kristina Toutanova, Christoper D. Manning, Dan
Flickinger, and Stephan Oepen. 2005. Stochastic
HPSG parse selection using the Redwoods corpus.
Journal of Research on Language and Computation,
3(1):83 – 105.

Erik Velldal. 2008. Empirical Realization Ranking.
Ph.D. thesis, University of Oslo, Department of In-
formatics.

Wolfgang Wahlster, editor. 2000. Verbmobil. Foun-
dations of Speech-to-Speech Translation. Springer,
Berlin, Germany.

Kuansan Wang, Christopher Thrasher, Evelyne Viegas,
Xiaolong Li, , and Paul Hsu. 2011. An overview
of Microsoft Web N-gram corpus and applications.
In Proceedings of the 2011 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Portland, Oregon.

73

