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Abstract

Text mining methods for the biomedical
domain have matured substantially and
are currently being applied on a large
scale to support a variety of applica-
tions in systems biology, pathway cura-
tion, data integration and gene summa-
rization. Community-wide challenges in
the BioNLP research field provide gold-
standard datasets and rigorous evaluation
criteria, allowing for a meaningful com-
parison between techniques as well as
measuring progress within the field. How-
ever, such evaluations are typically con-
ducted on relatively small training and
test datasets. On a larger scale, sys-
tematic erratic behaviour may occur that
severely influences hundreds of thousands
of predictions. In this work, we per-
form a critical assessment of a large-scale
text mining resource, identifying system-
atic errors and determining their underly-
ing causes through semi-automated analy-
ses and manual evaluations1.

1 Introduction

The development and adaptation of natural lan-
guage processing (NLP) techniques for the
biomedical domain are of crucial importance to
manage the abundance of available literature. The
inherent ambiguity of gene names and complex-
ity of biomolecular interactions present an intrigu-
ing challenge both for BioNLP researchers as well
as their targeted audience of biologists, geneticists
and bioinformaticians. Stimulating such research,
various community-wide challenges have been or-
ganised and received international participation.

1The supplementary data of this study is freely avail-
able from http://bioinformatics.psb.ugent.
be/supplementary_data/solan/bionlp13/

The BioCreative (BC) challenge (Hirschman et
al., 2005; Krallinger et al., 2008; Leitner et al.,
2010; Arighi et al., 2011) touches upon a variety of
extraction targets. The identification of gene and
protein mentions (‘named entity recognition’) is a
central task and a prerequisite for any follow-up
work in BioNLP. Linking these mentions to their
respective gene database identifiers, ‘gene normal-
ization’, is a crucial step to allow for integration
of textual information with authoritative databases
and experimental results. Other BC tasks are en-
gaged in finding functional and physical relations
between gene products, including Gene Ontology
annotations and protein-protein interactions.

Focusing more specifically on the molecu-
lar interactions between genes and proteins, the
BioNLP Shared Task on Event Extraction (Kim et
al., 2009; Kim et al., 2011b; Nedellec and others,
2013) covers a number of detailed molecular event
types, including binding and transcription, regula-
tory control and post-translational modifications.
Additionally, separate tracks involve specific ap-
plications of event extraction, including infectious
diseases, bacterial biotopes and cancer genetics.

Performance of the participants in each of these
challenges is measured using numeric metrics
such as precision, recall, F-measure, slot error
rate, MAP and TAP scores. While such rig-
urous evaluations allow for a meaningful compar-
ison between different systems, it is often difficult
to translate these numeric values into a measure-
ment of practical utility when applied on a large
scale. Additionally, infrequent but consistent er-
rors are often not identified through small-scale
evaluations, though they may result in hundreds of
thousands of wrongly predicted interactions on a
larger scale. In this work, we perform an in-depth
study of an open-source state-of-the-art event ex-
traction system which was previously applied to
the whole of PubMed. Moving beyond the tra-
ditional numeric evaluations, we identify a num-
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Figure 1: Example event and relation represen-
tations, depicted in solid and dotted lines respec-
tively. Picture by Kim et al. (2011a).

ber of systematic errors in the large-scale data,
analyse their underlying causes, and design post-
processing rules to resolve these errors. We be-
lieve these findings to be highly relevant for any
practical large-scale implementation of BioNLP
techniques, as the presence of obvious mistakes in
a text mining resource might undermine the credi-
bility of text mining techniques in general.

2 Data and methods

In this section, we first describe the data and meth-
ods used in previous work for the construction
of the large-scale text mining resource that is the
topic of our error analyses (Section 3).

2.1 Event extraction
Event extraction has become a widely studied
topic within the field of BioNLP following the
first Shared Task (ST) in 2009. The ST’09 in-
troduced the event formalism as a more detailed
representation of the common binary relation an-
notation (Figure 1). Each event occurrence con-
sists of an event trigger; i.e. one or more con-
secutive tokens that are linked to a specific event
type. While the ST’09 included only 9 event types,
among which 3 regulatory event types, the ST’11
further broadened the coverage of event extraction
to post-translational modifications and epigenetics
(EPI).

To compose a fully correct event, an event trig-
ger needs to be connected to its correct arguments.
Within the ST, these arguments are selected from a
set of gold-standard gene and gene product anno-
tations (GGPs). The ST guidelines determine an
unambiguous formalism to which correct events
must adhere: most event types only take one theme
argument, while Binding events can be connected
to more than one theme. Regulation events further
have an optional cause slot (Figure 1). Connecting
the correct arguments to the correct trigger words
is denoted as ‘edge detection’.

To perform event extraction, we rely on the
publicly available Turku Event Extraction System
(TEES) (Björne et al., 2012), which was origi-
nally developed for the ST’09. The TEES mod-
ules for trigger and edge detection are based upon
supervised learning principles, employing support
vector machines (SVMs) for multi-label classifi-
cation. TEES has been shown to obtain state-of-
the-art performance when measured on the gold-
standard datasets of the Shared Tasks of 2009,
2011 and 2013.

2.2 Large-scale processing
Previously, the whole of PubMed has been anal-
ysed using a large-scale event extraction pipeline
composed of the BANNER named entity rec-
ognizer, the McClosky-Charniak parser, and the
Turku Event Extraction System (Björne et al.,
2010). BANNER identifies gene and protein sym-
bols in text through a machine learning approach
based on conditional random fields (Leaman and
Gonzalez, 2008). While the resulting large-scale
text mining resource EVEX was focused only on
abstracts and ST’09 event types (Van Landeghem
et al., 2011), it has matured substantially during
the past few years and now includes ST’11 EPI
event types, full-text processing and gene normal-
ization (Van Landeghem et al., 2013a). In this
work, we use the version of EVEX as publicly
available on 16 March 2013, containing 40 million
event occurrences among 122 thousand gene and
protein symbols in 22 million PubMed abstracts
and 460 thousand PubMed Central full-text arti-
cles. Each event occurrence is linked to a normal-
ized confidence value, automatically derived from
the original TEES SVM classification step and the
distance to the hyperplane of each prediction.

While this study focuses on the EVEX resource
as primary dataset, the findings are also highly rel-
evant for other large-scale text mining resources,
especially those based on supervised learning,
such as the BioContext (Gerner et al., 2012).

2.3 Cross-domain evaluation
Recently, a plant-specific, application-oriented as-
sessment of the EVEX text mining resource has
been conducted by manually evaluating 1,800
event occurrences (Van Landeghem et al., 2013b).
In that study, it was established that the general
performance rates as measured previously on the
ST, are transferrable also to other domains and or-
ganisms. Specifically, the 58.5% TEES precision
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Event type Five most frequent trigger words
Binding binding interaction associated bind association
Gene expression expression expressed production expressing levels
Localization secretion release localization secreted localized
Protein catabolism degradation degraded cleavage proteolysis degrade
Transcription transcription expression levels transcribed detected
Acetylation acetylation acetylated deacetylation hyperacetylation activation
Glycosylation glycosylated glycosylation attached N-linked absence
Hydroxylation hydroxylation hydroxylated hydroxylate beta-hydroxylation hydroxylations
Methylation radiation methylation methylated diffractometer trimethylation
DNA methylation methylation hypermethylation methylated hypermethylated unmethylated
Phosphorylation phosphorylation phosphorylated dephosphorylation phosphorylates phosphorylate
Ubiquitination ubiquitination ubiquitinated ubiquitylation ubiquitous polyubiquitination
Regulation effect regulation effects regulated control
Positive regulation increased activation increase induced induction
Negative regulation reduced inhibition decreased inhibited inhibitor
Catalysis mediated dependent mediates removes induced

Table 1: The top-5 most frequently tagged trigger words per event type in EVEX. The first 5 rows
represent fundamental event types, the next 7 post-translational modifications (PTMs), and the last 4
rows are regulatory event types. In this analysis, the PTMs and their reverse types are pooled together.
Trigger words that refer to systematic errors are in italic and are discussed further in the text.

rate measured in the ST’09, with the literature data
concerning human blood cell transcription factors,
corresponded with a 58.6% precision rate for the
plant-specific evaluation dataset (‘PLEV’). This
encouraging result supports the general applicabil-
ity of large-scale text mining methods trained on
relatively small corpora. The findings of this pre-
vious study and the resulting data are further inter-
preted and analysed in more detail in this study.

3 Results

While the text mining pipeline underlying the
EVEX resource has been shown to produce state-
of-the-art results which are transferrable across
domains and organisms, it is conceivable that the
mere scale of the resource allows the accumula-
tion of systematic errors. In this section, we per-
form several targeted semi-automated evaluations
to identify, explain and resolve such cases. It is
important to note that our main focus is on im-
proving the precision rate of the resource, rather
than the recall, aiming to increase the credibility
of large-scale text mining resources in general.

3.1 Most common triggers

The trigger detection algorithm of the TEES soft-
ware is based upon SVM classifiers (Section 2.1),
and has been shown to outperform dictionary-
based approaches (Kim et al., 2009; Kim et al.,
2011c). To investigate its performance in a large-
scale application, we first analyse the most fre-
quent trigger words of each event type in EVEX

(Table 1). We notice the presence of different in-
flections of the same word as well as related verbs
and nouns, such as ‘inhibition’, ‘inhibited’ and
‘inhibitor’. The trigger recognition module suc-
cessfully uses character bigrams and trigrams in
its SVM classification algorithm to allow for the
identification of such related concepts, even when
some of these trigger words were not encountered
in the training phase (Björne et al., 2009).

However, occasionally this approach results in
confusion between words with small edit dis-
tances, such as the trigger word ‘ubiquitous’ for
Ubiquitination events. Similarly, the Acetylation
trigger ‘activation’ is found within the context of
a correct event structure in most cases, but should
actually be of the type Positive regulation. The
implementation of custom post-processing rules
to automatically detect and resolve these specific
cases would ultimately deal with more than 6,000
false-positive event predictions.

Further, the trigger ‘radiation’ seems to occur
frequently for a Methylation event, of which 82%
of the instances can be identified in the ‘Exper-
imental’ subsection of the article. The majority
of these articles relate to protein crystallography,
and that subsection describes the data from the ex-
perimental set-up. Within such sections, phrases
like ‘Mo Kalpha radiation’ are wrongly tagged as
Methylation events. Similarly, many false-positive
Methylation predictions refer to the trigger word
‘diffractometer’. Removing these instances from
the resource would result in the deletion of more
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Trigger word s Most frequent type t2 Count Frequency Infrequent type t1 Count Frequency
acetylation Acetylation 40,291 0.298383 Binding 1,332 0.000216

Phosphorylation 1,050 0.001045
Gene expression 969 0.000093
Localization 1,045 0.000579

secretion Localization 376,976 0.208888 Acetylation 243 0.001800
glycosylation Glycosylation 24,226 0.141052 Phosphorylation 389 0.000387

Gene expression 214 0.000020
phosphorylation Phosphorylation 589,681 0.586772 Binding 454 0.000074

DNA methylation 225 0.001297
ubiquitylation Ubiquitination 4961 0.055976 Binding 128 0.000021
hypermethylation Methylation 19,501 0.112434 Phosphorylation 365 0.000363
cleavage Protein catabolism 20,552 0.073728 Gene expression 2,451 0.000234

Binding 3,011 0.000489
decreased Negative regulation 374,859 0.062372 Positive regulation 1,721 0.000173

Binding 855 0.000139
Gene expression 2,928 0.000280

reduced Negative regulation 442,400 0.073610 Positive regulation 1,091 0.000110
reduction Negative regulation 164,736 0.027410 Positive regulation 389 0.000039
absence Negative regulation 65,180 0.010845 Positive regulation 226 0.000071

Table 2: Examples of trigger words that correspond to the type which has the highest relative frequency
(left), but are also found with much lower frequencies in other types (right). The instances corresponding
to the right-most column can thus be interpreted as wrong predictions. The full list is available as a
machine readible translation table in the supplementary data.

than 82,000 false-positive event predictions.
Finally, we notice that the trigger word ‘ab-

sence’ for Glycosylation usually refers to a Neg-
ative regulation. Similarly, some words appear as
most frequent for more than one event type, such
as ‘levels’ (Gene expression and Transcription).
This type of error in trigger type disambiguation
is analysed in more detail in the next section.

3.2 Event type disambiguation
While previous work has focused on the disam-
biguation of event types on a small, gold-standard
dataset (Martinez and Baldwin, 2011), the rich-
ness of a large-scale text mining resource provides
additional opportunities to detect plausible errors.
To exploit this large-scale information, we anal-
yse all EVEX trigger words and their correspond-
ing event types, summarizing their raw event oc-
currence counts as Occ(t, s) where t denotes the
trigger type and s the trigger string. As some
event types are more abundantly described in lit-
erature, we normalize these counts to frequen-
cies (Freq(t, s)) depending on the total number
of event occurrences per type (Tot(t)):

Freq(t, s) =
Occ(t, s)

Tot(t)

with

Tot(t) =
n∑

i=1

Occ(t, si)

and n the number of different triggers for event
type t. We then compare all trigger words and their
relative frequencies across different event types.

First, we inspect those cases where a trigger
word appears with comparable frequencies for two
event types t1 and t2:

Freq(t1, s) ≤ Freq(t2, s) ≤ 10× Freq(t1, s)
(1)

A first broad category of these cases are trig-
ger words that refer to both regulatory and non-
regulatory events at the same time, such as ‘over-
expression’ (Gene expression and Positive regula-
tion), or ‘ubiquitinates’ (Ubiquitination and Catal-
ysis). The majority of these cases are perfectly
valid and are in fact modeled explicitly by the
TEES software (Björne et al., 2009).

Further, we find that two broad groups of non-
regulatory event types are semantically similar and
share common trigger words: Methylation and
DNA methylation (e.g. ‘methylation’, ‘unmethy-
lated’, ‘hypomethylation’), as well as Gene ex-
pression and Transcription (‘expression’, ‘synthe-
sis’, ‘levels’), with occasional overlap also with
Localization (‘abundance’, ‘found’). Similarly,
trigger words are often shared among the four
regulatory event types (‘dependent’, ‘role’, ‘regu-
late’), as the exact type may depend on the broader
context within the sentence.

While the previous findings do not necessar-
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Predicted event type
Curated event type Localization Transcription Expression
Localization 15 0 3
Transcription 0 12 1
Expression 0 2 12
No event 0 2 3
Total 15 16 19

Table 3: Targeted evaluation of 50 mixed events of type Localization, Transcription and Gene expression.
The curated event type is compared to the original (hidden) predicted type.

ily refer to wrong predictions, we also notice the
usage of punctuation marks as trigger words for
various event types. This option was specifically
provided in the TEES trigger detection algorithm
as the ST’09 training data contains Binding in-
stances with ‘-’ as trigger word. However, these
punctuation triggers are found to be largely false
positives in the PubMed-scale event dataset. Re-
moving them in an additional post-processing step
would result in the filtering of more than 130,000
event occurrences, of which the largest part is ex-
pected to be incorrect predictions. Similarly, we
can easily remove 25,000 events that are related to
trigger words that are numeric values.

In a second step, we analyse those cases where

k × Freq(t1, s) ≤ Freq(t2, s). (2)

When this condition holds, it can be hypothesized
that trigger predictions of the word s as type t1
are false positives and should have instead been of
type t2. Automatically generating such lists from
the data, we have experimentally determined an
optimal value of k = 100 that represents a reason-
able trade-off between the amount of false posi-
tives that can be identified and the manual work
needed for this.

From the resulting list, we can easily identify a
number of such cases that are clearly incorrect (Ta-
ble 2, right column). Specifically, a large number
of Positive regulation events actually refer to Neg-
ative regulation, providing an explanation of the
lower precision rate of Positive regulation predic-
tions in the previous PLEV evaluation (Van Lan-
deghem et al., 2013b). This semi-automated de-
tection procedure can ultimately result in the cor-
rection of more than 242,000 events.

The remaining cases for which condition (2)
holds are more ambiguous and can not be au-
tomatically corrected. However, these cases are
more likely to be incorrect and their confidence
values could thus be automatically decreased de-
pending on the ratio between Freq(t1, s) and

Freq(t2, s). A general exception to this rule is
formed by the broad groups of semantically simi-
lar events, such as Transcription-Gene expression-
Localization, which we analyse in more detail in
the next section.

3.3 Gene expression, Transcription and
Localization

Transcription is a sub-process of Gene expression,
with both event types relating to protein produc-
tion. However, the distinction between the two in
text may not always be straightforward. Addition-
ally, the ST training data for Transcription events
is significantly smaller than for Gene expression
events, which may be the reason why not only the
TEES performance, but also those of other sys-
tems, is considerably lower for Transcription than
for Gene expression (Kim et al., 2011c). Further,
cell-type specific gene expression should be cap-
tured by additional site arguments connected to a
Localization event, which represents the presence
or a change in the location of a protein.

To gain a deeper insight into the interplay be-
tween these three different event types, we have
performed a manual curation of 50 event occur-
rences, sampled at random from the Gene expres-
sion, Transcription and Localization events avail-
able in EVEX. For each event, the trigger word
and the corresponding sentence was extracted, but
the predicted event type was hidden. An expert an-
notator subsequently decided on the correct event
type of the trigger. Within this evaluation we fol-
lowed the ST guidelines to only annotate Gene ex-
pression when there is no evidence for the more
detailed Transcription type.

Table 3 shows the results. All 15 predicted
Localization triggers are recorded to be correct.
From the 16 predicted Transcription events, two
involve incorrect event triggers, and two other
events refer to the more general Gene expression
type (75% overall precision). Likewise, only one
Gene expression event should be of the more spe-
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Curated event type Error type Instances (%)
1 Single-argument Binding No error 5 10%
2 Single-argument Binding Edge detection error 0 0%
3 Multiple-argument Binding Edge detection error 4 8%
4 Single-argument Binding Entity recognition error 1 2%
5 Multiple-argument Binding Entity recognition error 19 38%
6 Other Trigger detection error 21 42%

Table 4: Targeted evaluation of 50 single-argument Binding event triggers. Row 1: Fully correct event.
Row 2: The correct argument was annotated but not linked. Row 3: At least one correct multiple-
argument Binding event could have been extracted using the annotated entities in the sentence. Row 4:
The correct argument was not annotated. Row 5: No event could be extracted due to missing argument
annotations. Row 6: The trigger did not refer to a Binding event.

Unannotated entity type Entity occurrence count Examples
GGP 10 SPF30, spinal muscular atrophy gene
Generic GGP 9 primary antibodies, peptides, RNA
Chemical compound 10 Ca(2+), iron, manganese(II)

Table 5: Manual inspection of the textual entity types for those Binding events where a relevant theme
argument was not annotated in the entity recognition step.

cific Transcription type, three instances should be
Localization, and three more are considered not to
be correct events at all (63% overall precision). In
general, we remark that the predicted event type
largely corresponds to the curated type (78% of
all predictions and 87% of all otherwise correct
events).

3.4 Binding

Moving beyond the event type specification as
determined by the ST guidelines, the previous
PLEV analysis (Section 2.3) has established a re-
markable difference between single-argument and
multiple-argument Binding. In contrast to the reg-
ular ST evaluations, this work considered single-
and multiple-argument Binding as two separate
event types, resulting in a precision rate of 93% for
multiple-argument Binding triggers and only 8%
precision for single-argument Binding triggers.

As the PLEV study only focused on textual
network data, single-argument Bindings were not
analysed further. In this work however, we fur-
ther investigate this performance discrepancy and
perform an in-depth manual evaluation to try and
detect the main causes of this systematic error.

Several hypotheses can be postulated to explain
the low precision rate of single-argument Binding
events. Firstly, a false negative instance of the
entity recognition module might result in the ab-
sence of annotation for a relevant second interac-
tion partner. Another plausible explanation is an
error by the edge detection module of the event

extraction mechanism, which would occasionally
decide to produce one or several single-argument
Binding events rather than one multiple-argument
Binding, even when all involved entities are cor-
rectly annotated. Finally, it is conceivable that
predicted single-argument triggers simply do not
refer to Binding events, i.e. they contain false pos-
itive predictions of the trigger detection module of
the event extraction system.

In some cases, one trigger leads to many dif-
ferent Binding events, such as the trigger ‘bind’
in the sentence “Sir3 and Sir4 bind preferentially
to deacetylated tails of histones H3 and H4”. In
these cases, error types may accumulate: some
events could be missed due to unannotated enti-
ties, while others may be due to errors in the edge
detection step. However, multiple events with the
same trigger word are often represented by very
similar feature vectors in the classification step,
and consequently have almost identical final con-
fidence values. For this reason, we summarize the
error as ‘Edge detection error’ as soon as one pair
of entities was correctly annotated but not linked,
and as ‘Entity recognition error’ otherwise.

Table 4 summarizes the results of a curation
effort of 50 event triggers linked to a single-
argument Binding event in EVEX. We notice
that in fact, 46% should have been multiple-
argument Binding events. The main underlying
reason for the prediction of an incorrect single-
argument Binding event, when it should have been
a multiple-argument one, is apparently caused by
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Curated event type Error type Instances (%)
1 Phosphorylation No error 34 68%
2 Phosphorylation Edge detection error 4 8%
3 Invalid Phosphorylation Edge detection error 2 4%
4 Phosphorylation Edge directionality detection error 4 8%
5 Invalid Phosphorylation Edge directionality detection error 1 2%
6 Phosphorylation Entity recognition error 3 6%
7 Other Trigger detection error 2 4%

Table 6: Targeted evaluation of 50 Phosphorylation event triggers and their theme arguments. Row 1:
Fully correct event. Row 2: The correct argument was annotated but not linked. Row 3: An argument
was linked but should not have been. Row 4: A causal argument was wrongly annotated as the theme
argument. Row 5: A causal argument was wrongly annotated as the theme argument. Row 6: The correct
argument was not annotated. Row 7: The trigger did not refer to a Phosphorylation event.

an entity recognition error (19/23 or 83%), while
an edge detection error is much less frequent
(17%). When we examine these entity recogni-
tion errors in more detail, we find that 10 rele-
vant entities are true GGPs in the sense of the
Shared Task annotation. However, 9 entities refer
to generic GGPs, and 10 instances relate to chemi-
cal compounds (Table 5). As these type of entities
can not be unambiguously normalized to unique
gene identifiers, they fall out-of-scope of the orig-
inal ST challenge. However, we feel this practice
introduces an artificial bias on the classifier and
the evaluation. Additionally, this information can
prove to be of value within a large-scale text min-
ing resource geared towards practical applications
and explorative browsing of textual information.

Finally, we notice that a remarkable 42% of all
predicted events contain trigger detection errors.
Analysing this subclass in more detail, we found
that 5 cases are invalid event triggers, 6 cases re-
fer to other event types such as Localization and
Gene expression, and 10 more cases were consid-
ered to be out-of-scope of the ST challenge, such
as a factor-disease association.

3.5 Phosphorylation

Within the PLEV evaluation (Section 2.3), it be-
came apparent that Phosphorylation is easy to
recognise from the sentence (98%) but the full cor-
rect event has a much lower precision rate (65%).
As we have seen in the previous section, even
when a trigger word is correctly predicted, errors
may still be generated by the edge detection or en-
tity recognition step. For instance, we might hy-
pothesize that the main underlying reason for the
reduced final performance is an error by the en-
tity recognition step, forcing the edge detection
mechanism to link an incorrect theme due to lack

of other options. Other plausible explanations in-
volve genuine errors by the edge detection algo-
rithm when the correct argument is annotated, as
well as problems with the identification of causal-
ity. As the TEES version applied in this work was
developed for the Shared Task 2009 and 2011, it
does not predict causal arguments for a Phospho-
rylation event directly, but instead adds Regulation
events on top of the Phosphorylations. Occasion-
ally, we have noticed that the theme of a Phospho-
rylation event should in fact have been the cause
of the embedding Regulation association, resulting
in a wrongly directed causal relationship.

To investigate these possibilities, we have man-
ually inspected 50 Phosphorylation events picked
at random from the EVEX resource. Table 6 sum-
marizes the results of this effort. Only two events
are found not to be Phosphorylation events: one
is in fact a Gene expression mention, the other
involves an incorrect trigger. Additionally, three
more events can semantically be regarded as Phos-
phorylations, but do not follow the ST specifica-
tions (‘Invalid Phosphorylation’), for instance be-
cause they only mention causal arguments (‘an
inhibition of Ca2+/calmodulin-dependent protein
phosphorylation’). Among the 45 cases which
correctly refer to the Phosphorylation type, 34
events are fully correct (68% of the total). Four
cases are wrongly extracted by misinterpreting the
causal relationship (‘Edge directionality detection
error’) and four more instances refer to genuine
mistakes of the edge detection algorithm. Only
three other cases can be attributed to a missing en-
tity annotation. In contrast to the previous find-
ings on single-argument Bindings, we thus es-
tablish that the incorrect Phosphorylation events
are mainly caused by errors in the edge detection
mechanism, which either picks the wrong theme
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from the set of annotated GGPs, or misinterprets
the causality direction.

4 Discussion and conclusion

We have performed several semi-automated eval-
uations and targeted manual curation experiments,
identifying and explaining systematic errors in a
large-scale event dataset. As a first observation,
we notice that a few frequent trigger words are
almost always associated to incorrect event pre-
dictions, such as the trigger words ‘ubiquitous’
and ‘radiation’, or a punctuation symbol. These
cases were identified through a large-scale auto-
matic analysis in combination with a limited man-
ual evaluation effort. The results are distributed as
a blacklist of event triggers for the implementation
or filtering of future large-scale event predictions
efforts.

Further, a semi-automated procedure has iden-
tified a list of likely incorrect predictions, by
comparing the type-specific frequencies of trigger
words across all event types. Manual inspection of
the most frequent cases allowed us to determine a
number of trigger words for which the event type
can automatically be corrected. These results are
also made publicly available.

Additionally, after removal of the most obvi-
ous and frequent errors, a fully automated script
can automatically reduce the confidence scores of
those event occurrences where the trigger words
are found to be much more frequent for another
event type. We have established that this proce-
dure should disregard triggers identified within a
few specific semantically similar clusters: DNA
methylation/Methylation, Regulation/Positive reg-
ulation/Negative regulation/Catalysis and Gene
expression-Transcription/Localization. An addi-
tional targeted evaluation of these last three types
revealed that, despite their semantic overlap, the
largest fraction of these predictions refers to the
correct event type (78± 11.5%).

Finally, we note that trigger detection (47 ±
14.6%) and entity recognition errors (44±14.6%)
are the main causes of wrongly predicted Bind-
ing events. The latter causes the event extraction
mechanism to artificially produce single-argument
Bindings instead of multiple-argument Bindings.
We believe this issue can be resolved by broaden-
ing the scope of the entity recognition module to
generic GGPs and chemical compounds, and re-
applying the TEES algorithm to these entities as

if they were normal GGPs as defined in the ST
formalism. In contrast, edge detection errors are
much more frequently the cause of a wrongly pre-
dicted Phosphorylation event (statistically signifi-
cant difference with p < 0.05), caused by wrongly
identifying the thematic object or the causality of
the event. To resolve this issue, we propose fu-
ture annotation efforts to specifically annotate the
protein adding the phosphate group to the target
protein as a separate class than the regulation of
such a phosphorylation process by other cellular
machineries and components (Kim et al., 2013).

In conclusion, we have performed several
statistical analyses and targeted manual eval-
uations on a large-scale event dataset. As a
result, we were able to identify a set of rules
to automatically delete or correct a number
of false positive predictions (supplementary
material at http://bioinformatics.
psb.ugent.be/supplementary_data/
solan/bionlp13/). When applying these
rules to the winning submission of the recent
ST’13 (GE subchallenge), which was based
on the TEES classifier (Hakala et al., 2013),
3 false positive predictions could be identified
and removed. Even though this procedure only
marginally improves the classification results
(50.97% to 50.99% F-score), we believe the
cleaning procedure to be crucial specifically for
the credibility of any large-scale text mining
application. For example, applied on the EVEX
resource, it would ultimately result in the removal
of 242,000 instances and a corrected event type of
230,000 more cases (1.2% of all EVEX events in
total). These corrections will be implemented as
part of the next big EVEX release. Additionally,
the confidence score of more than 120,000 am-
biguous cases could be automatically decreased.
Alternatively, these cases could be the target of
a large-scale re-annotation, for instance using
the brat annotation tool (Stenetorp et al., 2012).
The resulting dataset could then serve as a new
training set to enable active learning on top of
existing event extraction approaches.
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